1
|
Sari BR, Yesilot S, Ozmen O, Aydin Acar C. Superior In Vivo Wound-Healing Activity of Biosynthesized Silver Nanoparticles with Nepeta cataria (Catnip) on Excision Wound Model in Rat. Biol Trace Elem Res 2025; 203:1502-1517. [PMID: 38865065 PMCID: PMC11872767 DOI: 10.1007/s12011-024-04268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Silver nanoparticles were biosynthesized with Nepeta cataria plant extract. It was determined that the synthesized Nc-AgNPs gave a strong absorbance peak at 438 nm wavelength in the UV-vis spectrophotometer. SEM and TEM analyses of Nc-AgNPs showed that the synthesized nanoparticles had a spherical morphology. Based on XRD analysis, the average crystallite size of Nc-AgNPs was calculated at 15.74 nm. At the same time, EDS spectrum analysis exhibited dominant emission energy at 3 keV, indicative of Nc-AgNPs. Nc-AgNPs showed an inhibition zone of 12 nm in gram-negative Escherichia coli, 10 nm in gram-positive Enterococcus faecalis, and 11 nm in Staphylococcus aureus. Nc-AgNPs showed high antioxidant properties, with 63% at 5000 μg/mL. The wound-healing properties of Nc-AgNPs were evaluated in vivo in wound models created in a total of 20 Wistar albino male rats, divided into four groups. After 10 days of treatment, the highest wound closure rate was seen in the Nc-AgNP + Vaseline (Group IV) treatment group, at 94%. It was observed that Nc-AgNP + Vaseline nanoformulation significantly increased wound healing, similar to Silverdin®, and Vaseline alone supported healing but did not result in complete closure. Histopathological examination revealed an increase in mature Type 1 collagen in Group IV and positive control (Group II), with better collagen maturation in vehicle control (Group III) compared to negative control (Group I). Immunohistochemical analysis showed complete epithelialization in Group IV and Group II, with distinct cytokeratin expressions, while Group III exhibited mild expressions.
Collapse
Affiliation(s)
- Berfin Rumeysa Sari
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Sukriye Yesilot
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Nursing, Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ozlem Ozmen
- Veterinary Faculty, Department of Pathology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Cigdem Aydin Acar
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
- Department of Nursing, Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| |
Collapse
|
2
|
Aguilar-Garay R, Lara-Ortiz LF, Campos-López M, Gonzalez-Rodriguez DE, Gamboa-Lugo MM, Mendoza-Pérez JA, Anzueto-Ríos Á, Nicolás-Álvarez DE. A Comprehensive Review of Silver and Gold Nanoparticles as Effective Antibacterial Agents. Pharmaceuticals (Basel) 2024; 17:1134. [PMID: 39338299 PMCID: PMC11434858 DOI: 10.3390/ph17091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing threat from antibiotic-resistant bacteria has necessitated the development of novel methods to counter bacterial infections. In this context, the application of metallic nanoparticles (NPs), especially gold (Au) and silver (Ag), has emerged as a promising strategy due to their remarkable antibacterial properties. This review examines research published between 2006 and 2023, focusing on leading journals in nanotechnology, materials science, and biomedical research. The primary applications explored are the efficacy of Ag and Au NPs as antibacterial agents, their synthesis methods, morphological properties, and mechanisms of action. An extensive review of the literature on NPs synthesis, morphology, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and effectiveness against various Gram(+/-) bacteria confirms the antibacterial efficacy of Au and Ag NPs. The synthesis methods and characteristics of NPs, such as size, shape, and surface charge, are crucial in determining their antibacterial activity, as these factors influence their interactions with bacterial cells. Furthermore, this review underscores the urgent necessity of standardizing synthesis techniques, MICs, and reporting protocols to enhance the comparability and reproducibility of future studies. Standardization is essential for ensuring the reliability of research findings and accelerating the clinical application of NP-based antimicrobial approaches. This review aims to propel NP-based antimicrobial strategies by elucidating the properties that enhance the antibacterial activity of Ag and Au NPs. By highlighting their inhibitory effects against various bacterial strains and relatively low cytotoxicity, this work positions Ag and Au NPs as promising materials for developing antibacterial agents, making a significant contribution to global efforts to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Ricardo Aguilar-Garay
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Luis F. Lara-Ortiz
- Hormones and Behavior Laboratory, Department of Physiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Maximiliano Campos-López
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Dafne E. Gonzalez-Rodriguez
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Margoth M. Gamboa-Lugo
- Faculty of Chemical and Biological Sciences, Universidad Autónoma de Sinaloa, Culiacan 80013, Mexico;
| | - Jorge A. Mendoza-Pérez
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Álvaro Anzueto-Ríos
