1
|
Kulus D, Tymoszuk A, Kulpińska A, Dębska B, Michalska A, Nowakowska J, Wichrowska D, Wojnarowicz J, Szałaj U. Nanoparticles in Plant Cryopreservation: Effects on Genetic Stability, Metabolic Profiles, and Structural Integrity in Bleeding Heart (Papaveraceae) Cultivars. Nanotechnol Sci Appl 2025; 18:35-56. [PMID: 39989598 PMCID: PMC11844321 DOI: 10.2147/nsa.s485428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose Studying the role of nanoparticles in plant cryopreservation is essential for developing innovative methods to conserve plant genetic resources amid environmental challenges. This research investigated the effects of gold (AuNPs), silver (AgNPs), and zinc oxide (ZnONPs) nanoparticles on the structural integrity, genetic stability, and metabolic activity of cryopreserved plant materials with medicinal properties. Methods Shoot tips from two bleeding heart (Lamprocapnos spectabilis (L). Fukuhara) cultivars, 'Gold Heart' and 'Valentine', were cryopreserved using the encapsulation-vitrification technique, with nanoparticles added at concentrations of 5 or 15 ppm during either the preculture phase or the alginate bead matrix formation. Post-recovery, the plants underwent histological, molecular, and biochemical analyses. Results Electron microscopy observations of LN-derived plant material confirmed the production of micro-morpho-structurally stable cells. It was found that nanoparticles could penetrate the cell and accumulate in its various compartments, including the nucleus. As for the genetic analysis, SCoT markers identified polymorphisms in 11.5% of 'Gold Heart' plants, while RAPDs detected mutations in 1.9% of 'Valentine' specimens. Analysis of Molecular Variance (AMOVA) indicated that in the 'Valentine' cultivar, all genetic variation detected was within populations and not significantly affected by nanoparticle treatments. In 'Gold Heart', the majority (94%) of genetic variation detected was within populations, while 6% was attributed to nanoparticle treatments (mostly the application of 15 ppm ZnONPs). The application of nanoparticles significantly influenced the metabolic profile of bleeding heart plants, particularly affecting the synthesis of phenolic acids and aldehydes, as well as the antioxidant mechanisms in both 'Gold Heart' and 'Valentine' cultivars. The content of proteins was altered in 'Gold Heart' plants but not in 'Valentine'. Conclusion The results suggest that different types and concentrations of NPs have varying effects on the production of specific metabolites, which could be harnessed to modulate plant secondary metabolism for desired pharmacological outcomes.
Collapse
Affiliation(s)
- Dariusz Kulus
- Laboratory of Horticulture, Department of Biotechnology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Tymoszuk
- Laboratory of Horticulture, Department of Biotechnology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Kulpińska
- Laboratory of Horticulture, Department of Biotechnology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Bożena Dębska
- Department of Biogeochemistry and Soil Science, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Agata Michalska
- Department of Biogeochemistry and Soil Science, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Julita Nowakowska
- Imaging Laboratory, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Wichrowska
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Szałaj
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Ahmoda RA, Pirković A, Milutinović V, Milošević M, Marinković A, Jovanović AA. Fumaria officinalis Dust as a Source of Bioactives for Potential Dermal Application: Optimization of Extraction Procedures, Phytochemical Profiling, and Effects Related to Skin Health Benefits. PLANTS (BASEL, SWITZERLAND) 2025; 14:352. [PMID: 39942914 PMCID: PMC11819947 DOI: 10.3390/plants14030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
Fumaria officinalis (fumitory), in the form of dust, was employed as a source of bioactive extracts whose chemical profile and biological potential were investigated. According to the results of the optimization of the extraction protocol, the extract with the highest polyphenol yield was prepared using fumitory dust under the optimal conditions determined using the statistical tool, 23 full factorial design: 50% ethanol and a 30:1 mL/g ratio during 120 s of microwave extraction (22.56 mg gallic acid equivalent/g of plant material). LC-MS and spectrophotometric/gravimetric analyses quantified the polyphenol, flavonoid, tannin, alkaloid, and protein contents. Caffeoylmalic acid, quercetin dihexoside, quercetin pentoside hexoside, rutin, and methylquercetin dihexoside were the most dominant compounds. The highest total flavonoid, condensed tannin, alkaloid, and protein yields were determined in the extract prepared using microwaves. In addition to the proven antioxidant potential, in the present study, the anti-inflammatory activity of fumitory extracts is also proven in the keratinocyte model, as well as a significant reduction of H2O2-induced reactive oxygen species production in cells and the absence of keratinocyte cytotoxicity. Thus, detailed chemical profiles and investigated biological effects related to skin health benefits encourage the potential application of fumitory dust extracts in dermo-cosmetic and pharmaceutical preparations for dermatological circumstances.
