1
|
Younis AM, Attia G, Saleh MM, Ibrahim MAA, Hegazy MEF, Paré PW, El-Tayeb MA, Sidhom PA, Kabbash A, Ibrahim ARS. The use of the white biotechnology toolkit to edit natural purines for studying their anticancer activity via mTOR pathway. Bioorg Chem 2025; 159:108391. [PMID: 40154233 DOI: 10.1016/j.bioorg.2025.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
Purine alkaloids were proven to have significant cytotoxic activity against different cancer cell lines via modulating several cellular pathways, leading to inhibition of cell proliferation and increasing cell death. The search for new potential cytotoxic compounds produced by natural eco-friendly means is of great importance. The microbial transformation of natural purine alkaloids, caffeine (Cf), theophylline (Tp), theobromine (Tb), and theacrine (Tc) via filamentous fungi was explored using Aspergillus versicolor (AUMC 4807), Aspergillus niger (NRRL 328), Cunninghamella echinulata (ATCC 1382), and Penicillium chrysogeneum (ATCC 9480). Nine metabolites were isolated via demethylation, and oxidation reactions, namely; 1.3.7-trimethyl uric acid (M1), theacrine (M2), theobromine (M3), paraxanthine (M4), theophylline (M5), 3-methylxanthine (M6), caffeine (M7), 7-methylxanthine (M8) and 3,7,9-trimethyl uric acid (M9). The structure elucidation of the metabolites was based primarily on 1D, 2D-NMR analyses and HRMS. In vitro cytotoxic activity of metabolites was evaluated against CNS (SNB-75) and melanoma (MDA-MB-435) cancer cell lines. Based on the pharmacophore and structural similarity, mTOR enzyme inhibition assay was carried out, and results were confirmed by molecular docking and molecular dynamic studies using mTOR as the target enzyme. Furthermore, the binding mode of M9 with mTOR was investigated using docking computations. The steadiness and binding affinities of compound M9 in complex with mTOR were estimated and compared to caffeine (M7) over the 100 ns MD course. Results confirmed that M9 has great potential as a cytotoxic agent with experimentally proved safety that can be produced by biotransformation.
Collapse
Affiliation(s)
- Ahmed M Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Ghada Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Nizwa 611, Oman; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mohamed A El-Tayeb
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Abdel-Rahim S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
2
|
Faiq A, Saara A, Muhammad W, Asra K, Fazal MA, Zehra B, Saiqa T, Saima K, Noreen S, Saida H. Antidepressive and anxiolytic effects of a combination of Saffron and Chamomile in rats and their relationship with serotonin using methods. J TRADIT CHIN MED 2025; 45:49-56. [PMID: 39957158 PMCID: PMC11764942 DOI: 10.19852/j.cnki.jtcm.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/15/2024] [Indexed: 02/18/2025]
Abstract
OBJECTIVE To explore the potential of combining natural herbs like chamomile and saffron for the management of anxiety and depression. METHODS A rodent model of Major Depressive Disorder (MDD) and anxiety, secondary to streptozotocin-induced diabetes mellitus was made. A total of 6 rat groups were chosen; healthy and diseased controls; and diseased test groups of fluoxetine, saffron, chamomile, and combined saffron and chamomile treated (n = 6/group). Activity by forced swim test (FST), elevated plus maze test (EPMT), and correlations with biochemical markers like serum glucose, tryptophan, C-reactive protein (CRP), brain derived neurotrophic factor (BDNF) and 5-hydrox-ytryptamine 2C receptor (5HT2CR) expression, were assessed at the end of the 3rd week of the treatment. A one-way analysis of variance with a post-hoc Tukey's test was applied. RESULTS The combined herbal treatment group showed significantly better (P <0.05) than all other groups in terms of anti-hyperglycemic effect. All treatments improved the CRP levels; however, the combination group was also significantly better than fluoxetine and the individual herb groups. Only the herb groups showed efficacy in the FST with added benefits of the combination group over the healthy controls and similar trends in the EPMT. However, expression of 5HT2CR was repressed while BDNF was elevated through treatment. CONCLUSION This study shows that in comparison to treatment with a SSRI, and individual herbs, the combination of chamomile and saffron showed overall improved outcomes.
