1
|
Zhang J, Li C, Duan M, Qu Z, Wang Y, Dong Y, Wu Y, Fang S, Gu S. The Improvement Effects of Weizmannia coagulans BC99 on Liver Function and Gut Microbiota of Long-Term Alcohol Drinkers: A Randomized Double-Blind Clinical Trial. Nutrients 2025; 17:320. [PMID: 39861457 PMCID: PMC11769147 DOI: 10.3390/nu17020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES With the improvement of living standards, alcoholic liver disease caused by long-term drinking has been a common multiple disease. Probiotic interventions may help mitigate liver damage caused by alcohol intake, but the mechanisms need more investigation. METHODS This study involved 70 long-term alcohol drinkers (18-65 years old, alcohol consumption ≥20 g/day, lasting for more than one year) who were randomly assigned to either the BC99 group or the placebo group. Two groups were given BC99 (3 g/day, 1 × 1010 CFU) or placebo (3 g/day) for 60 days, respectively. Before and after the intervention, blood routine indicators, liver function, renal function, inflammatory factors and intestinal flora were evaluated. RESULTS The results showed that intervention with Weizmannia coagulans BC99 reduced the levels of alanine aminotransferase, aspartate aminotransferase, glutamyl transpeptidase, serum total bilirubin, blood urea nitrogen, uric acid and 'blood urea nitrogen/creatinine'. Weizmannia coagulans BC99 also reduced the levels of pro-inflammatory factors TNF-α and IL-6 and increased the levels of anti-inflammatory factor IL-10. The results of intestinal flora analysis showed that Weizmannia coagulans BC99 regulated the imbalance of intestinal flora, increased the beneficial bacteria abundance (Prevotella, Faecalibacterium and Roseburia) and reduced the conditionally pathogenic bacteria abundance (Escherichia-Shigella and Klebsiella). Both LEfSe analysis and random forest analysis indicated that the increase in the abundance of Muribaculaceae induced by BC99 was a key factor in alleviating alcohol-induced liver damage. CONCLUSIONS These findings demonstrate that Weizmannia coagulans BC99 has the potential to alleviate alcoholic liver injury and provide an effective strategy for liver protection in long-term drinkers.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Cheng Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengyao Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhen Qu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yi Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuguang Fang
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| |
Collapse
|
2
|
Li JX, Xu DQ, Cui DX, Fu RJ, Niu ZC, Liu WJ, Tang YP. Exploring the structure-activity relationship of Safflower polysaccharides: From the structural characteristics to biological function and therapeutic applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119131. [PMID: 39577676 DOI: 10.1016/j.jep.2024.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Safflower, the florets of Carthamus tinctorius L., is a widely used traditional Chinese medicine for promoting circulation and improving dysmenorrhea. Polysaccharides is one of the principal water-soluble components in Safflower, which recently endowed with a variety of biological activities, thus making them have important research significance in the field of ethnopharmacology. AIM OF THE STUDY This review summarized the latest research progress on the preparation technology, structural characteristics, and pharmacological effects of Safflower polysaccharides. Moreover, by comparing the structural characteristic of Safflower polysaccharides, the potential structure-activity relationship of Safflower polysaccharides was also discussed. MATERIALS AND METHODS This article used keywords including Safflower polysaccharide, Carthamus tinctorius L polysaccharide, Safflower polysaccharide extraction and separation, Safflower polysaccharide structure, and Safflower polysaccharide anti-tumor effects to search for all relevant literature in PubMed, Web of Science, Google Scholar, ScienceDirect, CNKI and other databases from the establishment of the database to July 2024. RESULTS Summarizing current research findings, seventeen homogeneous Safflower polysaccharides have been obtained. Their structural characteristics, including molecular weights, monosaccharide composition, sugar residue types, glycosidic bond configuration, and the linkage sequence, were initially researched. In terms of pharmacological activity, Safflower polysaccharides exhibit a wide range of biological activities, including immune regulation, anti-tumor effects, and antioxidant properties. Furthermore, the structural characteristics of Safflower polysaccharides significantly influence its biological activities, encompassing factors such as molecular weight, monosaccharide composition, and degree of branching. CONCLUSION Safflower polysaccharides have seen significant advancements in recent years regarding preparation methods, structural characterization, and pharmacological studies. These achievements would provide a theoretical basis for the application of Safflower polysaccharide in the field of ethnopharmacology. While Safflower polysaccharides exhibit diverse biological activities and significant potential for development and utilization, further in-depth research is needed to enhance our understanding of their mechanisms of action and optimize their clinical applications.