Collapse
Affiliation(s)
- Rabiea Ashowen Ahmoda
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (R.A.A.); (A.M.)
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| | - Violeta Milutinović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia;
| | - Milena Milošević
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (R.A.A.); (A.M.)
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| |
Collapse
|
3
|
Kulus D, Tymoszuk A, Kulpińska A, Viehmannova I, Wojnarowicz J, Szałaj U. Effect of nanoparticles on the ex-vitro performance of cryopreservation-derived plant material. PLoS One 2024; 19:e0310424. [PMID: 39264924 PMCID: PMC11392386 DOI: 10.1371/journal.pone.0310424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024] Open
Abstract
The integration of nanoparticles into plant cryopreservation protocols holds great promise for improving the survival rates and recovery potential of explants. This study aimed to verify the effect of nanoparticles on the ex-vitro performance of cryopreservation-derived plants. Lamprocapnos spectabilis (L.) Fukuhara (bleeding heart) 'Gold Heart' and 'Valentine' cultivars were used as the plant material. The encapsulation-vitrification cryopreservation protocol of shoot tips included the preculture, encapsulation, dehydration, storage in liquid nitrogen, rewarming, and recovery steps. Gold (AuNPs), silver (AgNPs), or zinc oxide (ZnONPs) nanoparticles were added at varying concentrations, either into the preculture medium or the protective bead matrix during encapsulation. After the in vitro recovery, the plants were transferred to the glasshouse and subjected to detailed biometrical, biochemical and cytogenetic analyses. Nanoparticles had no evident effect on the acclimatization efficiency (80-100% survival) and leaf number in L. spectabilis 'Gold Heart'. Nonetheless, shoots developed from alginate beads supplemented with 5 ppm AuNPs were twice as long as the control, while the leaves of plants grown on the preculture medium with ZnONPs contained significantly more chlorophyll and had higher Leaf Soil-Plant Analysis Development (SPAD) values. Moreover, several NPs treatments stimulated the development of leaves, including their surface area, length, and perimeter. Higher ZnONPs levels enhanced also the replication process, resulting in higher nuclear DNA content. As for L. spectabilis 'Valentine', alginate augmentation with 5 ppm AgNPs or 5 ppm ZnONPs stimulated the elongation of shoots. There was also a tendency suggesting a positive influence of 5 ppm AgNPs in the alginate bead matrix on foliar growth. The effect of nanoparticles on the content of flavonoids, anthocyanins, and stress markers in the plants varied depending on the treatment and cultivar, but also on the organ studied (leaf or stem). Overall, L. spectabilis 'Gold Heart' was more stress-tolerant and genetically stable than 'Valentine' judging by the activity of Photosystem II (PSII) and flow cytometric analyses, respectively. The complex effects of nanoparticles on survival, biometric parameters, physiological responses, and cytogenetic events underscore the intricate interplay between nanoparticles and plant systems. Nonetheless, our research confirmed the positive effect of nanoparticles on the ex-vitro growth and development of L. spectabilis plants after cryostorage.
Collapse
Affiliation(s)
- Dariusz Kulus
- Laboratory of Horticulture, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Tymoszuk
- Laboratory of Horticulture, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Kulpińska
- Laboratory of Horticulture, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Iva Viehmannova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Szałaj
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Ortega-Regules AE, Martínez-Thomas JA, Schürenkämper-Carrillo K, de Parrodi CA, López-Mena ER, Mejía-Méndez JL, Lozada-Ramírez JD. Recent Advances in the Therapeutic Potential of Carotenoids in Preventing and Managing Metabolic Disorders. PLANTS (BASEL, SWITZERLAND) 2024; 13:1584. [PMID: 38931016 PMCID: PMC11207240 DOI: 10.3390/plants13121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Carotenoids constitute compounds of significant biological interest due to their multiple biological activities, such as antimicrobial, anticancer, antiadipogenic, antidiabetic, and antioxidant properties. Metabolic syndrome (MetS) comprehends a series of metabolic abnormalities (e.g., hypertension, obesity, and atherogenic dyslipidemia) that can affect children, adolescents, and the elderly. The treatment of MetS involves numerous medications, which, despite their efficacy, pose challenges due to prolonged use, high costs, and various side effects. Carotenoids and their derivatives have been proposed as alternative treatments to MetS because they reduce serum triglyceride concentrations, promote insulin response, inhibit adipogenesis, and downregulate angiotensin-converting enzyme activity. However, carotenoids are notably sensitive to pH, light exposure, and temperature. This review addresses the activity of carotenoids such as lycopene, lutein, fucoxanthin, astaxanthin, crocin, and β-carotene towards MetS. It includes a discussion of sources, extraction methods, and characterization techniques for analyzing carotenoids. Encapsulation approaches are critically reviewed as alternatives to prevent degradation and improve the biological performance of carotenoids. A brief overview of the physiopathology and epidemiology of the diseases, including MetS, is also provided.