Collapse
Affiliation(s)
- Amin Faiq
- 1 Department of Biological and Biomedical Sciences, the Aga Khan University, Karachi 74800, Pakistan
| | - Ahmad Saara
- 1 Department of Biological and Biomedical Sciences, the Aga Khan University, Karachi 74800, Pakistan
| | - Wasim Muhammad
- 2 Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Khan Asra
- 1 Department of Biological and Biomedical Sciences, the Aga Khan University, Karachi 74800, Pakistan
| | - Manzoor Arain Fazal
- 1 Department of Biological and Biomedical Sciences, the Aga Khan University, Karachi 74800, Pakistan
| | - Batool Zehra
- 3 Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74800, Pakistan
| | - Tabassum Saiqa
- 4 Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi 74800, Pakistan
| | - Khaliq Saima
- 5 Department of Biochemistry, Federal Urdu University of Science, Arts and Technology, Karachi 74800, Pakistan
| | - Samad Noreen
- 6 Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Haider Saida
- 7 Department of Biochemistry, University of Karachi, Karachi 74800, Pakistan
| |
Collapse
|
3
|
Monadi T, Mohajer Z, Soltani A, Khazeei Tabari MA, Manayi A, Azadbakht M. The influence of apigenin on cellular responses to radiation: From protection to sensitization. Biofactors 2025; 51:e2113. [PMID: 39134426 DOI: 10.1002/biof.2113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/24/2024] [Indexed: 12/29/2024]
Abstract
Apigenin, a dietary flavonoid, has gained increasing attention for its potential therapeutic applications in radiation protection and radiosensitization. Ionizing radiation (IR) can harm healthy cells, but as radiotherapy remains crucial in cancer treatment. Owing to the remarkable application of radiotherapy in the treatment of cancers, it is vital to protect healthy cells from radiation hazards while increasing the sensitivity of cancer cells to radiation. This article reviews the current understanding of apigenin's radioprotective and radiosensitive properties with a focuses on the involved signaling pathways and key molecular targets. When exposed to irradiation, apigenin reduces inflammation via cyclooxygenase-2 inhibition and modulates proapoptotic and antiapoptotic biomarkers. Apigenin's radical scavenging abilities and antioxidant enhancement mitigate oxidative DNA damage. It inhibits radiation-induced mammalian target of rapamycin activation, vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP), and STAT3 expression, while promoting AMPK, autophagy, and apoptosis, suggesting potential in cancer prevention. As a radiosensitizer, apigenin inhibits tumor growth by inducing apoptosis, suppressing VEGF-C, tumor necrosis factor alpha, and STAT3, reducing MMP-2/9 activity, and inhibiting cancer cell glucose uptake. Cellular and animal studies support apigenin's radioprotective and anticancer potential, making it a potential candidate for further research. Investigation into apigenin's therapeutic efficacy in diverse cancer types and radiation damage is essential.
Collapse
Affiliation(s)
- Taha Monadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohajer
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Azadbakht
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Picheta N, Piekarz J, Daniłowska K, Mazur K, Piecewicz - Szczęsna H, Smoleń A. Phytochemicals in the treatment of patients with depression: a systemic review. Front Psychiatry 2024; 15:1509109. [PMID: 39717381 PMCID: PMC11663887 DOI: 10.3389/fpsyt.2024.1509109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Background Depression is a complex mental disease whose incidence increases every year; 300 million people worldwide currently suffer from it. Women are more likely to suffer from depression, twice the rate as men. It is one of the few illnesses that can lead to suicide, which makes it very dangerous - currently, 700,000 people die from suicide and it is the 4th most common cause of death in people aged 15-29. The treatment strategies for depression is a big challenge for physicians, pharmacists, scientists and classic remedies cause many side effects. Therefore, natural phytotherapy with herbs can prove to be a good solution. Phytotherapy is a popular treatment method used for centuries in Chinese medicine or Ayurveda. Materials and methods The study conducted a comprehensive database search PubMed, ClinicalKey and MedNar covered the years 2015 - 2024 to provide the most up-to-date data. 13 randomized controlled trials and 1 meta - analysis were included in the systematic review. Results Many plants show anti-inflammatory, antioxidant and cognitive enhancing effects, which are particularly important in depression. In the treatment of depression, plants such as Crocus sativus L. stigma, Lavandula angustifolia, Hypericum perforatum L. and Curcuma longa L. have proven to be effective. They show good effectiveness in human studies and alleviate the symptoms of depression. Herbal products can support classical pharmacotherapy, but this requires further research. Non-commercial clinical trials in the future should provide answers to research questions: at what stage of treatment of patients with MDD will the use of phytochemicals be most appropriate in terms of therapy efficacy and safety for the patient. Conclusions Crocus sativus L. stigma, Lavandula angustifolia, Hypericum perforatum L. and Curcuma longa L. in modern medicine can help improve the well-being of patients with depression. The use of herbs as an intervention was associated with a decrease in the concentration of proinflammatory cytokines and an overall improvement in the mood of patients. Further research should be undertaken into combining both therapies in order to improve patients' quality of life and reduce treatment costs.
