1
|
Yin T, Peng Y, Chao K, Li Y. Emerging trends in SERS-based veterinary drug detection: multifunctional substrates and intelligent data approaches. NPJ Sci Food 2025; 9:31. [PMID: 40089516 PMCID: PMC11910576 DOI: 10.1038/s41538-025-00393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/16/2025] [Indexed: 03/17/2025] Open
Abstract
Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed.
Collapse
Affiliation(s)
- Tianzhen Yin
- National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University, Beijing, China
| | - Yankun Peng
- National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University, Beijing, China.
| | - Kuanglin Chao
- Environmental Microbial and Food Safety Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Yongyu Li
- National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Hui M, Ma X, Yuan J, Wang Z, Ma X. Preparation of ofloxacin molecularly imprinted polymer Raman sensor based on magnetic graphene oxide. Anal Bioanal Chem 2025; 417:1127-1138. [PMID: 39794477 DOI: 10.1007/s00216-024-05714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Ofloxacin is a commonly used quinolone antibiotic that is also used as a feed supplement in livestock production and in plant disease prevention and treatment. However, the excessive use and abuse of ofloxacin will accumulate along the food chain and endanger human health. Therefore, the development of a simple, rapid, and sensitive detection method for the determination of ofloxacin is critical. Herein, a detection method combining molecularly imprinted magnetic solid-phase extraction (MISPE) and surface-enhanced Raman spectroscopy (SERS) was developed for the detection of ofloxacin. Graphene oxide supported by magnetic beads was synthesized by a one-pot method, producing what was subsequently referred to as magnetic graphene oxide (MGO), and a molecularly imprinted membrane was synthesized on its surface by exploiting the ability of dopamine to self-polymerize under alkaline conditions. MGO@MIPs were obtained as the adsorbent for magnetic solid-phase extraction, which was used for the extraction and enrichment of ofloxacin in complex sample matrix, and then quantitative analysis was conducted by SERS. The developed method exhibited an excellent linear relationship with respect to ofloxacin concentration (10-5 to 102 μg mL-1), with a detection limit of 9.7 × 10-6 μg mL-1 in ultrapure water. Blank honey, milk, and pork samples spiked with ofloxacin at concentrations of 0.005, 0.1, 1, and 10 μg mL-1 were extracted and determined using the developed method, with recoveries ranging from 93.1% to 105.6%. The results support the strong application prospects for the method, demonstrating simple and time-efficient operation and high accuracy.
Collapse
Affiliation(s)
- Minyi Hui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Xi Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Jiayu Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Kong WC, Li CC, Zhang AH, Li XL, Gong QR, Jin BT, Jia XJ, Liu XY, Kang YF. A colorimetric-aptamer-based assay for the determination of enrofloxacin through triggering the aggregation of gold nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7121-7129. [PMID: 39311407 DOI: 10.1039/d4ay01259c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Although enrofloxacin (ENR) is a widely used broad-spectrum antibiotic in veterinary medicine, its residues in animals can pose a risk to human health. Thus, we developed a new method for detecting ENR based on aptamers and AuNPs. In the absence of ENR, the aptamers attached to the surface of the AuNPs via electrostatic interactions to protect the AuNPs from NaCl, and the solution remained red. Conversely, the aptamer bonded with ENR, leading the aptamer to detach from the AuNP surface, and the color of the solution changed from red to blue. Based on this principle, ENR can be qualitatively detected by the naked eye and quantitatively detected by measuring the absorbance ratio at 650 nm and 530 nm. The experimental results showed a good linear relationship within the ENR concentration range of 0-400 nM, with a limit of detection (LOD) of 1.72 nM, which is satisfactory for detection in food safety. Additionally, this method has also been successfully applied to the detection of ENR in tap water, river water, milk, serum and urine, with good recovery rates and RSD values of less than 7%, indicating its great potential for ENR detection in environmental water samples. More importantly, the combination of this method with a smartphone platform provided great convenience for on-site and visual detection of ENR, offering promising applicability prospects.
