1
|
Ke Y, Ashraf U, Wang D, Hassan W, Zou Y, Qi Y, Zhou Y, Abbas F. Function of Anthocyanin and Chlorophyll Metabolic Pathways in the Floral Sepals Color Formation in Different Hydrangea Cultivars. PLANTS (BASEL, SWITZERLAND) 2025; 14:742. [PMID: 40094733 PMCID: PMC11901515 DOI: 10.3390/plants14050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/20/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Hydrangea (Hydrangea macrophylla) is distinguished by having sepals instead of real petals, a trait that facilitates color diversity. Floral color is largely predetermined by structural genes linked to anthocyanin production, but the genetic factors determining floral hue in this non-model plant remain unclear. Anthocyanin metabolites, transcriptome, and the CIEL*a*b* hue system were employed to elucidate the biochemical and molecular mechanisms of floral color formation in three hydrangea cultivars: 'DB' (deep blue), 'LB' (light blue), and 'GB' (green blue). UPLC-MS/MS identified 47 metabolites, with delphinidin, cyanidin, malvidin, petunidin, pelargonidin, and peonidin being prominent. Delphinidins were 90% of the primary component in 'DB'. The dataset identifies 51 and 31 DEGs associated with anthocyanin, flavonoid, and chlorophyll biosynthesis, with CHS, CHI, F3H, F3'5'H, DFR, ANS, BZ1, and 3AT displaying the highest expression in 'DB'. Notably, DFR (cluster-46471.3) exhibits high expression in 'DB' while being down-regulated in 'LB' and 'GB', correlating with higher anthocyanin levels in floral pigmentation. Comparative analyses of 'LB' vs. 'DB', 'DB' vs. 'GB', and 'LB' vs. 'GB' revealed 460, 490, and 444 differentially expressed TFs, respectively. WRKY, ERF, bHLH, NAC, and AP2/ERF showed the highest expression in 'DB', aligning with the color formation and key anthocyanin biosynthesis-related gene expression. The findings reveal the molecular mechanisms behind floral pigmentation variations and lay the groundwork for future hydrangea breeding programs.
Collapse
Affiliation(s)
- Yanguo Ke
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Economics and Management, Kunming University, Kunming 650208, China;
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan;
| | - Dongdong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Waseem Hassan
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60001, Pakistan;
| | - Ying Zou
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming 650214, China; (Y.Z.); (Y.Q.)
| | - Ying Qi
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming 650214, China; (Y.Z.); (Y.Q.)
| | - Yiwei Zhou
- Guangdong Provincial Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Haikou 571100, China
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
| |
Collapse
|
2
|
Li X, Wang F, Ta N, Huang J. The compositions, characteristics, health benefits and applications of anthocyanins in Brassica crops. FRONTIERS IN PLANT SCIENCE 2025; 16:1544099. [PMID: 40034154 PMCID: PMC11872724 DOI: 10.3389/fpls.2025.1544099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Brassica crops, well known for their nutritional and medicinal value, encompass a diverse range of species and varieties, many of which are rich in anthocyanins. These flavonoid pigments not only contribute to the vibrant colors of Brassica plants but also possess significant antioxidant, anti-inflammatory, and neuroprotective properties. This review provides an in-depth analysis of the distribution, composition, and health benefits of anthocyanins in Brassica crops, highlighting their potential applications in the food industry and medicine. We discuss the accumulation patterns of anthocyanins in various Brassica tissues, the influence of genetic and environmental factors on their concentration, and the impact of acylation on their stability and biological activities. This review also explores the antioxidant capacity and cardioprotective effects of Brassica anthocyanins, as well as their roles in protecting against hepatic and renal injury and promoting neuroprotection. Furthermore, we examine the use of anthocyanins as natural food colorants and their integration into intelligent packaging for the real-time monitoring of food freshness. Our findings underscore the multifaceted benefits of Brassica anthocyanins, positioning them as key components in the development of functional foods and sustainable food systems.