- Bionic Academy, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Dulce E. Nicolás-Álvarez
- Hormones and Behavior Laboratory, Department of Physiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| |
Collapse
|
3
|
Rodrigues AS, Batista JGS, Rodrigues MÁV, Thipe VC, Minarini LAR, Lopes PS, Lugão AB. Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front Microbiol 2024; 15:1440065. [PMID: 39149204 PMCID: PMC11325591 DOI: 10.3389/fmicb.2024.1440065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Nanoparticles play a crucial role in the field of nanotechnology, offering different properties due to their surface area attributed to their small size. Among them, silver nanoparticles (AgNPs) have attracted significant attention due to their antimicrobial properties, with applications that date back from ancient medicinal practices to contemporary commercial products containing ions or silver nanoparticles. AgNPs possess broad-spectrum biocidal potential against bacteria, fungi, viruses, and Mycobacterium, in addition to exhibiting synergistic effects when combined with certain antibiotics. The mechanisms underlying its antimicrobial action include the generation of oxygen-reactive species, damage to DNA, rupture of bacterial cell membranes and inhibition of protein synthesis. Recent studies have highlighted the effectiveness of AgNPs against various clinically relevant bacterial strains through their potential to combat antibiotic-resistant pathogens. This review investigates the proteomic mechanisms by which AgNPs exert their antimicrobial effects, with a special focus on their activity against planktonic bacteria and in biofilms. Furthermore, it discusses the biomedical applications of AgNPs and their potential non-preparation of antibiotic formulations, also addressing the issue of resistance to antibiotics.
Collapse
Affiliation(s)
- Adriana S Rodrigues
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Jorge G S Batista
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Murilo Á V Rodrigues
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Velaphi C Thipe
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Luciene A R Minarini
- Federal University of São Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, São Paulo, Brazil
| | - Patricia S Lopes
- Federal University of São Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, São Paulo, Brazil
| | - Ademar B Lugão
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| |
Collapse
|
4
|
Ali Syed I, Alvi IA, Fiaz M, Ahmad J, Butt S, Ullah A, Ahmed I, Niaz Z, Khan S, Hayat S, Ashique S, Zengin G, Farid A. Synthesis of Silver Nanoparticles from Ganoderma Species and Their Activity against Multi Drug Resistant Pathogens. Chem Biodivers 2024; 21:e202301304. [PMID: 37926683 DOI: 10.1002/cbdv.202301304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/07/2023]
Abstract
The widespread and indiscriminate use of broad-spectrum antibiotics leads to microbial resistance, which causes major problems in the treatment of infectious diseases. However, advances in nanotechnology using mushrooms have opened up new domains for the synthesis and use of nanoparticles against multidrug-resistant pathogens. Mushooms have recently attracted attention and are exploited for food and medicinal purposes. The current study focuses on the molecular identification, characterization of biologically synthesized silver nanoparticles by X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis spectroscopy and scanning electron microscopy (SEM) and antibacterial analysis of extract and silver nanoparticles (AgNPs) synthesis from Ganoderma resinaceum against multidrug resistant microbes. Accurate identification of mushrooms is key in utilizing them for the benefit of humans. However, morphological identification of mushrooms is time consuming, tedious and may be prone to error. Molecular techniques are quick and reliable tools that are useful in mushroom taxonomy. Blast results showed that G. resinaceum (GU451247) obtained from Pakistan was 97 % same to the recognized G. resinaceum (GU451247) obtained from China as well as G. resinaceum (GU451247) obtained from India. The antimicrobial potential of mushroom composite and AgNPs showed high efficacy against pathogenic Staphylococcus aureus (ZOI 23 mm) K. pneumonia (ZOI 20 mm), Pseudomonas aeruginosa (ZOI 24 mm) and E. fecalis and A. baumannii (ZOI 10 mm), and multidrug resistant (MDR) A. baumannii (ZOI 24 mm). XRD evaluation revealed the crystalline composition of synthesized NPs with diameter of 45 nm. UV-Vis spectroscopy obsorption peaked of 589 nm confirmed the presence of AgNPs. SEM results showed the cubic morphology of AgNPs. The FTIR analysis of NPs obtained from G. resinaceum containing C=O as well as (O=C-H) stretching revealed presence of hydrogen, carbonyl and amide groups. The synthesized extract and AgNPs showed promising minimum inhibitory concentration (MIC) at 2 mg concentration against the MDR strains. AgNPs are observed to be efficient as they need less quantities to prevent bacterial growth. In the view of challenges for developing antimicrobial NPs of variable shape and size by various other methods, tuning nanoparticles synthesized via mushrooms can be a wonderful approach to resolve existing hurdles.
