1
|
Qaed E, Liu W, Almoiliqy M, Mohamed R, Tang Z. Unleashing the potential of Genistein and its derivatives as effective therapeutic agents for breast cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3321-3343. [PMID: 39549063 DOI: 10.1007/s00210-024-03579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Genistein (Gen), a phytoestrogen soy isoflavone, has emerged as a promising agent in the prevention and treatment of breast cancer due to its ability to function as a natural selective estrogen receptor modulator (SERM). This review explores the multifaceted mechanisms through which Gen and its derivatives exert their anticancer effects, including modulation of the PI3K/Akt signaling pathway, regulation of apoptosis, inhibition of angiogenesis, and impacts on DNA methylation and enzyme functions. We discuss the dual roles of Gen in both enhancing and inhibiting estrogen receptor (ER)-dependent pathways., highlighting its complex interactions with ERα and ERβ. Furthermore, the review examines the synergistic effect of combining Gen with conventional chemotherapeutic agents such as doxorubicin, cisplatin, and selenium, as well as other natural compounds like lycopene. Clinical studies suggest that while isoflavones may not significantly influence breast cancer progression in general, the high consumption of soy isoflavones is associated with reduced recurrence rates in breast cancer survivors. Importantly, Gen's ability to modulate key signaling pathways and enhance the efficacy of existing treatments improves its potential as a valuable adjunct in breast cancer therapy. In conclusion, Gen and its derivatives offer a novel and promising approach for treatment of breast cancer. Continued research into their mechanisms of action and clinical applications will be essential in optimizing their therapeutic potential and translating these findings into effective clinical interventions.
Collapse
Affiliation(s)
- Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Wu Liu
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Marwan Almoiliqy
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Rawan Mohamed
- College of Clinical Pharmacy, Mansoura University, Mansoura, Egypt
| | - Zeyao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
| |
Collapse
|
2
|
Fan Y, Yu S, Yang Z, Cai D. Mesoporous SiO 2 based nanocomplex enzymes for enhanced chemodynamic therapy of pancreatic tumors. NANOSCALE 2025; 17:6646-6659. [PMID: 39950252 DOI: 10.1039/d4nr02406k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Chemodynamic therapy (CDT) is a therapeutic method that uses a Fenton/Fenton-like reaction to convert intracellular H2O2 into highly cytotoxic ˙OH to effectively kill cancer cells. This method is adapted to the specific characteristics of the tumor microenvironment, boasting high selectivity and strong specificity among other advantages. However, CDT still faces challenges. Glutathione (GSH), which is present in high levels in the tumor microenvironment, can consume a large amount of ˙OH, significantly limiting the effectiveness of CDT. In this study, we synthesized a core-shell nanozyme (mSiO2@MnO2) with a composite structure comprising a mesoporous silica core and a manganese dioxide (MnO2) shell. The mesoporous structure was loaded with the chemotherapeutic drug genistein (Gen) and surface-modified with polyethylene glycol (PEG) to enhance its effectiveness in treating pancreatic cancer. This formulation, denoted as the Gen@mSiO2@MnO2-PEG nanocomplex enzyme, exhibits a dual action mechanism. Firstly, upon reaching tumor cells, it releases genistein for kinetic therapy and degrades the MnO2 shell. Secondly, GSH consumption triggers Fenton-like reactions to generate ˙OH, thereby enhancing CDT. At the cellular level, the Gen@mSiO2@MnO2-PEG nanocomplex enzyme demonstrates excellent biocompatibility. It induces the production of reactive oxygen species in the pancreatic cancer cell line PANC-1, disrupting the redox balance within tumor cells, and ultimately killing them. In vivo, the Gen@mSiO2@MnO2-PEG nanocomplex enzyme selectively accumulates at the tumor sites in PANC-1 tumor-bearing mice, resulting in the inhibition of tumor growth and metastasis. This study demonstrates that core-shell nanozymes serve as an effective platform for cancer therapy, enhancing the efficacy of combined chemotherapy and CDT for pancreatic cancer.