Collapse
Affiliation(s)
- Natalia Picheta
- Chair and Department of Epidemiology and Clinical Research Methodology, Medical
University of Lublin, Lublin, Poland
| | | | | | | | | | | |
Collapse
|
5
|
Ibrahim MAA, Ali SSM, Abdelrahman AHM, Abdeljawaad KAA, Sidhom PA, Sayed SRM, El-Tayeb MA, Paré PW, Hegazy MEF. Naturally Occurring Plant-Based Anticancerous Candidates as Potential ERK2 Inhibitors: In-Silico Database Mining and Molecular Dynamics Simulations. Chem Biodivers 2024; 21:e202401238. [PMID: 39075025 DOI: 10.1002/cbdv.202401238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
The evolutionarily conserved extracellular signal-regulated kinase 2 (ERK2) is involved in regulating cellular signaling in both normal and pathological conditions. ERK2 expression is critical for human development, while hyperactivation is a major factor in tumor progression. Up to now, there have been no approved inhibitors that target ERK2, and as such, here we report on screening of a naturally occurring plant-based anticancerous compound-activity-target (NPACT) database for prospective ERK2 inhibitors. More than 1,500 phytochemicals were screened using in-silico molecular docking and molecular dynamics (MD) approaches. NPACT compounds with a docking score lower than a co-crystallized LHZ inhibitor (calc. -10.5 kcal/mol) were subjected to MD simulations. Binding energies (ΔGbinding) of inhibitor-ERK2 complexes over the MD course were estimated using an MM-GBSA approach. Based on MM-GBSA//100 ns MD simulations, the steroid zhankuic acid C (NPACT01034) demonstrated greater binding affinity against ERK2 protein than LHZ, with ΔGbinding values of -50.0 and -47.7 kcal/mol, respectively. Structural and energetical analyses throughout the MD course demonstrated stabilization of zhankuic acid C complexed with ERK2 protein. The anticipated ADMET properties of zhankuic acid C indicated minimal toxicity. Moreover, in-silico evaluation of fourteen ERK2 inhibitors in clinical trials demonstrated the higher binding affinity of zhankuic acid C towards ERK2 protein.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
- School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Sara S M Ali
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Alaa H M Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Khlood A A Abdeljawaad
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A El-Tayeb
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, 55128, Germany
| |
Collapse
|
6
|
Zhong Z, Liu J, Luo Y, Wu M, Qiu F, Zhao H, Liu Y, Wang Y, Long H, Zhao L, Wang Y, Han Y, Meng P. Jujuboside A Regulates Calcium Homeostasis and Structural Plasticity to Alleviate Depression-Like Behavior via Shh Signaling in Immature Neurons. Drug Des Devel Ther 2024; 18:4565-4584. [PMID: 39416424 PMCID: PMC11482263 DOI: 10.2147/dddt.s479055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background Depression, a leading cause of disability worldwide, is characterized by dysfunction of immature neurons, resulting in dysregulated calcium homeostasis and impaired structural plasticity. Jujuboside A (JuA), a biologically active compound derived from Semen Ziziphi Spinosae, has demonstrated anti-anxiety and anti-insomnia properties. Recent studies suggest that JuA may be a promising antidepressant, but its underlying mechanisms remain unclear. Methods Sprague-Dawley rats were subjected to chronic unpredictable mild stress (CUMS) to induce a depression model. JuA (12.5 mg/kg, 25 mg/kg, 50 mg/kg) was administered orally for 4 weeks. Emotional and cognitive function were assessed. Monoamine neurotransmitter levels were measured using enzyme-linked immunosorbent assay (ELISA). The number