Collapse
Affiliation(s)
| | | | - Muhammad Fiaz
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy
| | - Junaid Ahmad
- Department of Microbiology, Hazara University Mansehra
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy
| | - Sadia Butt
- Department of microbiology, shaheed benazir butto women university Peshawar Pakistan
| | - Amin Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Khyber, Pakhtunkhwa, Pakistan
| | - Iftikhar Ahmed
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.K, 29050, Pakistan
| | - Zeeshan Niaz
- Department of Microbiology, Hazara University Mansehra
| | - Sayab Khan
- Department of Microbiology, Hazara University Mansehra
| | - Shubana Hayat
- Department of Microbiology, Hazara University Mansehra
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, 713378, India
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.K, 29050, Pakistan
| |
Collapse
|
5
|
Mansour HMM, Shehata MG, Abdo EM, Sharaf MM, Hafez ESE, Galal Darwish AM. Comparative analysis of silver-nanoparticles and whey-encapsulated particles from olive leaf water extracts: Characteristics and biological activity. PLoS One 2023; 18:e0296032. [PMID: 38109310 PMCID: PMC10727426 DOI: 10.1371/journal.pone.0296032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Nanotechnology applications have been employed to improve the stability of bioactive components and drug delivery. Natural-based extracts, especially olive leaf extracts, have been associated with the green economy not only as recycled agri-waste but also in the prevention and treatment of various non-communicable diseases (NCDs). The aim of this work was to provide a comparison between the characteristics, biological activity, and gene expression of water extract of olive leaves (OLE), green synthesized OLE silver nanoparticles (OL/Ag-NPs), and OLE whey protein capsules (OL/WPNs) of the two olive varieties, Tofahy and Shemlali. The particles were characterized by dynamic light scattering, scanning electron microscope (SEM), and Fourier transform infrared. The bioactive compounds of the preparations were evaluated for their antioxidant activity and anticancer effect on HCT-116 colorectal cells as well as for their regulatory effects on cytochrome C oxidase (Cox1) and tumor necrosis factor α (TNF-α) genes. (OL/Ag-NPs) were found to be smaller than (OL/WPNs) with sizes of (37.46±1.85 and 44.86±1.62 nm) and (227.20±2.43 and 553.02±3.60 nm) for Tofahy and Shemlali, respectively. SEM showed that Shemlali (OL/Ag-NPs) had the least aggregation due to their highest Ƹ-potential (-31.76 ± 0.87 mV). The preparations were relatively nontoxic to Vero cells (IC50 = 151.94-789.25 μg/mL), while they were cytotoxic to HCT-116 colorectal cells (IC50 = 77.54-320.64 μg/mL). Shemlali and Tofahy OLE and Tofahy OL/Ag-NPs had a higher selectivity index (2.97-7.08 μg/mL) than doxorubicin (2.36 μg/mL), indicating promising anticancer activity. Moreover, Shemlali preparations regulated the expression of Cox1 (up-regulation) and TNF-α (down-regulation) on HCT-116 cells, revealing their efficiency in suppressing the expression of genes that promote cancer cell proliferation. (OL/Ag-NPs) from Tofahy and Shemlali were found to be more stable, effective, and safe than (OL/WPNs). Consequently, OL/Ag-NPs, especially Tofahy, are the best and safest nanoscale particles that can be safely used in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Hanem M. M. Mansour
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed G. Shehata
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Eman M. Abdo
- Food Science Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mona Mohamad Sharaf
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - El-sayed E. Hafez
- Plant Protection and Bio-Molecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Amira M. Galal Darwish
