1
|
Cao H, Jiang J, Chen L, Gao L. Mimicomes: Mimicking Multienzyme System by Artificial Design. Adv Healthc Mater 2025; 14:e2402372. [PMID: 39380346 DOI: 10.1002/adhm.202402372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Enzymes are widely distributed in organelles of cells, which are capable of carrying out specific catalytic reactions. In general, several enzymes collaborate to facilitate complex reactions and engage in vital biochemical processes within cells, which are also called cascade systems. The cascade systems are highly efficient, and their dysfunction is associated with a multitude of endogenous diseases. The advent of nanotechnology makes it possible to mimic these cascade systems in nature and realize partial functions of natural biological processes both in vitro and in vivo. To emphasize the significance of artificial cascade systems, mimicomes is first proposed, a new concept that refers to the artificial cascade catalytic systems. Typically, mimicomes are able to mimic specific natural biochemical catalytic processes or facilitate the overall catalytic efficiency of cascade systems. Subsequently, the evolution and development of different types of mimicomes in recent decades are elucidated exhaustedly, from the natural enzyme-based mimicomes (immobilized enzyme and vesicle mimicomes) to the nanozyme-based mimicomes and enzyme-nanozyme hybrid mimicomes. In conclusion, the remaining challenges in the design of multifunctional mimicomes and their potential applications are summarized, offering insights into their future prospects.
Collapse
Affiliation(s)
- Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
2
|
Shen B, Yan Z, Wang Y, Zhu L, Zhao Q, Jiang L. Nanozyme-chitosan-aerogel immobilized enzyme-driven biocatalytic cascade for therapeutic engineering of diabetic wounds. Carbohydr Polym 2025; 347:122690. [PMID: 39486931 DOI: 10.1016/j.carbpol.2024.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 11/04/2024]
Abstract
A novel strategy that has emerged in recent years involves the use of aerogels for anti-inflammatory treatment, which has been extensively studied for its powerful application prospects in wound healing, diabetic complications, and tissue regeneration. However, the therapeutic efficacy of aerogels alone is compromised due to bacterial infections at the wound site. Therefore, it is necessary to incorporate effective antibacterial systems onto the aerogels to enhance their efficacy against bacterial infections. For instance, the design of cascade reactions targeting specific disease biomarkers for diagnostic and therapeutic purposes holds promise for enhancing treatment efficacy and precision. In this study, we successfully achieved the immobilization of glucose oxidase within an aerogel prepared from nanozymes, demonstrating remarkable catalytic activity and high-temperature stability. The cascade catalytic system comprising nanozymes and glucose oxidase was applied to combat Methicillin-resistant Staphylococcus aureus (MASR) bacterial infections, exhibiting effective biofilm removal capabilities. In therapeutic experiments on ulcerated wounds in diabetic mice, the cascade catalytic system demonstrated outstanding efficacy with excellent biocompatibility. The therapeutic effects were primarily manifested in the rapid clearance of biofilms formed by MASR, achieved by locally depleting glucose in the wound area, thereby promoting the healing process of ulcerated wounds.
Collapse
Affiliation(s)
- Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhaoxu Yan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuxian Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qianru Zhao
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Technology, Nanchang University, Nanchang 330031, China.
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Weng X, Li M, Chen L, Peng B, Jiang H. A wearable nanozyme-enzyme electrochemical biosensor for sweat lactate monitoring. Talanta 2024; 279:126675. [PMID: 39116726 DOI: 10.1016/j.talanta.2024.126675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In this study, we developed a wearable nanozyme-enzyme electrochemical biosensor that enablies sweat lactate monitoring. The biosensor comprises a flexible electrode system prepared on a polyimide (PI) film and the Janus textile for unidirectional sweat transport. We obtained favorable electrochemical activities for hydrogen peroxide reduction by modifying the laser-scribed graphene (LSG) electrode with cerium dioxide (CeO2)-molybdenum disulphide (MoS2) nanozyme and gold nanoparticles (AuNPs). By further immobilisation of lactate oxidase (LOx), the proposed biosensor achieves chronoamperometric lactate detection in artificial sweat within a range of 0.1-50.0 mM, a high sensitivity of 25.58 μA mM-1cm-2 and a limit of detection (LoD) down to 0.135 mM, which fully meets the requirements of clinical diagnostics. We demonstrated accurate lactate measurements in spiked artificial sweat, which is consistent with standard ELISA results. To monitor the sweat produced by volunteers while exercising, we conducted on-body tests, showcasing the wearable biosensor's ability to provide clinical sweat lactate diagnosis for medical treatment and sports management.
