1
|
Si Z, Sun Y, Tan C, Ooi YJ, Li M, Raju C, Shubi J, Gan YH, Zhu Y, Li P, Chan-Park MB, Pethe K. A cationic main-chain poly(carbonate-imidazolium) potent against Mycobacterium abscessus and other resistant bacteria in mice. Biomaterials 2025; 316:123003. [PMID: 39709850 DOI: 10.1016/j.biomaterials.2024.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/23/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
The incidence of serious lung infections due to Mycobacterium abscessus, a worrying non-tuberculosis mycobacteria (NTM) species, is rising and has in some countries surpassed tuberculosis. NTM are ubiquitous in the environment and can cause serious lung infections in people who are immunocompromised or have pre-existing lung conditions. M. abscessus is intrinsically resistant to most antibiotics. Current treatments involve combination of three or more repurposed antibiotics with the treatment regimen lasting at least 12 months but producing unsatisfactory success rates of less than 50 %. Herein, we report an alternative strategy using a degradable polymer, specifically main-chain cationic carbonate-imidazolium-derived polymer (MCOP-1). MCOP-1 is a non-toxic agent active in a murine lung infection model. MCOP-1 also exhibits excellent efficacy against multi-drug resistant (MDR) ESKAPE bacteria. MCOP-1 damages bacterial membrane and DNA, and serial passaging does not rapidly elicit resistance. Its carbonate linkage is stable enough to allow MCOP-1 to remain intact for long enough to exert its bactericidal effect but is labile over longer time periods to degrade into non-toxic small molecules. These findings underscore the potential of degradable MCOP-1 as a promising therapeutic antimicrobial agent to address the growing incidence of recalcitrant infections due to M. abscessus and MDR ESKAPE bacteria.
Collapse
Affiliation(s)
- Zhangyong Si
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Yan Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
| | - Chongyun Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| | - Ying Jie Ooi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| | - Ming Li
- Infectious Diseases Translational Research Programme, Department of Biochemistry, National University of Singapore, 117596, Singapore
| | - Cheerlavancha Raju
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| | - Jamal Shubi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Programme, Department of Biochemistry, National University of Singapore, 117596, Singapore
| | - Yabin Zhu
- Health Science Center, Ningbo University, 315211, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 710072, China
| | - Mary B Chan-Park
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore.
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 637551, Singapore; National Center for Infectious Diseases (NCID), 308442, Singapore.
| |
Collapse
|
2
|
Moore JE, Millar BC. Clinical Trials involving Mycobacterium abscessus: An update. THE ULSTER MEDICAL JOURNAL 2025; 94:28-30. [PMID: 40313987 PMCID: PMC12042854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Affiliation(s)
- J E. Moore
- Northern Ireland Public Health Laboratory, Department of Bacteriology, Belfast City Hospital, Belfast, BT9 7AD, Northern Ireland School of Medicine, Dentistry and Biomedical Sciences, The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, BT9 7BL, Northern Ireland School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland Northern Ireland Regional Adult Cystic Fibrosis Centre, Belfast City Hospital, Belfast, BT9 7AB, Northern Ireland
| | - B C. Millar
- Northern Ireland Public Health Laboratory, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AD, Northern Ireland, United Kingdom
| |
Collapse
|
3
|
Feilcke R, Eckenstaler R, Lang M, Richter A, Imming P. A Simple In Vitro Method to Determine Bactericidal Activity Against Mycobacterium abscessus Under Hypoxic Conditions. Antibiotics (Basel) 2025; 14:299. [PMID: 40149109 PMCID: PMC11939544 DOI: 10.3390/antibiotics14030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Non-replicating persisters (NRPs) of Mycobacterium abscessus are a bacterial subpopulation that can survive in the host under unfavorable conditions, such as hypoxia or nutrient starvation. The eradication of these bacteria is difficult, which is one reason for the long treatment duration and treatment failure. The drug discovery process should therefore contain methods to screen activity against NRPs. Methods: A hypoxic environment is used to generate NRPs of M. abscessus that are termed low-oxygen persisters (LOPs). For this, an oxidation process is used to transition a replicating culture of M. abscessus distributed in microtiter plates within a sealable box into LOPs. Colony counting, automated object counting, bactericidal activity determination of known agents, and confocal laser scanning microscopy are used to study the obtained culture. Results: The obtained culture shows typical attributes of non-replicating cells, such as significantly reduced replication, the reversibility of the LOP state under aerobic conditions, delayed regrowth on solid medium, altered morphological patterns on a single-cell level, and phenotypical resistance against a variety of clinically relevant antimycobacterial compounds. The study reveals metronidazole and niclosamide as bactericidal against M. abscessus LOPs. These compounds can be used as LOP verification compounds within the described model. Conclusions: Our model is easily implemented and quickly identifies compounds that are inactive under hypoxic conditions. It can therefore accelerate the identification of clinically effective antimycobacterial drug substances, and can be a helpful tool during the drug development process.