Collapse
Affiliation(s)
- Wei-Chuang Kong
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Chen-Chen Li
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Ai-Hong Zhang
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Xin-Long Li
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Qian-Rui Gong
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Bing-Tan Jin
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Xiao-Juan Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu-Ying Liu
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Yan-Fei Kang
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| |
Collapse
|
4
|
Zhao Z, Yin H, Xiao J, Cui M, Huang R, Su R. Efficient Sequential Detection of Two Antibiotics Using a Fiber-Optic Surface Plasmon Resonance Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:2126. [PMID: 38610339 PMCID: PMC11013968 DOI: 10.3390/s24072126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Antibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors. Based on the principle of immunosuppression, two antibiotic antigens (for Enro and Cip) were immobilized on an optical fiber surface with conjugates of bovine serum albumin using dopamine (DA) polymerization. Each single antigen was bound to its corresponding antibody to derive standard curves for Enro and Cip. The fiber-optic sensor's sensitivity was 2900 nm/RIU. Detection limits were calculated to be 1.20 ng/mL for Enro and 0.81 ng/mL for Cip. The actual system's recovery rate was obtained by testing Enro and Cip in milk samples; enrofloxacin's and ciprofloxacin's mean recoveries from the milk samples were 96.46-120.46% and 96.74-126.9%, respectively. In addition, several different regeneration solutions were tested to analyze the two target analytes' regeneration ability; NaOH and Gly-HCl solutions were found to have the best regeneration ability.
Collapse
Affiliation(s)
- Ze Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Huiting Yin
- Zhejiang Institute of Tianjin University, Ningbo 315201, China;
| | - Jingzhe Xiao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
- Zhejiang Institute of Tianjin University, Ningbo 315201, China;
| |
Collapse
|
5
|
Lin DY, Yu CY, Ku CA, Chung CK. Design, Fabrication, and Applications of SERS Substrates for Food Safety Detection: Review. MICROMACHINES 2023; 14:1343. [PMID: 37512654 PMCID: PMC10385374 DOI: 10.3390/mi14071343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Sustainable and safe food is an important issue worldwide, and it depends on cost-effective analysis tools with good sensitivity and reality. However, traditional standard chemical methods of food safety detection, such as high-performance liquid chromatography (HPLC), gas chromatography (GC), and tandem mass spectrometry (MS), have the disadvantages of high cost and long testing time. Those disadvantages have prevented people from obtaining sufficient risk information to confirm the safety of their products. In addition, food safety testing, such as the bioassay method, often results in false positives or false negatives due to little rigor preprocessing of samples. So far, food safety analysis currently relies on the enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), HPLC, GC, UV-visible spectrophotometry, and MS, all of which require significant time to train qualified food safety testing laboratory operators. These factors have hindered the development of rapid food safety monitoring systems, especially in remote areas or areas with a relative lack of testing resources. Surface-enhanced Raman spectroscopy (SERS) has emerged as one of the tools of choice for food safety testing that can overcome these dilemmas over the past decades. SERS offers advantages over chromatographic mass spectrometry analysis due to its portability, non-destructive nature, and lower cost implications. However, as it currently stands, Raman spectroscopy is a supplemental tool in chemical analysis, reinforcing and enhancing the completeness and coverage of the food safety analysis system. SERS combines portability with non-destructive and cheaper detection costs to gain an advantage over chromatographic mass spectrometry analysis. SERS has encountered many challenges in moving toward regulatory applications in food safety, such as quantitative accuracy, poor reproducibility, and instability of large molecule detection. As a result, the reality of SERS, as a screening tool for regulatory announcements worldwide, is still uncommon. In this review article, we have compiled the current designs and fabrications of SERS substrates for food safety detection to unify all the requirements and the opportunities to overcome these challenges. This review is expected to improve the interest in the sensing field of SERS and facilitate the SERS applications in food safety detection in the future.