of immature neurons and calcium homeostasis were evaluated by immunofluorescence. Western blotting and immunofluorescence were employed to detect the expression of Sonic hedgehog (Shh) signaling proteins. Additionally, lentiviral vector expressing Shh shRNA (LV-Shh-RNAi) were infused intracerebrally to investigate the role of Shh in JuA's antidepressant effects. Results JuA significantly ameliorated depressive-like behavior and cognitive dysfunction in CUMS rats, increased monoamine neurotransmitter levels in serum and hippocampal tissue, reduced the number of BrdU/DCX (bromodeoxyuridine/doublecortin)-positive immature neurons, and attenuated calcium ion (Ca2+) concentration and Ca2+/calmodulin-dependent protein kinase II (CaMKII) levels in immature neurons. JuA also markedly elevated synaptic density and prominence complexity, upregulated Shh, Gli family zinc finger 1 and 2 (Gli1/2), synaptophysin (Syn) and postsynaptic density protein-95 (PSD-95) expression in the ventral dentate gyrus (vDG). However, knockdown of Shh in the vDG counteracted JuA's therapeutic effects. Conclusion These findings collectively suggest that JuA improves depressive-like behavior in CUMS rats by modulating calcium homeostasis and synaptic structural plasticity in immature neurons through the Shh signaling pathway.
Collapse
Affiliation(s)
- Ziyan Zhong
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Yan Luo
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Mei Wu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Feng Qiu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yajing Wang
- Office of Science & Technology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hongping Long
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Lei Zhao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yuanshan Han
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Pan Meng
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
7
|
Wasim M, Zia SR, Ahmad S. Molecular Docking Analysis Reveals the Promising Role of Apigenin as a Potential Treatment for Neurological Disorders. Clin Neuropharmacol 2024; 47:176-180. [PMID: 39268993 DOI: 10.1097/wnf.0000000000000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
OBJECTIVES Neurological disorders represent a significant global health challenge, necessitating the exploration of novel therapeutic agents. Apigenin, a natural flavonoid abundantly found in various plants, has garnered attention for its potential neuroprotective properties. In this study, we employed molecular docking simulations to investigate the interaction between apigenin and key molecular targets associated with neurological disorders. METHODS The molecular docking analysis focused on receptors implicated in neuroinflammation, oxidative stress, and neurotransmission regulation. RESULTS Our results reveal a high binding affinity of apigenin towards critical targets, including GABA, mACh, nACh, NMDA, 5HTA, AMPA, insulin, and dopamine receptors. The findings suggest that apigenin may exert its neuroprotective effects through multifaceted mechanisms, including anti-inflammatory, antioxidant, and neurotransmission regulatory pathways. Additionally, the absence of adverse binding poses emphasizes the safety profile of apigenin. CONCLUSIONS This molecular docking study provides valuable insights into the potential therapeutic role of apigenin in mitigating molecular pathways implicated in neurological disorders. Further in vitro and in vivo investigations are warranted to validate and elucidate the neuroprotective mechanisms of apigenin, paving the way for its development as a promising treatment option for various neurological conditions.