Collapse
Affiliation(s)
| | | | | | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle, Germany
| | - Peter Imming
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle, Germany
| |
Collapse
|
4
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024; 37:e0008023. [PMID: 39360834 PMCID: PMC11629636 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
5
|
Dartois V, Bonfield TL, Boyce JP, Daley CL, Dick T, Gonzalez-Juarrero M, Gupta S, Kramnik I, Lamichhane G, Laughon BE, Lorè NI, Malcolm KC, Olivier KN, Tuggle KL, Jackson M. Preclinical murine models for the testing of antimicrobials against Mycobacterium abscessus pulmonary infections: Current practices and recommendations. Tuberculosis (Edinb) 2024; 147:102503. [PMID: 38729070 PMCID: PMC11168888 DOI: 10.1016/j.tube.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 05/12/2024]
Abstract
Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Tracey L Bonfield
- Genetics and Genome Sciences and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jim P Boyce
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Dick
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Shashank Gupta
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02215, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara E Laughon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kenneth N Olivier
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, USA; Marsico Lung Institute, Chapel Hill, 27599-7248, NC, USA
| | | | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
6
|
Seidel RW, Goddard R, Lang M, Richter A. Nα-Aroyl-N-Aryl-Phenylalanine Amides: A Promising Class of Antimycobacterial Agents Targeting the RNA Polymerase. Chem Biodivers 2024; 21:e202400267. [PMID: 38588490 DOI: 10.1002/cbdv.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of death from a bacterium in the world. The global prevalence of clinically relevant infections with opportunistically pathogenic non-tuberculous mycobacteria (NTM) has also been on the rise. Pharmacological treatment of both TB and NTM infections usually requires prolonged regimens of drug combinations, and is often challenging because of developed or inherent resistance to common antibiotic drugs. Medicinal chemistry efforts are thus needed to improve treatment options and therapeutic outcomes. Nα-aroyl-N-aryl-phenylalanine amides (AAPs) have been identified as potent antimycobacterial agents that target the RNA polymerase with a low probability of cross resistance to rifamycins, the clinically most important class of antibiotics known to inhibit the bacterial RNA polymerase. In this review, we describe recent developments in the field of AAPs, including synthesis, structural characterization, in vitro microbiological profiling, structure-activity relationships, physicochemical properties, pharmacokinetics and early cytotoxicity assessment.