Collapse
Affiliation(s)
- Yue Fan
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Shulin Yu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhaoshuo Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Smeu A, Marcovici I, Dehelean CA, Dumitrel SI, Borza C, Lighezan R. Flavonoids and Flavonoid-Based Nanopharmaceuticals as Promising Therapeutic Strategies for Colorectal Cancer-An Updated Literature Review. Pharmaceuticals (Basel) 2025; 18:231. [PMID: 40006045 PMCID: PMC11858883 DOI: 10.3390/ph18020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Colorectal cancer (CRC) represents one of the most serious health issues and the third most commonly diagnosed cancer worldwide. However, the treatment options for CRC are associated with adverse reactions, and in some cases, resistance can develop. Flavonoids have emerged as promising alternatives for CRC prevention and therapy due to their multitude of biological properties and ability to target distinct processes involved in CRC pathogenesis. Their innate disadvantageous properties (e.g., low solubility and stability, reduced bioavailability, and lack of tumor specificity) have delayed the potential inclusion of flavonoids in CRC treatment regimens but have hastened the design of nanopharmaceuticals comprising a flavonoid agent entrapped in a nanosized delivery platform that not only counteract these inconveniences but also provide an augmented therapeutic effect and an elevated safety profile by conferring a targeted action. Starting with a brief presentation of the pathological features of CRC and an overview of flavonoid classes, the present study comprehensively reviews the anti-CRC activity of different flavonoids from a mechanistic perspective while also portraying the latest discoveries made in the area of flavonoid-containing nanocarriers that have proved efficient in CRC management. This review concludes by showcasing future perspectives for the advancement of flavonoids and flavonoid-based nanopharmaceuticals in CRC research.
Collapse
Affiliation(s)
- Andreea Smeu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Stefania-Irina Dumitrel
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Claudia Borza
- Department of Functional Sciences, Discipline of Pathophysiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
- Centre for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
- Centre of Cognitive Research in Pathological Neuro-Psychiatry NEUROPSY-COG, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Rodica Lighezan
- Center for Diagnosis and Study of Parasitic Diseases, Department of Infectious Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Discipline of Parasitology, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Li P, Huang D. Targeting the JAK-STAT pathway in colorectal cancer: mechanisms, clinical implications, and therapeutic potential. Front Cell Dev Biol 2024; 12:1507621. [PMID: 39659524 PMCID: PMC11628519 DOI: 10.3389/fcell.2024.1507621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and fatal malignancies worldwide, consistently ranking among the top three in terms of incidence and mortality. Despite notable advancements in early detection and therapeutic interventions, survival outcomes for advanced-stage CRC are still dismal, largely due to issues such as drug resistance and metastasis. Recent research has increasingly implicated the JAK-STAT signaling pathway as a pivotal contributor to CRC pathogenesis. This evolutionarily conserved pathway plays a key role in transmitting extracellular signals to the nucleus, thereby modulating gene expression involved in numerous fundamental biological processes. In CRC, dysregulation of the JAK-STAT pathway is frequently observed and is strongly associated with tumor progression, including processes such as cellular proliferation, apoptosis, metastasis, immune evasion, and the sustenance of cancer stem cells. Given its integral role in CRC advancement, the JAK-STAT pathway has gained recognition as a viable therapeutic target. Extensive evidence from preclinical and clinical models supports the efficacy and safety of targeting components of the JAK-STAT pathway, presenting new therapeutic possibilities for patients with CRC, particularly in addressing drug resistance and enhancing treatment outcomes. This review offers a detailed exploration of the JAK-STAT pathway, focusing on its regulatory mechanisms in CRC-related malignancies. Moreover, it examines the association between JAK-STAT protein expression, clinical features, prognosis, and its therapeutic potential in CRC management.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Moreno-Marín JP, Estrada V, Castro C, Cardona-Galeano W, Brake S, Peresin MS, Osorio M. Encapsulation of a 5FU-curcumin hybrid on bacterial nanocellulose for colorectal cancer treatment. Int J Biol Macromol 2024; 281:136650. [PMID: 39419161 DOI: 10.1016/j.ijbiomac.2024.136650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The traditional treatment of colorectal cancer (CRC) involves a combination of chemotherapy and synthetic and natural drugs. In this study, a hybrid compound of 5-fluorouracil-curcumin encapsulated in bacterial nanocellulose (BNC) was evaluated for CRC treatment. Bacterial nanocellulose was produced using K. medellinensis and spray-dried. The encapsulation technique involved solvent evaporation. The interactions between cellulose and the hybrid were evaluated using adsorption isotherms and kinetics, and the system was morphologically and physiochemically characterized. The capsules were tested in vitro using Dukes' C and B CRC cells. The results indicated heterogeneous and incomplete adsorption of the hybrid onto the active sites of cellulose. Capsules with a BNC:hybrid mass ratio of 1:1 maintained the encapsulant properties while maximizing the drug load according to desorption in simulated stomach and colon fluids, where desorption in the colon was 1.79 times greater than that in the stomach. Finally, the cancer cell inhibition results indicated that the encapsulated hybrid performed better on Dukes' C-stage cells than on Duke's B-stage cells. In this study, a new system based on a hybrid cellulose compound was proposed for CRC treatment, specifically for metastatic CRC.