Collapse
Affiliation(s)
| | - Syeda Rehana Zia
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Saara Ahmad
- Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
8
|
Olasehinde TA, Olaokun OO. The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations. Biomedicines 2024; 12:178. [PMID: 38255283 PMCID: PMC10813036 DOI: 10.3390/biomedicines12010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Apigenin is a flavone widely present in different fruits and vegetables and has been suggested to possess neuroprotective effects against some neurological disorders. In this study, we systematically reviewed preclinical studies that investigated the effects of apigenin on learning and memory, locomotion activity, anxiety-like behaviour, depressive-like behaviour and sensorimotor and motor coordination in rats and mice with impaired memory and behaviour. We searched SCOPUS, Web of Science, PubMed and Google Scholar for relevant articles. A total of 34 studies were included in this review. The included studies revealed that apigenin enhanced learning and memory and locomotion activity, exhibited anxiolytic effects, attenuated depressive-like behaviour and improved sensorimotor and motor coordination in animals with cognitive impairment and neurobehavioural deficit. Some of the molecular and biochemical mechanisms of apigenin include activation of the ERK/CREB/BDNF signalling pathway; modulation of neurotransmitter levels and monoaminergic, cholinergic, dopaminergic and serotonergic systems; inhibition of pro-inflammatory cytokine production; and attenuation of oxidative neuronal damage. These results revealed the necessity for further research using established doses and short or long durations to ascertain effective and safe doses of apigenin. These results also point to the need for a clinical experiment to ascertain the therapeutic effect of apigenin.
Collapse
Affiliation(s)
- Tosin A. Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos 100261, Nigeria
| | - Oyinlola O. Olaokun
- Department of Biology and Environmental Science, School of Science and Technology, Sefako Makgatho Health Science University, Pretoria 0204, South Africa;
| |
Collapse
|
9
|
Zia SR, Wasim M, Ahmad S. Unlocking therapeutic potential of trigonelline through molecular docking as a promising approach for treating diverse neurological disorders. Metab Brain Dis 2023; 38:2721-2733. [PMID: 37851136 DOI: 10.1007/s11011-023-01304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Neurological disorders pose significant challenges in terms of treatment options, necessitating the exploration of novel therapeutic approaches. Trigonelline, a naturally occurring alkaloid found in various plants, has emerged as a potential treatment option. It has also been reported that trigonelline is involved in several pathways like; Oxidative Stress and Antioxidant, Inflammatory, Neuroprotection and Neurotrophic, Mitochondrial Function and Energy Metabolism. This study aims to investigate the therapeutic potential of trigonelline for diverse neurological disorders using a molecular docking approach. Molecular docking simulations were performed to predict the binding affinity and interaction between trigonelline and target proteins implicated in neurological disorders. The structural requirements for effective binding were also explored. The molecular docking results revealed strong binding interactions and favorable binding affinities between trigonelline and the target proteins involved in diverse neurological disorders like Alzheimer's disease, Parkinson's disease, epilepsy, and depression etc. The predicted binding modes provided insights into the key molecular interactions governing the ligand-protein complexes. The findings suggest that trigonelline holds promise as a therapeutic approach for several neurological disorders. The molecular docking approach employed in this study provides a valuable tool for rational drug design and optimization of trigonelline-based compounds. Further experimental validation and preclinical studies are warranted to confirm the efficacy and safety of trigonelline as a potential treatment option, paving the way for the development of more effective and targeted therapies for neurological disorders.
Collapse
Affiliation(s)
- Syeda Rehana Zia
- Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, 74800, Pakistan
| | - Muhammad Wasim
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, 74800, Pakistan
| | - Saara Ahmad
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, 74800, Pakistan.