Collapse
Affiliation(s)
- Rüdiger W Seidel
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Lang
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| |
Collapse
|
7
|
Shyam M, Thakur A, Velez C, Daniel C, Acevedo O, Bhakta S, Jayaprakash V. Mycobactin analogue interacting with siderophore efflux-pump protein: insights from molecular dynamics simulations and whole-cell assays. FRONTIERS IN ANTIBIOTICS 2024; 3:1362516. [PMID: 39816270 PMCID: PMC11731696 DOI: 10.3389/frabi.2024.1362516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 01/18/2025]
Abstract
Introduction In response to continued public health emergency of antimicrobial resistance (AMR), a significant key strategy is the discovery of novel mycobacterial efflux-pump inhibitors (EPIs) as potential adjuvants in combination drug therapy. Interest in identifying new chemotypes which could potentially synergize with the existing antibiotics and can be deployed as part of a combination therapy. This strategy could delay the emergence of resistance to existing antibiotics and increase their efficacy against resistant strains of mycobacterial species. In recent decades, notable approaches have been accounted for EPI development and have resulted in the discovery of several EPIs including SQ109 and AU1235. In context, to accelerate newer EPIs with novel mode of action here we have discussed mycobactin analogues and highlighted in silico binding orientation with siderophore efflux-pump proteins MmpL4/5. Methods 3-(2-hydroxyphenyl)-5-(aryl)-pyrazoline series was investigated for whole-cell efflux-pump inhibitory activity against Mycobacterium smegmatis and Mycobacterium abscessus. Machine learning and molecular dynamics were performed to construct a MmpL4/5 complex embedded in a lipid bilayer to identify the putative binding site and to predict ligand-protein binding energetics. Furthermore, the identified HIT compound was investigated in synergistic assay with bedaquiline. Results Compound Il, 2-(5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenol, was identified as the most potent efflux pump inhibitor against M. smegmatis in whole-cell efflux-pump investigation. Followed HIT Il employed against M. abscessus for efflux-pump inhibition investigations and notable whole-cell efflux-pump inhibitory profile has been observed. The theoretical investigations predicted compound Il to be selective towards MmpL4, with significant hydrogen bonding and π-π stacking interactions effectively blocking a critical Asp-Tyr dyad interaction network necessary for proton translocation. Compound Il with bedaquiline highlighted an additive profile against the M. abscessus pathogen. Conclusions MD simulations and whole-cell assays are indicating potential development of compound Il as an adjunct to the existing therapeutic regimen against mycobacterial infections.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, India
- Mycobacteria Research Laboratory, Department of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | - Caroline Velez
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | - Chris Daniel
- Mycobacteria Research Laboratory, Department of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
8
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
9
|
Nguyen TQ, Heo BE, Jeon S, Ash A, Lee H, Moon C, Jang J. Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front Microbiol 2024; 15:1331508. [PMID: 38380095 PMCID: PMC10877060 DOI: 10.3389/fmicb.2024.1331508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Mycobacterium abscessus, a leading cause of severe lung infections in immunocompromised individuals, poses significant challenges for current therapeutic strategies due to resistance mechanisms. Therefore, understanding the intrinsic and acquired antibiotic resistance of M. abscessus is crucial for effective treatment. This review highlights the mechanisms employed by M. abscessus to sustain antibiotic resistance, encompassing not only conventional drugs but also newly discovered drug candidates. This comprehensive analysis aims to identify novel entities capable of overcoming the notorious resistance exhibited by M. abscessus, providing insights for the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Anwesha Ash
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Heehyun Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
10
|
Piller T, De Vooght L, Gansemans Y, Van Nieuwerburgh F, Cos P. Mycothione reductase as a potential target in the fight against Mycobacterium abscessus infections. mSphere 2024; 9:e0066923. [PMID: 38085034 PMCID: PMC10826361 DOI: 10.1128/msphere.00669-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 01/31/2024] Open
Abstract
While infections caused by Mycobacterium abscessus complex (MABC) are rising worldwide, the current treatment of these infections is far from ideal due to its numerous shortcomings thereby increasing the urge for novel drug targets. In this study, mycothione reductase (Mtr) was evaluated for its potential as a drug target for MABC infections since it is a key enzyme needed in the recycling of mycothiol, the main low-molecular-weight thiol protecting the bacteria against reactive oxygen species and other reactive intermediates. First, a Mab∆mtr mutant strain was generated, lacking mtr expression. Next, the in vitro sensitivity of Mab∆mtr to oxidative stress and antimycobacterial drugs was determined. Finally, we evaluated the intramacrophage survival and the virulence of Mab∆mtr in Galleria mellonella larvae. Mab∆mtr demonstrated a 39.5-fold reduction in IC90 when exposed to bedaquiline in vitro. Furthermore, the Mab∆mtr mutant showed a decreased ability to proliferate inside macrophages and larvae, suggesting that Mtr plays an important role during MABC infection. Altogether, these findings support the assumption of Mtr being a potential target for antimycobacterial drugs.IMPORTANCEMycobacterium abscessus complex (MABC) is a group of bacteria causing a serious public health problem worldwide due to its ability to cause progressive disease, its highly resistant profile against various antibiotics, and its lengthy treatment. Therefore, new drugs are needed to alleviate antibiotic resistance and reduce the length of the current treatment. A potential new target for new antibiotics is mycothione reductase (Mtr), an important enzyme belonging to a pathway that protects the bacteria against harmful conditions. Our research created a bacterium deficient of mtr by using advanced genetic techniques and demonstrated that mtr-deficient bacteria have a decreased ability to multiply during infection. Furthermore, we show evidence that currently used antibiotics combined with mtr deficiency can lead to a better treatment of MABC infection. Altogether, our results validate Mtr as a potential new target and suggest that Mtr plays a role during MABC infection.
