1
|
Conceição VS, Saraiva DPM, Denuault G, Bertotti M. Calibration-Free Analysis with Chronoamperometry at Microelectrodes. Anal Chem 2024; 96:14766-14774. [PMID: 39226461 PMCID: PMC11411494 DOI: 10.1021/acs.analchem.4c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Analytical methods are crucial for monitoring and assessing the concentration of important chemicals, and there is now a growing demand for methodologies that allow miniaturization, require lower sample volumes, and enable real-time analysis in the field. Most electroanalytical techniques depend on calibrations or standards, and this has several limitations, ranging from matrix interference, to stability problems, time required, cost and waste. Therefore, strategies that do not require standards or calibration curves greatly interest the analytical chemistry community. Here, we propose a new quantification method that does not rely on calibration and is only based on a single chronoamperometric curve recorded with a microelectrode. We show that satisfactory analytical information is obtained with just one chronoamperometric experiment that only takes a few seconds. We propose different data treatments to determine the unknown concentration, we consider the experimental conditions and instrument parameters, we report how parallel reactions affect the results, and we recommend procedures to implement the method in autonomous sensors. We also show that the concentration of several species can be derived if their E° values are sufficiently far apart or the sum of all concentrations if the E° values are too close. The proposed method was validated with a model redox system then further evaluated by determining ascorbic acid concentrations in standard solutions and food supplements, and paracetamol in a pain killer. The results for ascorbic acid were compared with those obtained by coulometry, and a good agreement was found, with a maximum deviation ca. 10.8%. The approach was also successfully applied to ascorbic acid quantification in solutions with different viscosity using ethylene glycol as a thickener.
Collapse
Affiliation(s)
- Valdomiro S Conceição
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo-USP, São Paulo, 05508-000, Brazil
| | - Douglas P M Saraiva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo-USP, São Paulo, 05508-000, Brazil
| | - Guy Denuault
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo-USP, São Paulo, 05508-000, Brazil
| |
Collapse
|
2
|
Gagliani F, Di Giulio T, Grecchi S, Benincori T, Arnaboldi S, Malitesta C, Mazzotta E. Green Synthesis of a Molecularly Imprinted Polymer Based on a Novel Thiophene-Derivative for Electrochemical Sensing. Molecules 2024; 29:1632. [PMID: 38611911 PMCID: PMC11013891 DOI: 10.3390/molecules29071632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
An environmentally friendly and sustainable approach was adopted to produce a molecularly imprinted polymer (MIP) via electropolymerization, with remarkable electrochemical sensing properties, tested in tyrosine (tyr) detection. The 2,2'-bis(2,2'-bithiophene-5-yl)-3,3'-bithianaphtene (BT2-T4) was chosen as functional monomer and MIP electrosynthesis was carried out via cyclic voltammetry on low-volume (20 μL) screen-printed carbon electrodes (C-SPE) in ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ((BMIM) TFSI). An easy and rapid washing treatment allowed us to obtain the resulting MIP film, directly used for tyr electrochemical detection, carried out amperometrically. The sensor showed a linear response in the concentration range of 15-200 μM, with LOD of 1.04 µM, LOQ of 3.17 μM and good performance in selectivity, stability, and reproducibility. Tyrosine amperometric detection was also carried out in human plasma, resulting in a satisfactory recovery estimation. The work represents the first use of BT2-T4 as a functional monomer for the production of a molecularly imprinted polymer, with a green approach afforded by using a few microliters of a room temperature ionic liquid as an alternative to common organic solvents on screen-printed carbon electrodes, resulting in a valuable system that meets the green chemistry guidelines, which is today an essential criterion in both research and application field.
Collapse
Affiliation(s)
- Francesco Gagliani
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100 Lecce, Italy; (F.G.); (C.M.)
| | - Tiziano Di Giulio
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100 Lecce, Italy; (F.G.); (C.M.)
| | - Sara Grecchi
- Dipartimento di Chimica, Università di Milano, Via Golgi 19, 20133 Milano, Italy; (S.G.)
| | - Tiziana Benincori
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Serena Arnaboldi
- Dipartimento di Chimica, Università di Milano, Via Golgi 19, 20133 Milano, Italy; (S.G.)
| | - Cosimino Malitesta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100 Lecce, Italy; (F.G.); (C.M.)
| | - Elisabetta Mazzotta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100 Lecce, Italy; (F.G.); (C.M.)
| |
Collapse
|
3
|
Mihai MA, Spataru T, Somacescu S, Moga OG, Preda L, Florea M, Kuncser A, Spataru N. Nitrite anodic oxidation at Ni(II)/Ni(III)-decorated mesoporous SnO 2 and its analytical applications. Analyst 2023; 148:6028-6035. [PMID: 37888977 DOI: 10.1039/d3an01249b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Hydrothermally formed mesoporous SnO2 was used as a support for nickel chemical deposition and, after subsequent thermal treatment, a high specific surface area (36 m2 g-1) Ni/SnO2 material was obtained. XPS analysis has shown that in the Sn 3d region the spectrum is similar to that of pristine SnO2, whereas Ni species are present on the surface as NiO, Ni2O3 and Ni(OH)2. Mixing Ni/SnO2 with a small amount of Black Pearls (BP) leads to a significant enhancement of the resulting Ni/SnO2-BP composite activity for nitrite anodic oxidation, presumably due to the higher surface area (115 m2 g-1), to better electrical conductivity and to a certain contribution of the BP to an increase in surface density of the active sites. Ni/SnO2-BP also outperforms pristine BP (in terms of Tafel slopes and electron-transfer rates), most likely due to the fact that the Ni(II)/Ni(III) couple can act as an electrocatalyst for nitrite oxidation. A voltammetric method is proposed for the determination of nitrite, over a concentration range of three orders of magnitude (0.05 to 20 mM), with good reproducibility, high stability and excellent sensitivity. The high upper limit of the dynamic range of the analytically useful response might provide a basis for the reliable quantification of nitrite in wastewater.