Collapse
Affiliation(s)
- Ana E. Ortega-Regules
- Departamento de Ciencias de la Salud, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico;
| | - Juan Alonso Martínez-Thomas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Karen Schürenkämper-Carrillo
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Cecilia Anaya de Parrodi
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Zapopan 45121, Colonia Nuevo México, Mexico;
| | - Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - J. Daniel Lozada-Ramírez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| |
Collapse
|
5
|
Bhandare SD, Malode SS. Cytotoxic activity of isoquinoline alkaloids and herbal extracts from selected plants against human cancer cell lines: harnessing the research potential in cancer drug discovery with modern scientific trends and technology. Toxicol Res (Camb) 2023; 12:1034-1040. [PMID: 38145094 PMCID: PMC10734601 DOI: 10.1093/toxres/tfad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/28/2023] [Accepted: 11/05/2023] [Indexed: 12/26/2023] Open
Abstract
The increasing prevalence of cancer has led to a growing interest in alternative medicine methods and treatments. This study aimed to assess the cytotoxicity of isoquinoline alkaloids and herbal extracts from selected plants against human cancer cell lines, including melanoma and squamous cell carcinoma. The investigation involved in vitro cell viability assays using various cancer cell lines and normal skin fibroblasts as control cells. Additionally, a zebrafish model was employed for in vivo evaluation of cytotoxic activity. The results indicated that the tested alkaloids and extracts exhibited promising cytotoxic effects, showing higher potency than standard chemotherapeutic drugs. In comparison, these findings support the exploration of isoquinoline alkaloids and herbal extracts as potential candidates for developing novel anti-melanoma and anti-squamous cell carcinoma drugs. The primary inclusion criterion that was taken into consideration in this study effort was the therapeutic application of the cytotoxic effects of specific plant-based pharmacological components or chemicals produced from herbal extracts that are ordinarily cytotoxic.
Collapse
Affiliation(s)
- Saurabh Dilip Bhandare
- Nashik Gramin Shikshan Prasarak Mandal’s College of Pharmacy, Bramha Valley Educational Campus, Anjaneri, Trambakeshwar, Trambak Road, Nashik, Maharashtra 422213, India
| | - Sarika Shivaji Malode
- Nashik Gramin Shikshan Prasarak Mandal’s College of Pharmacy, Bramha Valley Educational Campus, Anjaneri, Trambakeshwar, Trambak Road, Nashik, Maharashtra 422213, India
| |
Collapse
|
6
|
Ashraf MV, Pant S, Khan MAH, Shah AA, Siddiqui S, Jeridi M, Alhamdi HWS, Ahmad S. Phytochemicals as Antimicrobials: Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:881. [PMID: 37375828 DOI: 10.3390/ph16060881] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Among all available antimicrobials, antibiotics hold a prime position in the treatment of infectious diseases. However, the emergence of antimicrobial resistance (AMR) has posed a serious threat to the effectiveness of antibiotics, resulting in increased morbidity, mortality, and escalation in healthcare costs causing a global health crisis. The overuse and misuse of antibiotics in global healthcare setups have accelerated the development and spread of AMR, leading to the emergence of multidrug-resistant (MDR) pathogens, which further limits treatment options. This creates a critical need to explore alternative approaches to combat bacterial infections. Phytochemicals have gained attention as a potential source of alternative medicine to address the challenge of AMR. Phytochemicals are structurally and functionally diverse and have multitarget antimicrobial effects, disrupting essential cellular activities. Given the promising results of plant-based antimicrobials, coupled with the slow discovery of novel antibiotics, it has become highly imperative to explore the vast repository of phytocompounds to overcome the looming catastrophe of AMR. This review summarizes the emergence of AMR towards existing antibiotics and potent phytochemicals having antimicrobial activities, along with a comprehensive overview of 123 Himalayan medicinal plants reported to possess antimicrobial phytocompounds, thus compiling the existing information that will help researchers in the exploration of phytochemicals to combat AMR.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Shreekar Pant
- Centre for Biodiversity Studies, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - M A Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mouna Jeridi
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| |
Collapse
|