Collapse
Affiliation(s)
- T. Piller
- Department of Pharmaceutical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - L. De Vooght
- Department of Pharmaceutical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Y. Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - F. Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - P. Cos
- Department of Pharmaceutical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
11
|
Boudehen YM, Tasrini Y, Aguilera-Correa JJ, Alcaraz M, Kremer L. Silencing essential gene expression in Mycobacterium abscessus during infection. Microbiol Spectr 2023; 11:e0283623. [PMID: 37831478 PMCID: PMC10714871 DOI: 10.1128/spectrum.02836-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Mycobacterium abscessus represents the most common rapidly growing mycobacterial pathogen in cystic fibrosis and is extremely difficult to eradicate. Essential genes are required for growth, often participate in pathogenesis, and encode valid drug targets for further chemotherapeutic developments. However, assessing the function of essential genes in M. abscessus remains challenging due to the limited spectrum of efficient genetic tools. Herein, we generated a Tet-OFF-based system allowing to knock down the expression of mmpL3, encoding the mycolic acid transporter in mycobacteria. Using this conditional mutant, we confirm the essentiality of mmpL3 in planktonic cultures, in biofilms, and during infection in zebrafish embryos. Thus, in this study, we developed a robust and reliable method to silence the expression of any M. abscessus gene during host infection.
Collapse
Affiliation(s)
- Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
12
|
Alcaraz M, Edwards TE, Kremer L. New therapeutic strategies for Mycobacterium abscessus pulmonary diseases - untapping the mycolic acid pathway. Expert Rev Anti Infect Ther 2023; 21:813-829. [PMID: 37314394 PMCID: PMC10529309 DOI: 10.1080/14787210.2023.2224563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Treatment options against Mycobacterium abscessus infections are very limited. New compounds are needed to cure M. abscessus pulmonary diseases. While the mycolic acid biosynthetic pathway has been largely exploited for the treatment of tuberculosis, this metabolic process has been overlooked in M. abscessus, although it offers many potential drug targets for the treatment of this opportunistic pathogen. AREAS COVERED Herein, the authors review the role of the MmpL3 membrane protein and the enoyl-ACP reductase InhA involved in the transport and synthesis of mycolic acids, respectively. They discuss their importance as two major vulnerable drug targets in M. abscessus and report the activity of MmpL3 and InhA inhibitors. In particular, they focus on NITD-916, a direct InhA inhibitor against M. abscessus, particularly warranted in the context of multidrug resistance. EXPERT OPINION There is an increasing body of evidence validating the mycolic acid pathway as an attractive drug target to be further exploited for M. abscessus lung disease treatments. The NITD-916 studies provide a proof-of-concept that direct inhibitors of InhA are efficient in vitro, in macrophages and in zebrafish. Future work is now required to improve the activity and pharmacological properties of these inhibitors and their evaluation in pre-clinical models.
Collapse
Affiliation(s)
- Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Thomas E. Edwards
- UCB BioSciences, Bainbridge Island, WA 98109 USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109 USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|