Collapse
Affiliation(s)
- J P Moreno-Marín
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 70-01, Medellín 050031, Colombia
| | - V Estrada
- School of Health Science, Universidad Pontificia Bolivariana, Calle 78B 72A-159, 050042, Colombia
| | - C Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 70-01, Medellín 050031, Colombia
| | - W Cardona-Galeano
- Química de Plantas Colombianas, Universidad de Antioquia, Calle 67 53-108, Medellín 050011, Colombia
| | - S Brake
- Sustainable Bio-Based Materials Laboratory, Forest Products Development Center, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
| | - M S Peresin
- Sustainable Bio-Based Materials Laboratory, Forest Products Development Center, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
| | - M Osorio
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 70-01, Medellín 050031, Colombia; School of Health Science, Universidad Pontificia Bolivariana, Calle 78B 72A-159, 050042, Colombia.
| |
Collapse
|
6
|
Mandal MK, Domb AJ. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024; 16:718. [PMID: 38931842 PMCID: PMC11206801 DOI: 10.3390/pharmaceutics16060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Secondary metabolites, polyphenols, are widespread in the entire kingdom of plants. They contain one or more hydroxyl groups that have a variety of biological functions in the natural environment. These uses include polyphenols in food, beauty products, dietary supplements, and medicinal products and have grown rapidly during the past 20 years. Antimicrobial polyphenols are described together with their sources, classes, and subclasses. Polyphenols are found in different sources, such as dark chocolate, olive oil, red wine, almonds, cashews, walnuts, berries, green tea, apples, artichokes, mushrooms, etc. Examples of benefits are antiallergic, antioxidant, anticancer agents, anti-inflammatory, antihypertensive, and antimicrobe properties. From these sources, different classes of polyphenols are helpful for the growth of internal functional systems of the human body, providing healthy fats, vitamins, and minerals, lowering the risk of cardiovascular diseases, improving brain health, and rebooting our cellular microbiome health by mitochondrial uncoupling. Among the various health benefits of polyphenols (curcumin, naringenin, quercetin, catechin, etc.) primarily different antimicrobial activities are discussed along with possible future applications. For polyphenols and antimicrobial agents to be proven safe, adverse health impacts must be substantiated by reliable scientific research as well as in vitro and in vivo clinical data. Future research may be influenced by this evaluation.
Collapse
Affiliation(s)
| | - Abraham J. Domb
- The Alex Grass Center for Drug Design & Synthesis and the Center for Cannabis Research, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
7
|
Iftode C, Iurciuc S, Marcovici I, Macasoi I, Coricovac D, Dehelean C, Ursoniu S, Rusu A, Ardelean S. Genistein-Aspirin Combination Exerts Cytotoxic and Anti-Migratory Effects in Human Colorectal Cancer Cells. Life (Basel) 2024; 14:606. [PMID: 38792627 PMCID: PMC11122532 DOI: 10.3390/life14050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Colorectal cancer (CRC) is a heterogenous pathology with high incidence and mortality rates globally, but it is also preventable so finding the most promising candidates (natural compounds or repurposed drugs) to be chemopreventive alternatives has become a topic of interest in recent years. The present work aims to elucidate the potential effects of a combination between genistein (GEN), an isoflavone of natural origin, and aspirin (ASA) in CRC prevention/treatment by performing an in vitro evaluation in human colorectal cancer cells (HCT-116) and an in ovo analysis using the chick embryo chorioallantoic membrane (CAM) model. Cell viability was verified by an MTT (migratory potential by scratch) assay, and the expressions of MMP-2 and MMP-9 were analyzed using RT-qPCR. Our results indicated a dose-dependent cytotoxic effect of ASA (2.5 mM) + GEN (10-75 µM) combination characterized by reduced cell viability and morphological changes (actin skeleton reorganization and nuclei deterioration), an inhibition of HCT-116 cells' migratory potential by down-regulating MMP-2 and MMP-9 mRNA expressions, and an antiangiogenic effect by modifying the vascular network. These promising results raise the possibility of future in-depth investigations regarding the chemopreventive/therapeutical potential of ASA+GEN combination.