| |
Collapse
|
10
|
Alamri HS, Mufti R, Sabir DK, Abuderman AA, Dawood AF, ShamsEldeen AM, Haidara MA, Isenovic ER, El-Bidawy MH. Forced Swimming-Induced Depressive-like Behavior and Anxiety Are Reduced by Chlorpheniramine via Suppression of Oxidative and Inflammatory Mediators and Activating the Nrf2-BDNF Signaling Pathway. Curr Issues Mol Biol 2023; 45:6449-6465. [PMID: 37623226 PMCID: PMC10453464 DOI: 10.3390/cimb45080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The first-generation antihistamine chlorpheniramine (CPA) is believed to have both anxiolytic and antidepressant properties. The current study sought to assess the mechanisms behind the antidepressant and anxiolytic effects of CPA therapy concerning oxidative stress, inflammation, and nuclear factor p45 for erythroid 2-Brain-derived neurotrophic factor (Nrf2-BDNF) signaling pathway in forced swimming-induced depressive-like behavior and anxiety. Eighteen male Wistar rats (180-200 gm) rats were separated into three groups (n = 6): a stressed group (acute stress) that underwent the forced swimming test (FST) and a stressed group that received pretreatment with CPA (10 mg/kg body weight) for 3 weeks (CPA + acute stress). Animals were subsequently put through the following behavioral tests after undergoing a forced swim test (FST) for 5 min: an immobility test, open field test, and elevated plus maze test. Serum cortisol levels were measured when the rats were euthanized at the end of the experiments. Brain neurotransmitters (cortisol, serotonin, and noradrenaline), oxidative stress (SOD and MDA), inflammatory (IL-6 and IL-1) biomarkers, and the Nrf2-BDNF signaling pathway in the hippocampus and cerebral cortex tissues was determined. CPA prevented stress-induced increases in cortisol levels (p < 0.0001), decreased brain neurotransmitters, and increased oxidative stress and inflammation. CPA also upregulated the Nrf2-BDNF signaling pathway. Thus, CPA mitigates depressive-like behavior and anxiety by inhibiting oxidative stress and inflammation and upregulating the Nrf2-BDNF signaling pathway in the brain tissues.
Collapse
Affiliation(s)
- Hasan S. Alamri
- Department of Internal Medicine, College of Medicine, King Khalid University, P.O. Box 641, Abha 61421, Saudi Arabia;
| | - Rana Mufti
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Deema Kamal Sabir
- Department of Medical-Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdulwahab A. Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 11942, Al-Kharj 16278, Saudi Arabia; (A.A.A.); (M.H.E.-B.)
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box. 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa M. ShamsEldeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt or (A.M.S.)
- Department of Physiology, Faculty of Medicine, October 6 University, Cairo 11566, Egypt
| | - Mohamed A. Haidara
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt or (A.M.S.)
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mahmoud H. El-Bidawy
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 11942, Al-Kharj 16278, Saudi Arabia; (A.A.A.); (M.H.E.-B.)
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt or (A.M.S.)
| |
Collapse
|
11
|
Kositsyn YM, de Abreu MS, Kolesnikova TO, Lagunin AA, Poroikov VV, Harutyunyan HS, Yenkoyan KB, Kalueff AV. Towards Novel Potential Molecular Targets for Antidepressant and Antipsychotic Pharmacotherapies. Int J Mol Sci 2023; 24:ijms24119482. [PMID: 37298431 DOI: 10.3390/ijms24119482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Depression and schizophrenia are two highly prevalent and severely debilitating neuropsychiatric disorders. Both conventional antidepressant and antipsychotic pharmacotherapies are often inefficient clinically, causing multiple side effects and serious patient compliance problems. Collectively, this calls for the development of novel drug targets for treating depressed and schizophrenic patients. Here, we discuss recent translational advances, research tools and approaches, aiming to facilitate innovative drug discovery in this field. Providing a comprehensive overview of current antidepressants and antipsychotic drugs, we also outline potential novel molecular targets for treating depression and schizophrenia. We also critically evaluate multiple translational challenges and summarize various open questions, in order to foster further integrative cross-discipline research into antidepressant and antipsychotic drug development.
