1
|
Ivanova V, Nedialkov P, Dimitrova P, Paunova-Krasteva T, Trendafilova A. Inula salicina L.: Insights into Its Polyphenolic Constituents and Biological Activity. Pharmaceuticals (Basel) 2024; 17:844. [PMID: 39065695 PMCID: PMC11279402 DOI: 10.3390/ph17070844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, UHPLC-HRMS analysis of the defatted methanol extract obtained from Inula salicina L. led to the identification of 58 compounds-hydroxycinnamic and hydroxybenzoic acids and their glycosides, acylquinic and caffeoylhexaric acids, and flavonoids and their glycosides. In addition, a new natural compound, N-(8-methylnepetin)-3-hydroxypiperidin-2-one was isolated and its structure was elucidated by NMR spectroscopy. The presence of a flavoalkaloid in genus Inula is described now for the first time. Chlorogenic acid was the main compound followed by 3,5-, 1,5- and 4,5-dicaffeoylquinic acids. The methanol extract was studied for its antioxidant potential by DPPH, ABTS, and FRAP assays and sun protective properties. In addition, a study was conducted to assess the effectiveness of the tested extract in inhibiting biofilm formation by Gram-positive and Gram-negative strains. Results from crystal violet tests revealed a notable decrease in biofilm mass due to the extract. The anti-biofilm efficacy was confirmed through the observation of the biofilm viability by live/dead staining. The obtained results showed that this plant extract could be used in the development of cosmetic products with antibacterial and sun protection properties.
Collapse
Affiliation(s)
- Viktoria Ivanova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Paraskev Nedialkov
- Pharmacognosy Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Petya Dimitrova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.D.); (T.P.-K.)
| | - Tsvetelina Paunova-Krasteva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.D.); (T.P.-K.)
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
2
|
Zuvela E, Matson P. Effect of the technical variability of counting chambers upon the interpretation of sperm concentration results. Reprod Biomed Online 2024; 48:103777. [PMID: 38460281 DOI: 10.1016/j.rbmo.2023.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/11/2024]
Abstract
RESEARCH QUESTION Does the choice of sperm-counting chamber affect the proportion of samples generating results with an erroneous interpretation? DESIGN Laboratories in an external quality assurance programme were sent 141 semen samples over a 12-year period and asked to return the sperm concentration and whether or not the result was abnormal. Only those using 5th edition of the World Health Organization manual (WHO5) interpretation criteria were included. Submissions from specialist fertility laboratories were used to calculate assigned values for each sample. Laboratory50 values determined the sperm concentration at which the laboratories reported a majority transition from abnormal to normal interpretations, i.e. the tipping point, which should coincide with the lower reference limit. RESULTS The median and range of bias from the assigned values of each sample were determined for the Makler (-3.3%; -88.6% to +332.8%), haemocytometer (10.6%; -93.3% to +645.5%), Kova (+65.3%; -71.7% to +581.8%) and Vetriplast (+72.4%; -100.0% to +709.1) chambers. Laboratory50 values for the Makler (17.3 × 106/ml), haemocytometer (13.6 × 106/ml), Kova (10.0 × 106/ml) and Vetriplast chambers (8.8 × 106/ml) reflected the under- and overestimation of the chambers and confirmed a shift in the adjusted lower reference limit then used. The proportion of laboratories reporting erroneous interpretations of the four chambers for oligozoospermic samples were 10.9%, 15.1.%, 40.1% and 44.0%, respectively, and rose as the adjusted lower reference limit decreased. CONCLUSIONS The between-laboratory and within-sample variation for all the chambers was high and remains a concern. The main impact of an increasing bias of the chambers was a lowering of the laboratory50 tipping point, resulting in an under-reporting of abnormal semen samples.
Collapse
Affiliation(s)
- Emily Zuvela
- External Quality Assurance Schemes for Reproductive Medicine, Northlands, Western Australia, Australia.; City Fertility Perth (formerly Fertility Specialists of WA), Claremont and Applecross, Perth, Western Australia..
| | - Phillip Matson
- External Quality Assurance Schemes for Reproductive Medicine, Northlands, Western Australia, Australia
| |
Collapse
|
3
|
Malarz J, Michalska K, Stojakowska A. Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review. Molecules 2024; 29:2014. [PMID: 38731504 PMCID: PMC11085778 DOI: 10.3390/molecules29092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.