Collapse
Affiliation(s)
- Claudia Iftode
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (C.I.); (S.U.)
| | - Stela Iurciuc
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (C.I.); (S.U.)
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (I.M.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ioana Macasoi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (I.M.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (I.M.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (I.M.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Sorin Ursoniu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (C.I.); (S.U.)
- Center for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Andreea Rusu
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, Revolutiei Bvd 94, 310130 Arad, Romania; (A.R.); (S.A.)
| | - Simona Ardelean
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, Revolutiei Bvd 94, 310130 Arad, Romania; (A.R.); (S.A.)
| |
Collapse
|
8
|
ÇAL DOĞAN T, AYDIN DİLSİZ S, CANPINAR H, ÜNDEĞER BUCURGAT Ü. Genistein Enhances TRAIL-Mediated Apoptosis Through the Inhibition of XIAP and DcR1 in Colon Carcinoma Cells Treated with 5-Fluorouracil. Turk J Pharm Sci 2024; 21:7-24. [PMID: 38528786 PMCID: PMC10982885 DOI: 10.4274/tjps.galenos.2023.60543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/18/2023] [Indexed: 03/27/2024]
Abstract
Objectives Colorectal cancer is one of the most common cancers worldwide. However, surgical intervention and chemotherapy provide only limited benefits for the recovery and survival of patients. The anticarcinogenic effect of genistein has attracted attention because epidemiological studies have shown that soybean consumption is associated with a decrease in the incidence of cancer. There are limited studies on the effects of genistein in colorectal carcinoma cells. We aimed to investigate the cytotoxic, genotoxic, and apoptotic effects of genistein in SW480 and SW620 colon adenocarcinoma cells treated with 5-fluorouracil, the basis of chemotherapy, and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) ligand, the mediator of apoptosis, both alone and in combination. Materials and Methods Cytotoxicity and genotoxicity were determined by MTT and comet assays, respectively. The apoptotic effects were evaluated by reverse transcription-polymerase chain reaction assay, with the additional use of Annexin V FITC, mitochondrial membrane potential (MMP), caspase 3, 8, and 9 activity, and reactive oxygen species (ROS) assay kits. Results According to our findings, genistein, 5-fluorouracil, and TRAIL had synergistic apoptotic effects because of DR5 upregulation, ROS production, and DNA damage, which were mediated by increased caspase-8, and -9 activity and decreased MMP. Conclusion The applied combinations of these compounds may contribute to the resistance problem that may occur in treating colorectal cancer, with a decrease in DcR1 and XIAP genes.
Collapse
Affiliation(s)
| | - Sevtap AYDIN DİLSİZ
- Hacettepe University, Faculty of Pharmacy, Deparment of Pharmaceutical Toxicology, İstanbul, Türkiye
| | - Hande CANPINAR
- Hacettepe University, Faculty of Medicine, Department of Basic Oncology, İstanbul, Türkiye
| | - Ülkü ÜNDEĞER BUCURGAT
- Hacettepe University, Faculty of Pharmacy, Deparment of Pharmaceutical Toxicology, İstanbul, Türkiye
| |
Collapse
|
9
|
Tayeb BA, Kusuma IY, Osman AAM, Minorics R. Herbal compounds as promising therapeutic agents in precision medicine strategies for cancer: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:137-162. [PMID: 38462407 DOI: 10.1016/j.joim.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The field of personalized medicine has gained increasing attention in cancer care, with the aim of tailoring treatment strategies to individual patients for improved outcomes. Herbal medicine, with its long-standing historical use and extensive bioactive compounds, offers a rich source of potential treatments for various diseases, including cancer. OBJECTIVE To provide an overview of the current knowledge and evidence associated with incorporating herbal compounds into precision medicine strategies for cancer diseases. Additionally, to explore the general characteristics of the studies included in the analysis, focusing on their key features and trends. SEARCH STRATEGY A comprehensive literature search was conducted from multiple online databases, including PubMed, Scopus, Web of Science, and CINAHL-EBSCO. The search strategy was designed to identify studies related to personalized cancer medicine and herbal interventions. INCLUSION CRITERIA Publications pertaining to cancer research conducted through in vitro, in vivo, and clinical studies, employing natural products were included in this review. DATA EXTRACTION AND ANALYSIS Two review authors independently applied inclusion and inclusion criteria, data extraction, and assessments of