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
| |
Collapse
|
6
|
Essid R, Ayed A, Djebali K, Saad H, Srasra M, Othmani Y, Fares N, Jallouli S, Abid I, Alothman MR, Limam F, Tabbene O. Anti-Candida and Anti-Leishmanial Activities of Encapsulated Cinnamomum verum Essential Oil in Chitosan Nanoparticles. Molecules 2023; 28:5681. [PMID: 37570651 PMCID: PMC10419485 DOI: 10.3390/molecules28155681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 08/13/2023] Open
Abstract
Nanoencapsulation is widely considered as a highly effective strategy to enhance essential oils' (EO) stability by protecting them from oxidative deterioration and evaporation. The present study aims to optimize and characterize an efficient technique for encapsulating Cinnamomum (C.) verum essential oil into chitosan nanoparticles using response surface methodology (RSM). Moreover, the optimized C. verum EO nanoparticle was investigated for its antibacterial (against Gram-positive and Gram-negative bacteria), antifungal (against Candida albicans), and antiparasitic activity (against Leishmania parasites). Five parameters were investigated using a Plackett-Burman and Box-Behnken statistical design: the chitosan molecular weight, TPP concentration, C. verum EO/chitosan ratio, mixing method, and the duration of the reaction. Encapsulation efficiency and anti-candida activity were considered as responses. The antibacterial, anticandidal, and anti-leishmanial activities were also assessed using a standard micro-broth dilution assay and the cytotoxicity assay was assessed against the macrophage cell line RAW 264.7. The optimized nanoparticles were characterized using Fourier transform infrared spectroscopy, Zeta potential, and scanning electron microscopy. The study results indicated that under optimal conditions, the nanoencapsulation of C. verum EO into chitosan nanoparticles resulted in an encapsulation efficiency of 92.58%, with a regular distribution, a nanoparticle size of 480 ± 14.55 nm, and a favorable Zeta potential of 35.64 ± 1.37 mV. The optimized C. verum EO/chitosan nanoparticles showed strong antifungal activity against C. albicans pathogens (CMI = 125 µg mL-1), notable antibacterial activity against both Gram-positive and Gram-negative bacteria (ranging from 125 to 250 µg mL-1), high leishmanicidal potential against the promastigotes form of L. tropica and L. major (IC50 = 10.47 and 15.09 µg mL-1, respectively), and a four-fold cytotoxicity reduction compared to non-encapsulated essential oil. These results suggest that C. verum EO-loaded chitosan nanoparticles could be a promising delivery system for the treatment of cutaneous Candida albicans infections.
Collapse
Affiliation(s)
- Rym Essid
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Ameni Ayed
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Kais Djebali
- Valorization of Useful Material Laboratory (LVMU), National Research Center in Material Sciences (CNRSM) Technopôle Borj Cedria, BP 73, Soliman 8027, Tunisia
| | - Houda Saad
- Centre National en Recherche en Sciences des Matériaux, “CNRSM” Technopole Borj-Cedria-Route Touristique Soliman, BP-273, Soliman 8027, Tunisia
| | - Mondher Srasra
- Centre National en Recherche en Sciences des Matériaux, “CNRSM” Technopole Borj-Cedria-Route Touristique Soliman, BP-273, Soliman 8027, Tunisia
| | - Yasmine Othmani
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Selim Jallouli
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Islem Abid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Monerah Rashed Alothman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ferid Limam
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Olfa Tabbene
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|