Collapse
Affiliation(s)
| | | | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.); (K.M.)
| |
Collapse
|
4
|
Zuvela E, Matson P. Analytical variability and interpretation of results of a 3-category sperm motility assessment: 5 years' of an Australian external quality assurance programme. Reprod Biomed Online 2023; 47:111-119. [PMID: 37068979 DOI: 10.1016/j.rbmo.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 03/09/2023] [Indexed: 04/19/2023]
Abstract
RESEARCH QUESTION How do laboratories perform when assessing sperm motility with a 3-category system and interpreting results as per the fifth edition of the World Health Organization manual (WHO5), and will the use of a 4-category system as per the sixth edition of the WHO manual improve their performance? DESIGN Eighty video recordings of sperm samples were sent to over 200 laboratories spanning a 5-year period for the assessment of progressive motility. The results were reviewed relative to the all-laboratory trimmed mean (ALTM) in terms of the minimum and maximum values reported, the coefficient of variation and the proportion of laboratories indicating an abnormal result. A further 20 video recordings were sent over 1 year, with 6-11 laboratories per distribution adjusting to reporting rapid progressive motility using the 4-category system. RESULTS For the 3-category system, the videos covered a mean assessed progressive motility range of 12.0-81.1%. The mean difference between the minimum and maximum values per sample was 50.3% and the coefficients of variation were negatively correlated with the ALTM (r = -0.87, P < 0.00001). Progressive motility abnormality reporting formed a sigmoid curve, and the inflection point (50% of laboratories identifying an abnormality) gave an ALTM value of 32.01%. Preliminary results for laboratories using the 4-category system showed no performance improvement but the number of laboratories was small. CONCLUSIONS Analytical variation can result in laboratories crossing the clinical cut-off of the lower reference limit for samples whose motility is close to the WHO5 lower reference limit, but is less important for samples with extreme values. The benefits of a 4-category motility system are yet to be shown.
Collapse
Affiliation(s)
- Emily Zuvela
- External Quality Assurance Schemes for Reproductive Medicine, Northlands, Western Australia, Australia; City Fertility Perth (formerly Fertility Specialists of WA), Claremont and Applecross, Perth, Western Australia.
| | - Phillip Matson
- External Quality Assurance Schemes for Reproductive Medicine, Northlands, Western Australia, Australia
| |
Collapse
|
5
|
Mazuecos L, Contreras M, Kasaija PD, Manandhar P, Grąźlewska W, Guisantes-Batan E, Gomez-Alonso S, Deulofeu K, Fernandez-Moratalla I, Rajbhandari RM, Sojka D, Grubhoffer L, Karmacharya D, Gortazar C, de la Fuente J. Natural Clerodendrum-derived tick repellent: learning from Nepali culture. EXPERIMENTAL & APPLIED ACAROLOGY 2023:10.1007/s10493-023-00804-4. [PMID: 37285111 PMCID: PMC10293375 DOI: 10.1007/s10493-023-00804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
Ticks attaching to ear canals of humans and animals are the cause of otoacariasis, common in rural areas of Nepal. The plant Clerodendrum viscosum is used in multiple indigenous systems of medicine by ethnic communities in the Indo-Nepali-Malaysian region. Visiting the Chitwan National Park, we learned that in indigenous medicine, flower extract of C. viscosum is utilized to treat digestive disorders and extracts from leaves as tick repellent to prevent ticks from invading or to remove them from the ear canal. The objective of our study was to provide support to indigenous medicine by characterizing the in vivo effect of leave extracts on ticks under laboratory conditions and its phytochemical composition. We collected plant parts of C. viscosum (leaves and flowers) and mango (Mangifera indica) leaves at the Chitwan National Park, previously associated with repellent activity to characterize their effect on Ixodes ricinus ticks by in vivo bioassays. A Q-ToF high-resolution analysis (HPLC-ESI-QToF) was conducted to elucidate phenolic compounds with potential repellent activity. Clerodendrum viscosum and M. indica leaf extracts had the highest tick repellent efficacy (%E = 80-100%) with significant differences when compared to C. viscosum flowers extracts (%E = 20-60%) and phosphate-buffered saline. Phytochemicals with tick repellent function as caffeic acid, fumaric acid and p-coumaric acid glucoside were identified in C. viscosum leaf extracts by HPLC-ESI-QToF, but not in non-repellent flower extracts. These results support the Nepali indigenous medicine application of C. viscosum leaf extracts to repel ticks. Additional research is needed for the development of natural and green repellent formulations to reduce the risks associated with ticks resistant to acaricides.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Marinela Contreras
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
| | - Paul D Kasaija
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- National Livestock Resources Research Institute (NaLIRRI/NARO), Wakiso District, P.O. Box 5704, Wakiso, Uganda
| | - Prajwol Manandhar
- Center for Molecular Dynamics Nepal (CMDN), Thapathali Road 11, Kathmandu, 44600, Nepal
| | - Weronika Grąźlewska
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Eduardo Guisantes-Batan
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13005, Spain
| | - Sergio Gomez-Alonso
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13005, Spain
| | | | | | | | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice, 37005, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice, 37005, Czech Republic
| | - Dibesh Karmacharya
- Center for Molecular Dynamics Nepal (CMDN), Thapathali Road 11, Kathmandu, 44600, Nepal
| | - Christian Gortazar
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
| | - José de la Fuente
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|