Collapse
Affiliation(s)
- Xuan Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China; Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, 523808, China
| | - Ming Li
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Longyan Chen
- Department of Biomedical, Industrial & Systems Engineering, Gannon University, 109 University Square, Erie, PA, 16541, USA
| | - Bei Peng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China; Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
4
|
Chen M, Yang Y, Chen Q, Tang L, Liu J, Sun Y, Liu Q, Zhang Y, Zhang GJ, Chen S. Pt,P-codoped carbon nitride nanoenzymes for fluorescence and colorimetric dual-mode detection of cholesterol. Anal Chim Acta 2024; 1297:342351. [PMID: 38438235 DOI: 10.1016/j.aca.2024.342351] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/06/2024]
Abstract
Cholesterol is an important lipid compound found in a variety of foods, and its level in human blood is closely related to human health. Therefore, development of rapid and accurate POCT (point-of-care testing) methods for cholesterol detection is crucial for assessing food quality and early diagnosis of diseases, in particular, in a resource-limited environment. In this study, a smartphone-assisted colorimetric biosensor is constructed based on platinum,phosphorus-codoped carbon nitride (PtCNP2) for the rapid detection of cholesterol. Phosphorus-doped carbon nitride is prepared by thermal annealing of urea and NH4PF6, into which platinum is atomically dispersed by thermal refluxing. The obtained PtCNP2 exhibits an excellent peroxidase-like activity under physiological pH, whereby colorless o-phenylenediamine (OPD) is oxidized to colored 2,3-diaminophenazine (DAP) in the presence of hydrogen peroxide (H2O2), which can be produced during the oxidation of cholesterol by cholesterol oxidase. A smartphone-assisted visual sensing system is then constructed based on the color recognition software, and rapid on-site detection of cholesterol is achieved by reading the RGB values. Meanwhile, the generated DAP shows an apparent fluorescence signal and can realize highly sensitive detection of cholesterol by the change of the fluorescence signal intensity. Such a cholesterol sensor exhibits a wide linear detection range of 0.5-600 μg mL-1 and a low detection limit of 59 ng mL-1. The practicality of the sensor is successfully demonstrated in the rapid detection of cholesterol in serum and food.
Collapse
Affiliation(s)
- Meiling Chen
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junlin Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yujie Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA.
| |
Collapse
|
5
|
Shen B, Yang L, Xu H, Zhang Y, Ming D, Zhu L, Wang Y, Jiang L. Detection and treatment of biofilm-induced periodontitis by histidine-doped FeSN nanozyme with ultra-high peroxidase-like activity. J Colloid Interface Sci 2023; 650:211-221. [PMID: 37402327 DOI: 10.1016/j.jcis.2023.06.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
Pathogenic biofilm induced oral diseases have posed a significant treat to human health, such as periodontitis resulting from the formation of bacterial biofilm on teeth and gums. The traditional treatment methods such as mechanical debridement and antibiotic therapy encounter the poor therapeutic effect. Recently, numerous nanozymes with excellent antibacterial effect have been widely used in the treatment of oral diseases. In this study, a novel iron-based nanozyme (FeSN) generated by histidine-doped FeS2 with high peroxidase-like (POD-like) activity was designed for the oral biofilm removal and treatment of periodontitis. FeSN exhibited an extremely high POD-like activity, and enzymatic reaction kinetics and theoretical calculations had demonstrated its catalytic efficiency to be approximately 30 times than that of FeS2. The antibacterial experiments showed that FeSN had robust antibacterial activity against Fusobacterium nucleatum in the presence of H2O2, causing a reduction in the levels of glutathione reductase and ATP in bacterial cells, while increasing the level of oxidase coenzyme. The ultrahigh POD-like activity of FeSN allowed for easy detection of pathogenic biofilms and promoted the breakdown of biofilm structure. Furthermore, FeSN demonstrated excellent biocompatibility and low cytotoxicity to human fibroblast cells. In a rat model of periodontitis, FeSN exhibited significant therapeutic effects by reducing the extent of biofilm formation, inflammation, and alveolar bone loss. Taken together, our results suggested that FeSN, generated by self-assembly of two amino acids, represented a promising approach for biofilm removal and periodontitis treatment. This method has the potential to overcome the limitations of current treatments and provide an effective alternative for periodontitis treatment.
Collapse
Affiliation(s)
- Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lei Yang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuxian Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
6
|
Yang P, Yang W, Zhang H, Zhao R. Metal-Organic Framework for the Immobilization of Oxidoreductase Enzymes: Scopes and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6572. [PMID: 37834709 PMCID: PMC10574266 DOI: 10.3390/ma16196572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Oxidoreductases are a wide class of enzymes that can catalyze biological oxidation and reduction reactions. Nowadays, oxidoreductases play a vital part in most bioenergetic metabolic pathways, which have important applications in biodegradation, bioremediation, environmental applications, as well as biosensors. However, free oxidoreductases are not stable and hard to be recycled. In addition, cofactors are needed in most oxidoreductases catalyze reactions, which are so expensive and unstable that it hinders their industrial applications. Enzyme immobilization is a feasible strategy that can overcome these problems. Recently, metal-organic frameworks (MOFs) have shown great potential as support materials for immobilizing enzymes due to their unique properties, such as high surface-area-to-volume ratio, chemical stability, functional designability, and tunable pore size. This review discussed the application of MOFs and their composites as immobilized carriers of oxidoreductase, as well as the application of MOFs as catalysts and immobilized carriers in redox reactions in the perspective of the function of MOFs materials. The paper also focuses on the potential of MOF carrier-based oxidoreductase immobilization for designing an enzyme cascade reaction system.
Collapse
Affiliation(s)
- Pengyan Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenhui Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Zhao
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|