Collapse
Affiliation(s)
- Ding-Yan Lin
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chung-Yu Yu
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chin-An Ku
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chen-Kuei Chung
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
6
|
Yang F, Yang B, Gu X, Li M, Qi K, Yan Y. Detection of enrofloxacin residues in dairy products based on their fluorescence quenching effect on AgInS 2 QDs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122985. [PMID: 37311364 DOI: 10.1016/j.saa.2023.122985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/15/2023]
Abstract
Water-soluble AgInS2 (AIS) quantum dots (QDs) were successfully prepared through the one-pot water phase method with thioglycolic acid (TGA) as the stabilizing agent. Because enrofloxacin (ENR) effectively quenches the fluorescence of AIS QDs, a highly-sensitive fluorescence detection method is proposed to detect ENR residues in milk. Under optimal detection conditions, there was a good linear relationship between the relative fluorescence quenching amount (ΔF/F0) of AgInS2 with ENR and ENR concentration (C). The detection range was 0.3125-20.00 μg/mL, r = 0.9964, and the detection limit (LOD) was 0.024 μg/mL (n = 11). The average recovery of ENR in milk ranged from 95.43 to 114.28%. The method established in this study has advantages including a high sensitivity, a low detection limit, simple operation and a low cost. The fluorescence quenching mechanism of AIS QDs with ENR was discussed and the dynamic quenching mechanism of light-induced electron transfer was proposed.
Collapse
Affiliation(s)
- Fengjiao Yang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Bingyu Yang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Xinyue Gu
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Minghua Li
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China.
| | - Ya Yan
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Xiao L, Feng S, Lu X. Raman spectroscopy: Principles and recent applications in food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:1-29. [PMID: 37722771 DOI: 10.1016/bs.afnr.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food contaminant is a significant issue because of the adverse effects on human health and economy. Traditional detection methods such as liquid chromatography-mass spectroscopy for detecting food contaminants are expensive and time-consuming, and require highly-trained personnel and complicated sample pretreatment. Raman spectroscopy is an advanced analytical technique in a manner of non-destructive, rapid, cost-effective, and ultrasensitive sensing various hazards in agri-foods. In this chapter, we summarized the principle of Raman spectroscopy and surface enhanced Raman spectroscopy, the methods to process Raman spectra, the recent applications of Raman/SERS (surface-enhanced Raman spectroscopy) in detecting chemical contaminants (e.g., pesticides, antibiotics, mycotoxins, heavy metals, and food adulterants) and microbiological hazards (e.g., Salmonella, Campylobacter, Shiga toxigenic E. coli, Listeria, and Staphylococcus aureus) in foods.
Collapse
Affiliation(s)
- Li Xiao
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Shaolong Feng
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
8
|
Wang K, Li Y, Wang H, Qian Z, Zhu X, Hussain S, Xie L. CdSSe Nano-Flowers for Ultrasensitive Raman Detection of Antibiotics. Molecules 2023; 28:molecules28072980. [PMID: 37049740 PMCID: PMC10096218 DOI: 10.3390/molecules28072980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Surface-enhanced Raman scattering (SERS) technique is widely used for the highly sensitive detection of trace residues due to its unparalleled signal amplification ability and plays an important role in food safety, environmental monitoring, etc. Herein, CdSSe nano-flowers (CdSSe NFs) are synthesized via the chemical vapor deposition (CVD) method. CdSSe NFs thin film is used as a SERS substrate with an ultralow limit of detection (LOD, 10−14 M), high apparent enhancement factor (EF, 3.62 × 109), and excellent SERS stability (relative standard deviation, RSD = 3.05%) for probe molecules of Rh6G. Further, CdSSe NFs substrate is successfully applied in the sensitive, quantitative, and label-free analysis of ciprofloxacin (CIP) and enrofloxacin (ENR) antibiotics, which exhibit LODs of below 0.5 ppb. This excellent SERS platform may be widely utilized for sensitive life science and environmental sensing.
Collapse
|