Collapse
Affiliation(s)
- Marius Alexandru Mihai
- Institute of Physical Chemistry "Ilie Murgulescu", 202 Spl. Independenţei, 060021, Bucharest, Romania.
| | - Tanta Spataru
- Institute of Physical Chemistry "Ilie Murgulescu", 202 Spl. Independenţei, 060021, Bucharest, Romania.
| | - Simona Somacescu
- Institute of Physical Chemistry "Ilie Murgulescu", 202 Spl. Independenţei, 060021, Bucharest, Romania.
| | - Olivia Georgeta Moga
- Institute of Physical Chemistry "Ilie Murgulescu", 202 Spl. Independenţei, 060021, Bucharest, Romania.
| | - Loredana Preda
- Institute of Physical Chemistry "Ilie Murgulescu", 202 Spl. Independenţei, 060021, Bucharest, Romania.
| | - Mihaela Florea
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Andrei Kuncser
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Nicolae Spataru
- Institute of Physical Chemistry "Ilie Murgulescu", 202 Spl. Independenţei, 060021, Bucharest, Romania.
| |
Collapse
|
4
|
Sadri B, Gao W. Fibrous wearable and implantable bioelectronics. APPLIED PHYSICS REVIEWS 2023; 10:031303. [PMID: 37576610 PMCID: PMC10364553 DOI: 10.1063/5.0152744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023]
Abstract
Fibrous wearable and implantable devices have emerged as a promising technology, offering a range of new solutions for minimally invasive monitoring of human health. Compared to traditional biomedical devices, fibers offer a possibility for a modular design compatible with large-scale manufacturing and a plethora of advantages including mechanical compliance, breathability, and biocompatibility. The new generation of fibrous biomedical devices can revolutionize easy-to-use and accessible health monitoring systems by serving as building blocks for most common wearables such as fabrics and clothes. Despite significant progress in the fabrication, materials, and application of fibrous biomedical devices, there is still a notable absence of a comprehensive and systematic review on the subject. This review paper provides an overview of recent advancements in the development of fibrous wearable and implantable electronics. We categorized these advancements into three main areas: manufacturing processes, platforms, and applications, outlining their respective merits and limitations. The paper concludes by discussing the outlook and challenges that lie ahead for fiber bioelectronics, providing a holistic view of its current stage of development.
Collapse
Affiliation(s)
- Behnam Sadri
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology; Pasadena, California 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology; Pasadena, California 91125, USA
| |
Collapse
|
5
|
Feng R, Fan Y, Fang Y, Xia Y. Morphological Effects of Au Nanoparticles on Electrochemical Sensing Platforms for Nitrite Detection. Molecules 2023; 28:4934. [PMID: 37446596 DOI: 10.3390/molecules28134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Au nanoparticles were synthesized in a soft template of pseudo-polyanions composed of polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS) by the in situ reduction of chloroauric acid (HAuCl4) with PVP. The particle sizes and morphologies of the Au nanoparticles were regulated with concentrations of PVP or SDS at room temperature. Distinguished from the Au nanoparticles with various shapes, Au nanoflowers (AuNFs) with rich protrusion on the surface were obtained at the low final concentration of SDS and PVP. The typical AuNF synthesized in the PVP (50 g·L-1)-SDS (5 mmol·L-1)-HAuCl4 (0.25 mmol·L-1) solution exhibited a face-centered cubic structure dominated by a {111} crystal plane with an average equivalent particle size of 197 nm and an average protrusion height of 19 nm. Au nanoparticles with four different shapes, nanodendritic, nanoflower, 2D nanoflower, and nanoplate, were synthesized and used to modify the bare glassy carbon electrode (GCE) to obtain Au/GCEs, which were assigned as AuND/GCE, AuNF/GCE, 2D-AuNF/GCE, and AuNP/GCE, respectively. Electrochemical sensing platforms for nitrite detection were constructed by these Au/GCEs, which presented different detection sensitivity for nitrites. The results of cyclic voltammetry (CV) demonstrated that the AuNF/GCE exhibited the best detection sensitivity for nitrites, and the surface area of the AuNF/GCE was 1.838 times of the bare GCE, providing a linear c(NO2-) detection range of 0.01-5.00 µmol·L-1 with a limit of detection of 0.01 µmol·L-1. In addition, the AuNF/GCE exhibited good reproducibility, stability, and high anti-interference, providing potential for application in electrochemical sensing platforms.
Collapse
Affiliation(s)
- Ruiqin Feng
- The Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ye Fan
- The Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Fang
- The Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yongmei Xia
- The Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|