Collapse
Affiliation(s)
- Xinjie Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Fan Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Ta
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Zheng T, Yang J, Chen Q, Huang X, Xue Y, Tang Q, Wang G, Li Y, Hu Z, Zeng HT. Analysis of lipidomics profile of Brassica napus hybrid 'Fangyou 777' and its parents during ripening stages based on UPLC-MS/MS. BMC PLANT BIOLOGY 2025; 25:197. [PMID: 39953462 PMCID: PMC11827199 DOI: 10.1186/s12870-025-06220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Lipids in rapeseed is of great significance to human health, and 'Fangyou 777' (No. GPD-2019-510073) has been identified as an excellent cultivar with high oil content. However, the change of lipid profile at different ripening stages remain unclear. Herein, UPLC-MS/MS was utilized for comprehensive lipidomics analysis of 'Fangyou 777' and its parents at four ripening stages. RESULTS 778 lipids components across 25 subclasses were identified, and triglycerides (TGs), diglycerides (DGs), phosphatidylserines (PSs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and free fatty acids (FFAs) were identified as the dominant lipid subclass. Due to heterotic vigor, the total lipids, TGs, FFAs, lysophosphatidylglycerol (LPGs) and PSs contents in 'Fangyou 777' were significantly higher than its parents. The PCA and OPLS-DA results elucidated that lipids in 'Fangyou 777' differed obviously from its parents at S1 (17 April, 2023; 28 days before ripening, 28 DBR), S2 (1 May, 2023; 14 DBR), and S3 (15 May, 2023; ripening day). TG(18:1_18:3_22:1), TG(18:1_22:1_18:2), TG(16:0_18:1_20:1), TG(16:0_18:1_22:1), TG(20:1_18:2_20:2), TG(18:1_18:1_20:1), and FFA(24:4) were recognized as key differential lipids. The glycerolipid metabolism and unsaturated fatty acid biosynthesis were the differential metabolic pathways at S1 and S3, while glycosylphosphatidylinositol (GPI)-anchor biosynthesis and glycerophospholipid metabolism were the differential metabolic pathways at S2 and S4 (7 days after ripening/physiologically ripened for one week). CONCLUSION This study provided a comprehensive profile to facilitate the understanding lipids accumulation in 'Fangyou 777' and its parents during ripening stages, and offered a foundation to comprehend lipid metabolism.
Collapse
Affiliation(s)
- Tao Zheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Jianmei Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Qiao Chen
- Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723001, China
| | - Xinxin Huang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Yan Xue
- Hanzhong Institute of Agricultural Sciences, Hanzhong, Shaanxi, 723001, China
| | - Qi Tang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Guodong Wang
- College of Life Sciences, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Ying Li
- Hanzhong Institute of Agricultural Sciences, Hanzhong, Shaanxi, 723001, China
| | - Zhubing Hu
- Henan University, Kaifeng, Henan, 475001, China.
| | - Haitao T Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China.
| |
Collapse
|
4
|
Kang MJ, Pegg RB, Kerr WL, Wells ML, Conner PJ, Suh JH. Metabolomic analysis combined with machine learning algorithms enables the evaluation of postharvest pecan color stability. Food Chem 2024; 461:140814. [PMID: 39151343 DOI: 10.1016/j.foodchem.2024.140814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Nut kernel color is a crucial quality indicator affecting the consumers first impression of the product. While growing evidence suggests that plant phenolics and their derivatives are linked to nut kernel color, the compounds (biomarkers) responsible for kernel color stability during storage remain elusive. Here, pathway-based metabolomics with machine learning algorithms were employed to identify key metabolites of postharvest pecan color stability. Metabolites in phenylpropanoid, flavonoid, and anthocyanin biosynthetic pathways were analyzed in the testa of nine pecan cultivars using liquid chromatography-mass spectrometry. With color measurements, different machine learning models were compared to find relevant biomarkers of pecan color phenotypes. Results revealed potential marker compounds that included flavonoid precursors and anthocyanidins as well as anthocyanins (e.g., peonidin, delphinidin-3-O-glucoside). Our findings provide a foundation for future research in the area, and will help select genes/proteins for the breeding of pecans with stable and desirable kernel color.
