1
|
de Lima IA, de Azevedo Lima C, de Annunzio SR, de Oliveira F, da Silva SS, Fontana CR, de Carvalho Santos-Ebinuma V. Fungal derived dye as potential photosensitizer for antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113116. [PMID: 39923640 DOI: 10.1016/j.jphotobiol.2025.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Photodynamic therapy (PDT) combines light with a photosensitizing agent to target and destroy abnormal cells or pathogens, offering a non-invasive and precise approach. Applying microbial dyes in PDT presents a great opportunity because these compounds may absorb specific wavelengths of light, generating reactive oxygen species (ROS) that induce oxidative stress, leading to cell or microbial death. This study evaluated the extract of Talaromyces amestolkiae containing azaphilone red dyes obtained from cultivation process as photosensitizer (PS) in antimicrobial photodynamic therapy (aPDT). Initially the crude extract was obtained in incubator shaker varying the culture media composition. Following, the crude extract containing the red dyes exhibited non-toxicity in dark conditions across all concentrations tested. PDT experiments with different amounts of the crude extract at a light dose of 80 J.cm-2 and upon irradiation at 460 nm was studied. A complete reduction of Escherichia coli and approximately 2 log10 reductions of Staphylococcus aureus, Cutibacterium acnes and Enterococcus faecalis was achieved using 25 % (v.v-1) of the crude extract while 50 % (v.v-1) of the crude extract led to a complete reduction of both E. coli and S. aureus, and around 5 log10 reductions of C. acnes and E. faecalis. Importantly, minimal photodegradation of the PS occurred during irradiation across all concentrations studied. These findings highlight the potential of T. amestolkiae-derived red dyes extract for use in aPDT, demonstrating non-toxicity in the absence of light, good aqueous solubility, high photostability, and strong microbial reduction capabilities under specific light conditions.
Collapse
Affiliation(s)
- Isabelle Almeida de Lima
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Caio de Azevedo Lima
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Sarah Raquel de Annunzio
- Clinical Analysis Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Fernanda de Oliveira
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena, SP, Brazil
| | - Silvio Silvério da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena, SP, Brazil
| | - Carla Raquel Fontana
- Clinical Analysis Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
2
|
Liu D, Tian Z, Tusong K, Mamat H, Luo Y. Expression, purification and characterization of CTP synthase PyrG in Staphylococcusaureus. Protein Expr Purif 2024; 221:106520. [PMID: 38833752 DOI: 10.1016/j.pep.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
Staphylococcus aureus (S. aureus) presents a significant challenge in both nosocomial and community settings due to its pathogenicity. The emergence of drug-resistant strains exacerbates S. aureus infections, leading to increased mortality rates. PyrG, a member of the cytidine triphosphate (CTP) synthase family, serves as a crucial therapeutic target against S. aureus due to the pivotal role of CTP in cellular metabolism. However, the structural and mechanistic details of S. aureus PyrG remains unknown. Here, we successfully expressed and purified monomeric PyrG. Mutational experiments were conducted based on the results of molecular docking. Based on the results of the molecular docking, we carried out mutation experiments and found that Q386A dramatically decreased the CTP synthase activity compared to the wild-type protein, while Y54A almost completely abolished the activity. Exposure of S. aureus to the kinase inhibitor crizotinib increased expression of gene pyrG. Our results identify the two key sites on PyrG for the CTP synthase activity, and present PyrG gene expression increased during the treatment of crizotinib, which may eventually provide valuable guidance for the development of new drugs against S. aureus infections.
Collapse
Affiliation(s)
- Dafeng Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China; School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Zhu Tian
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Kuerban Tusong
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Hayrinsa Mamat
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Yihan Luo
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| |
Collapse
|
3
|
Li H, Ni Y, Zhao J, Li Y, Xu B. Photodynamic inactivation of edible photosensitizers for fresh food preservation: Comprehensive mechanism of action and enhancement strategies. Compr Rev Food Sci Food Saf 2024; 23:e70006. [PMID: 39245914 DOI: 10.1111/1541-4337.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
Foodborne harmful bacteria not only cause waste of fresh food, but also pose a major threat to human health. Among many new sterilization and preservation technologies, photodynamic inactivation (PDI) has the advantages of low-cost, broad-spectrum, energy-saving, nontoxic, and high efficiency. In particular, PDI based on edible photosensitizers (PSs) has a broader application prospect due to edible, accessible, and renewable features, it also can maximize the retention of the nutritional characteristics and sensory quality of the food. Therefore, it is meaningful and necessary to review edible PSs and edible PSs-mediated PDI, which can help to arouse interest and concern and promote the further development of edible PSs-mediated PDI in the future field of nonthermally sterilized food preservation. Herein, the classification and modification of edible PSs, PS-mediated in vivo and PS-mediated in vitro mechanism of PDI, strengthening strategy to improve PDI efficiency by the structure change synergistic and multitechnical means, as well as the application in fresh food preservation were reviewed systematically. Finally, the deficiency and possible future perspectives of edible PSs-mediated PDI were articulated. This review aimed to provide new perspective for the future food preservation and microbial control.