methodological quality. The quality assessment and biases of the studies were evaluated based on modified Jadad scales. A detailed quantitative summary of the included studies is presented, providing a comprehensive description of their key features and findings. RESULTS A total of 121 studies were included in this review for analysis. Some of them were considered as comprehensive experimental investigations both in vitro and in vivo. The majority (n = 85) of the studies included in this review were conducted in vitro, with 44 of them specifically investigating the effects of herbal medicine on animal models. Additionally, 7 articles with a combined sample size of 31,271 patients, examined the impact of herbal medicine in clinical settings. CONCLUSION Personalized medication can optimize the use of herbal medicine in cancer treatment by considering individual patient factors such as genetics, medical history, and other treatments. Additionally, active phytochemicals found in herbs have shown potential for inhibiting cancer cell growth and inducing apoptosis, making them a promising area of research in preclinical and clinical investigations. Please cite this article as: Tayeb BA, Kusuma IY, Osman AAM, Minorics R. Herbal compounds as promising therapeutic agents in precision medicine strategies for cancer: A systematic review. J Integr Med. 2024; 22(2): 137-162.
Collapse
Affiliation(s)
- Bizhar Ahmed Tayeb
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary.
| | - Ikhwan Yuda Kusuma
- Institution of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Hungary; Pharmacy Study Program, Faculty of Health, Universitas Harapan Bangsa, Purwokerto 53182, Indonesia
| | - Alaa A M Osman
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, University of Gezira, 20 Wad Madani, Sudan
| | - Renáta Minorics
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
10
|
Joshi H, Gupta DS, Abjani NK, Kaur G, Mohan CD, Kaur J, Aggarwal D, Rani I, Ramniwas S, Abdulabbas HS, Gupta M, Tuli HS. Genistein: a promising modulator of apoptosis and survival signaling in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2893-2910. [PMID: 37300702 DOI: 10.1007/s00210-023-02550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Genistein, a commonly occurring isoflavone, has recently gained popularity owing to its ever-expanding spectrum of pharmacological benefits. In addition to health benefits such as improved bone health and reduced postmenopausal complications owing to its phytoestrogen properties, it has been widely evaluated for its anti-cancer potential. Several studies have established the potential for its usage in the management of breast, lung, and prostate cancers, and its usage has significantly evolved from early applications in traditional systems of medicine. This review offers an insight into its current status of usage, the chemistry, and pharmacokinetics of the molecule, an exploration of its apoptotic mechanisms in cancer management, and opportunities for synergism to improve therapeutic outcomes. In addition to this, the authors have presented an overview of recent clinical trials, to offer an understanding of contemporary studies and explore prospects for a greater number of focused trials, moving forward. Advancements in the application of nanotechnology as a strategy to improve safety and efficacy have also been highlighted, with a brief discussion of results from safety and toxicology studies.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | | | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, 134007, Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
11
|
Alzate-Yepes T, Pérez-Palacio L, Martínez E, Osorio M. Mechanisms of Action of Fruit and Vegetable Phytochemicals in Colorectal Cancer Prevention. Molecules 2023; 28:molecules28114322. [PMID: 37298797 DOI: 10.3390/molecules28114322] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and its incidence is expected to increase by almost 80% by 2030. CRC apparition is related to poor diet, mainly due to low consumption of phytochemicals present in fruits and vegetables. Hence, this paper reviews the most promising phytochemicals in the literature, presenting scientific evidence regarding potential CRC chemopreventive effects. Moreover, this paper reveals the structure and action of CRC mechanisms that these phytochemicals are involved in. The review reveals that vegetables rich in phytochemicals such as carrots and green leafy vegetables, as well as some fruits such as pineapple, citrus fruits, papaya, mango, and Cape gooseberry, that have antioxidant, anti-inflammatory, and chemopreventive properties can promote a healthy colonic environment. Fruits and vegetables in the daily diet promote antitumor mechanisms by regulating cell signaling and/or proliferation pathways. Hence, daily consumption of these plant products is recommended to reduce the risk of CRC.