Collapse
Affiliation(s)
- Min Jeong Kang
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - Ronald B Pegg
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - William L Kerr
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - M Lenny Wells
- Department of Horticulture, College of Agricultural and Environmental Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - Patrick J Conner
- Department of Horticulture, College of Agricultural and Environmental Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - Joon Hyuk Suh
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Custodio-Mendoza JA, Aktaş H, Zalewska M, Wyrwisz J, Kurek MA. A Review of Quantitative and Topical Analysis of Anthocyanins in Food. Molecules 2024; 29:1735. [PMID: 38675555 PMCID: PMC11051960 DOI: 10.3390/molecules29081735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Anthocyanins, a subclass of flavonoids known for their vibrant colors and health-promoting properties, are pivotal in the nutritional science and food industry. This review article delves into the analytical methodologies for anthocyanin detection and quantification in food matrices, comparing quantitative and topical techniques. Quantitative methods, including High-performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS), offer precise quantification and profiling of individual anthocyanins but require sample destruction, limiting their use in continuous quality control. Topical approaches, such as Near-infrared Spectroscopy (NIR) and hyperspectral imaging, provide rapid, in situ analysis without compromising sample integrity, ideal for on-site food quality assessment. The review highlights the advancements in chromatographic techniques, particularly Ultra-high-performance Liquid Chromatography (UHPLC) coupled with modern detectors, enhancing resolution and speed in anthocyanin analysis. It also emphasizes the growing importance of topical techniques in the food industry for their efficiency and minimal sample preparation. By examining the strengths and limitations of both analytical realms, this article aims to shed light on current challenges and prospective advancements, providing insights into future research directions for improving anthocyanin analysis in foods.
Collapse
Affiliation(s)
| | | | | | | | - Marcin A. Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 02-776 Warsaw, Poland; (J.A.C.-M.); (H.A.); (M.Z.); (J.W.)
| |
Collapse
|
6
|
Huang L, Lin B, Hao P, Yi K, Li X, Hua S. Multi-Omics Analysis Reveals That Anthocyanin Degradation and Phytohormone Changes Regulate Red Color Fading in Rapeseed ( Brassica napus L.) Petals. Int J Mol Sci 2024; 25:2577. [PMID: 38473825 DOI: 10.3390/ijms25052577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Flower color is an important trait for the ornamental value of colored rapeseed (Brassica napus L.), as the plant is becoming more popular. However, the color fading of red petals of rapeseed is a problem for its utilization. Unfortunately, the mechanism for the process of color fading in rapeseed is unknown. In the current study, a red flower line, Zhehuhong, was used as plant material to analyze the alterations in its morphological and physiological characteristics, including pigment and phytohormone content, 2 d before flowering (T1), at flowering (T2), and 2 d after flowering (T3). Further, metabolomics and transcriptomics analyses were also performed to reveal the molecular regulation of petal fading. The results show that epidermal cells changed from spherical and tightly arranged to totally collapsed from T1 to T3, according to both paraffin section and scanning electron microscope observation. The pH value and all pigment content except flavonoids decreased significantly during petal fading. The anthocyanin content was reduced by 60.3% at T3 compared to T1. The content of three phytohormones, 1-aminocyclopropanecarboxylic acid, melatonin, and salicylic acid, increased significantly by 2.2, 1.1, and 30.3 times, respectively, from T1 to T3. However, auxin, abscisic acid, and jasmonic acid content decreased from T1 to T3. The result of metabolomics analysis shows that the content of six detected anthocyanin components (cyanidin, peonidin, pelargonidin, delphinidin, petunidin, and malvidin) and their derivatives mainly exhibited a decreasing trend, which was in accordance with the trend of decreasing anthocyanin. Transcriptomics analysis showed downregulation of genes involved in flavonol, flavonoid, and anthocyanin biosynthesis. Furthermore, genes regulating anthocyanin biosynthesis were preferentially expressed at early stages, indicating that the degradation of anthocyanin is the main issue during color fading. The corresponding gene-encoding phytohormone biosynthesis and signaling, JASMONATE-ZIM-DOMAIN PROTEIN, was deactivated to repress anthocyanin biosynthesis, resulting in fading petal color. The results clearly suggest that anthocyanin degradation and phytohormone regulation play essential roles in petal color fading in rapeseed, which is a useful insight for the breeding of colored rapeseed.