Collapse
Affiliation(s)
- Yuriy M Kositsyn
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Murilo S de Abreu
- Neuroscience Group, Moscow Institute of Physics and Technology, Moscow 115184, Russia
| | - Tatiana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Vivarium, Ural Federal University, Yekaterinburg 620049, Russia
| | - Alexey A Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir V Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Hasmik S Harutyunyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
- Department of Biochemistry, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
- Department of Biochemistry, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| | - Allan V Kalueff
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
- Neuroscience Group, Moscow Institute of Physics and Technology, Moscow 115184, Russia
- Vivarium, Ural Federal University, Yekaterinburg 620049, Russia
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| |
Collapse
|
12
|
Nonato CDFA, de Melo EVS, Camilo CJ, Ferreira MKA, de Meneses JEA, da Silva AW, dos Santos HS, Ribeiro-Filho J, Paolla Raimundo e Silva J, Tavares JF, de Menezes IRA, Coutinho HDM, Kowalska G, Baj T, Kowalski R, da Costa JGM. Antibacterial Activity and Anxiolytic Effect in Adult Zebrafish of Genus Lippia L. Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1675. [PMID: 37111898 PMCID: PMC10142117 DOI: 10.3390/plants12081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Species belonging to the genus Lippia are used worldwide as foods, beverages, and seasonings. Studies have demonstrated that these species have antioxidant, sedative, analgesic, anti-inflammatory, and antipyretic activities. This work aimed to evaluate the antibacterial activity and anxiolytic effect by different pathways of essential oils and ethanolic extracts of three species of Lippia (Lippia alba, Lippia sidoides, and Lippia gracilis). The ethanolic extracts were characterized by HPLC-DAD-ESI-MSn and their phenolics were quantified. The antibacterial activity was evaluated by determining the minimal inhibitory concentration and modulation of antibiotic activity, and toxic and anxiolytic effects were evaluated in the zebrafish model. The extracts showed compositions with a low ratio and shared compounds. L. alba and L. gracilis showed higher amounts of phenols and flavonoids, respectively. All extracts and essential oils presented antibacterial activity, especially those obtained from L. sidoides. On the other hand, L. alba extract presented the most significant antibiotic-enhancing effect. The samples were not toxic after 96 h of exposure, but showed an anxiolytic effect through modulation of the GABAA receptor, while L. alba extract acted via modulation of the 5-HT receptor. This new pharmacological evidence opens horizons for therapeutic approaches targeting anxiolytic and antibacterial therapies and food conservation using these species and their constituents.
Collapse
Affiliation(s)
- Carla de Fatima Alves Nonato
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Emerson Vinicius Silva de Melo
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Cicera Janaine Camilo
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | | | - Jane Eire Alencar de Meneses
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| | - Antonio Wlisses da Silva
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| | - Hélcio Silva dos Santos
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza 60714-903, CE, Brazil
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| | - Jaime Ribeiro-Filho
- General Coordination, Oswaldo Cruz Foundation (FIOCRUZ), Eusébio 61773-270, CE, Brazil
| | | | - Josean Fechine Tavares
- Multiuser Laboratory of Characterization and Analysis, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Irwin Rose Alencar de Menezes
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - José Galberto Martins da Costa
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| |
Collapse
|
13
|
Ji ML, Li Z, Hu XY, Zhang WT, Zhang HX, Lu J. Dynamic chromatin accessibility tuning by the long noncoding RNA ELDR accelerates chondrocyte senescence and osteoarthritis. Am J Hum Genet 2023; 110:606-624. [PMID: 36868238 PMCID: PMC10119164 DOI: 10.1016/j.ajhg.2023.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Epigenetic reprogramming plays a critical role in chondrocyte senescence during osteoarthritis (OA) pathology, but the underlying molecular mechanisms remain to be elucidated. Here, using large-scale individual datasets and genetically engineered (Col2a1-CreERT2;Eldrflox/flox and Col2a1-CreERT2;ROSA26-LSL-Eldr+/+ knockin) mouse models, we show that a novel transcript of long noncoding RNA ELDR is essential for the development of chondrocyte senescence. ELDR is highly expressed in chondrocytes and cartilage tissues of OA. Mechanistically, exon 4 of ELDR physically mediates a complex consisting of hnRNPL and KAT6A to regulate histone modifications of the promoter region of IHH, thereby activating hedgehog signaling and promoting chondrocyte senescence. Therapeutically, GapmeR-mediated silencing of ELDR in the OA model substantially attenuates chondrocyte senescence and cartilage degradation. Clinically, ELDR knockdown in cartilage explants from OA-affected individuals decreased the expression of senescence markers and catabolic mediators. Taken together, these findings uncover an lncRNA-dependent epigenetic driver in chondrocyte senescence, highlighting that ELDR could be a promising therapeutic avenue for OA.
Collapse
Affiliation(s)
- Ming-Liang Ji
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Zhuang Li
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xin Yue Hu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wei Tuo Zhang
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China
| | - Hai Xiang Zhang
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jun Lu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|