Collapse
Affiliation(s)
- Teresita Alzate-Yepes
- School of Nutrition and Dietetics, University of Antioquia, Carrera 75 # 65-87, Medellín 050010, Antioquia, Colombia
| | - Lorena Pérez-Palacio
- School of Nutrition and Dietetics, University of Antioquia, Carrera 75 # 65-87, Medellín 050010, Antioquia, Colombia
| | - Estefanía Martínez
- School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellín 050031, Antioquia, Colombia
| | - Marlon Osorio
- School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellín 050031, Antioquia, Colombia
- Systems Biology Group, School of Health Sciences, Pontifical Bolivarian University, Calle 78 B # 72 A 10, Medellín 050034, Antioquia, Colombia
| |
Collapse
|
12
|
Hassani S, Maghsoudi H, Fattahi F, Malekinejad F, Hajmalek N, Sheikhnia F, Kheradmand F, Fahimirad S, Ghorbanpour M. Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer. Int J Biol Macromol 2023; 241:124508. [PMID: 37085076 DOI: 10.1016/j.ijbiomac.2023.124508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Colorectal cancer is among the frequently diagnosed cancers with high mortality rates around the world. Polyphenolic compounds such as flavonoids are secondary plant metabolites which exhibit anti-cancer activities along with anti-inflammatory effects. However, due to their hydrophobicity, sensitivity to degradation and low bioavailability, therapeutic effects have shown poor therapeutic effect. Nano delivery systems such as nanoliposomes, nanomicelles, silica nanoparticles have been investigated to overcome these difficulties. This review provides a summary of the efficiency of certain flavonoids and polyphenols (apigenin, genistein, resveratrol, quercetin, silymarin, catechins, luteolin, fisetin, gallic acid, rutin, and curcumin) on colorectal cancer models. It comprehensively discusses the influence of nano-formulation of flavonoids on their biological functions, including cellular uptake rate, bioavailability, solubility, and cytotoxicity, as well as their potential for reducing colorectal cancer tumor size under in vivo situations.
Collapse
Affiliation(s)
- Sepideh Hassani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Malekinejad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nooshin Hajmalek
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| |
Collapse
|
13
|
Recent Advances in Cellular Signaling Interplay between Redox Metabolism and Autophagy Modulation in Cancer: An Overview of Molecular Mechanisms and Therapeutic Interventions. Antioxidants (Basel) 2023; 12:antiox12020428. [PMID: 36829987 PMCID: PMC9951923 DOI: 10.3390/antiox12020428] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Autophagy is a fundamental homeostatic process in which certain cellular components are ingested by double-membrane autophagosomes and then degraded to create energy or to maintain cellular homeostasis and survival. It is typically observed in nutrient-deprived cells as a survival mechanism. However, it has also been identified as a crucial process in maintaining cellular homeostasis and disease progression. Normal cellular metabolism produces reactive oxygen (ROS) and nitrogen species at low levels. However, increased production causes oxidative stress, which can lead to diabetes, cardiovascular diseases, neurological disorders, and cancer. It was recently shown that maintaining redox equilibrium via autophagy is critical for cellular responses to oxidative stress. However, little is understood about the molecular cancer processes that connect to the control of autophagy. In cancer cells, oncogenic mutations, carcinogens, and metabolic reprogramming cause increased ROS generation and oxidative stress. Recent studies have suggested that increased ROS generation activates survival pathways that promote cancer development and metastasis. Moreover, the relationship between metabolic programming and ROS in cancer cells is involved in redox homeostasis and the malignant phenotype. Currently, while the signaling events governing autophagy and how redox homeostasis affects signaling cascades are well understood, very little is known about molecular events related to autophagy. In this review, we focus on current knowledge about autophagy modulation and the role of redox metabolism to further the knowledge of oxidative stress and disease progression in cancer regulation. Therefore, this review focuses on understanding how oxidation/reduction events fine-tune autophagy to help understand how oxidative stress and autophagy govern cancer, either as processes leading to cell death or as survival strategies for maintaining redox homeostasis in cancer.
Collapse
|