Collapse
Affiliation(s)
- Lan Huang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Pengfei Hao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kaige Yi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xi Li
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
7
|
Ding Y, Li H, Liu X, Cheng X, Chen W, Wu M, Chen L, He J, Chao H, Jia H, Fu C, Li M. Multi-Omics Analysis Revealed the AGR-FC.C3 Locus of Brassica napus as a Novel Candidate for Controlling Petal Color. PLANTS (BASEL, SWITZERLAND) 2024; 13:507. [PMID: 38498487 PMCID: PMC10892695 DOI: 10.3390/plants13040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
Variations in the petal color of Brassica napus are crucial for ornamental value, but the controlled loci for breeding remain to be unraveled. Here, we report a candidate locus, AGR-FC.C3, having conducted a bulked segregant analysis on a segregating population with different petal colors. Our results showed that the locus covers 9.46 Mb of the genome, harboring 951 genes. BnaC03.MYB4, BnaC03.MYB85, BnaC03.MYB73, BnaC03.MYB98, and BnaC03.MYB102 belonging to MYB TFs families that might regulate the petal color were observed. Next, a bulk RNA sequencing of white and orange-yellow petals on three development stages was performed to further identify the possible governed genes. The results revealed a total of 51 genes by overlapping the transcriptome data and the bulked segregant analysis data, and it was found that the expression of BnaC03.CCD4 was significantly up-regulated in the white petals at three development stages. Then, several novel candidate genes such as BnaC03.ENDO3, BnaC03.T22F8.180, BnaC03.F15C21.8, BnaC03.Q8GSI6, BnaC03.LSD1, BnaC03.MAP1Da, BnaC03.MAP1Db, and BnaC03G0739700ZS putative to controlling the petal color were identified through deeper analysis. Furthermo re, we have developed two molecular markers for the reported functional gene BnaC03.CCD4 to discriminate the white and orange-yellow petal colors. Our results provided a novel locus for breeding rapeseed with multi-color petals.
Collapse
Affiliation(s)
- Yiran Ding
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Xinmin Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Xin Cheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Wang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Mingli Wu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Liurong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Haibo Jia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
8
|
Zeng H, Chen M, Zheng T, Tang Q, Xu H. Metabolomics Analysis Reveals the Accumulation Patterns of Flavonoids and Volatile Compounds in Camellia oleifera Petals with Different Color. Molecules 2023; 28:7248. [PMID: 37959668 PMCID: PMC10650325 DOI: 10.3390/molecules28217248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
To systematically and comprehensively investigate the metabolic characteristics of coloring substances and floral aroma substances in Camellia oleifera petals with different colors, ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) and headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics methods were applied to determine the metabolic profiles of white, candy-pink and dark-red petals. The results revealed that 270 volatile organic compounds were detected, mainly terpenoids, heterocyclic, esters, hydrocarbons, aldehydes, and alcohols, in which phenylethyl alcohol, lilac alcohol, and butanoic acid, 1-methylhexyl ester, hotrienol, alpha-terpineol and 7-Octen-4-ol, 2-methyl-6-methylene-, (S)-, butanoic acid, 2-methyl-, 2-methylbutyl ester, 2,4-Octadienal, (E,E)- could act as the floral scent compounds. A total of 372 flavonoid compounds were identified, and luteolin, kaempferol, cyanidin and peonidin derivatives were considered as the main coloring substances for candy-pink and dark-red petal coloration. In conclusion, this study intuitively and quantitatively exhibited the variations in flower color and floral scent of C. oleifera petal with different colors caused by changes in variations of flavonoids and volatile organic compound composition, and provided useful data for improving the sensory quality and breeding of C. oleifera petals.
Collapse
Affiliation(s)
| | | | - Tao Zheng
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (M.C.); (Q.T.); (H.X.)
| | | | | |
Collapse
|