Collapse
Affiliation(s)
- Haoran Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Yumeng Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| |
Collapse
|
4
|
Dube E. Antimicrobial Photodynamic Therapy: Self-Disinfecting Surfaces for Controlling Microbial Infections. Microorganisms 2024; 12:1573. [PMID: 39203415 PMCID: PMC11356738 DOI: 10.3390/microorganisms12081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial infections caused by bacteria, viruses, and fungi pose significant global health threats in diverse environments. While conventional disinfection methods are effective, their reliance on frequent chemical applications raises concerns about resistance and environmental impact. Photodynamic self-disinfecting surfaces have emerged as a promising alternative. These surfaces incorporate photosensitizers that, when exposed to light, produce reactive oxygen species to target and eliminate microbial pathogens. This review explores the concept and mechanism of photodynamic self-disinfecting surfaces, highlighting the variety and characteristics of photosensitizers integrated into surfaces and the range of light sources used across different applications. It also highlights the effectiveness of these surfaces against a broad spectrum of pathogens, including bacteria, viruses, and fungi, while also discussing their potential for providing continuous antimicrobial protection without frequent reapplication. Additionally, the review addresses both the advantages and limitations associated with photodynamic self-disinfecting surfaces and concludes with future perspectives on advancing this technology to meet ongoing challenges in infection control.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, P/B X1, Mthatha 5117, South Africa
| |
Collapse
|
5
|
Nguyen C, Toubia I, Hadj-Kaddour K, Ali LMA, Lichon L, Cure C, Diring S, Kobeissi M, Odobel F, Gary-Bobo M. Exceptional anticancer photodynamic properties of [1,4-Bis(3,6,9,12-Tetraoxatridec-1-yloxy)phthalocyaninato]zinc(II). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112863. [PMID: 38457992 DOI: 10.1016/j.jphotobiol.2024.112863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
Phthalocyanines have been described as effective photosensitizers for photodynamic therapy and are therefore, being studied for their biomedical applications. The metalation of photosensitizers can improve their photodynamic therapy potential. Here, we focus on the biological properties of [1,4-Bis(3,6,9,12-Tetraoxatridec-1-yloxy)phthalocyaninato]zinc(II) (ZnPc(αEG4)2) and demonstrate its exceptional anticancer activity upon light stimulation to kill preferentially cancer cells with a start of efficiency at 10 pM. Indeed, in this work we highlighted the high selectivity of ZnPc(αEG4)2 for cancer cells compared with healthy ones and we establish its mechanism of action, enabling us to conclude that ZnPc(αEG4)2 could be a powerful tool for cancer therapy.
Collapse
Affiliation(s)
| | - Isabelle Toubia
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | - Lamiaa M A Ali
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Biochemistry, Medical Research Institute, University of Alexandria, 21561 Alexandria, Egypt
| | - Laure Lichon
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Charlotte Cure
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Stéphane Diring
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Marwan Kobeissi
- Laboratoire RammalRammal, Equipe de Synthèse Organique Appliquée SOA, Université Libanaise, Faculté des Sciences 5, Nabatieh, Lebanon.
| | - Fabrice Odobel
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | | |
Collapse
|
6
|
Bunin DA, Martynov AG, Gvozdev DA, Gorbunova YG. Phthalocyanine aggregates in the photodynamic therapy: dogmas, controversies, and future prospects. Biophys Rev 2023; 15:983-998. [PMID: 37975002 PMCID: PMC10643719 DOI: 10.1007/s12551-023-01129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023] Open
Abstract
Photodynamic therapy (PDT), a rapidly developing method for the treatment of cancer and bacterial diseases, is based on the photosensitization of oxygen to generate reactive oxygen species (ROS) that destroy specific biological targets. Among the various photosensitizers, phthalocyanines (Pc) have attracted particular attention due to their excellent photophysical properties, most of which meet the therapeutic requirements. The statement that aggregation of Pc-based photosensitizers is undesirable because it suppresses ROS generation has become commonplace in PDT. In this review, we have collected and discussed a number of works whose results refute this well-established axiom and show that aggregated forms of phthalocyanines can still exhibit photodynamic activity, in some cases in synergy with the photothermal and optoacoustic effects. In addition, ROS generation can be induced by aggregates under the conditions of sonodynamic therapy.
Collapse
Affiliation(s)
- Dmitry A. Bunin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daniil A. Gvozdev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|