Collapse
Affiliation(s)
- Jia-Xin Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-Xiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ze-Chen Niu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
3
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
4
|
Wang T, Liu Y, An C, Mueed A, Wu T, Jia Z, Li S, Ma H, Su L, Liu SY. Auricularia auricula polysaccharide alleviates cyclophosphamide-induced liver injury in mice involving remodeling of the gut bacteriome, mycobiome, and metabolome. Int J Biol Macromol 2024; 281:136703. [PMID: 39427797 DOI: 10.1016/j.ijbiomac.2024.136703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
In this study, a novel polysaccharide (AHP) from Auricularia auricula was isolated and purified, showing protective effects against CTX-induced liver injury in mice. To study the action mechanism of AHP, a liver injury model was established by intraperitoneally injection 80 mg/kg of CTX for 3 consecutive days. The focus was on how AHP regulated the gut bacteriome and mycobiome to help alleviate metabolic disorders associated with liver injury. Results showed that AHP amended liver injury by improving liver function, stabilizing oxidative stress homeostasis, reducing inflammatory invasion and activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway. The 16S ribosomal DNA (16S rDNA) and Internal Transcribed Spacer-1 (ITS1) sequencing results demonstrated that AHP supplementation significantly restored the gut bacteriome and mycobiome composition in CTX-induced liver injury mice, by enriching the abundance of beneficial bacteriome (unclassified_Muribaculaceae, Faecalibaculum and Alloprevotella) and mycobiome (Fusarium), reducing the abundance of harmful bacteriome (Akkermanisa) and mycobiome (Fusicolla and Cladosporium). Analysis of untargeted metabolomics indicated that AHP altered the levels of metabolites associated with both bile acid and arachidonic acid metabolism, showing a significant connection to the AHP-regulated bacteriome and mycobiome. To conclude, the findings suggested that AHP was a viable and secure candidate for use as a hepatoprotective medication.
Collapse
Affiliation(s)
- Tianci Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yaqing Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Canghai An
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Tianxiang Wu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Zikun Jia
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Shunling Li
- College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - He Ma
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ling Su
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China.
| | - Shu-Yan Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
5
|
Liu X, Yang F, Ren P, Lv W, Chen B, Niu B, Ren Y, Wang L, Sun M, Zuo Z, Li J, Geng A. Study on the mechanism of macrophages activated by phosphoesterified rehmanniae polysaccharide on human gastric cancer cells. Int J Biol Macromol 2024; 277:133952. [PMID: 39029829 DOI: 10.1016/j.ijbiomac.2024.133952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Gastric cancer(GC)is one of the most common gastrointestinal malignant tumors in the world, requiring the development of novel therapeutic agents with reduced toxicity. Rehmannia polysaccharide (RPS) possesses immunomodulatory and anti-tumor properties, yet its efficacy is suboptimal. To enhance its biological activity, we subjected RPS to molecular modifications, resulting in phosphorylated Rehmannia polysaccharides (P-RPS). Using the mixed phosphate method, we synthesized P-RPS and optimized the synthesis conditions through a combination of single-factor and response surface methodologies. In vitro studies on P-RPS's anti-tumor activity showed no direct influence on the viability of GC cells. However, P-RPS induced the transformation of PMA-activated THP-1 cells into the M1 phenotype. We collected conditioned medium (CM) of THP-1 cells to stimulate gastric cancer cells and CM-P-RPS significantly promoted apoptosis of gastric cancer cells and inhibited cell proliferation, and reduced cell migration. Mechanistically, CM-P-RPS inhibits the Wnt/β-catenin signaling pathway through LGR6, leading to the suppression of tumor growth. Furthermore, P-RPS demonstrated a significant inhibitory effect on tumor growth in vivo, suggesting its potential as a promising therapeutic agent for GC treatment.
Collapse
Affiliation(s)
- Xianglong Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian 712046, China
| | - Feng Yang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian 712046, China
| | - Pengyu Ren
- Institute of Medical Research, Northwestern Polytechnical University, Xian 710072, China; Sanhang Institute for Brain Science and Technology, Northwestern Polytechnical University, Xian 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Wenbo Lv
- Institute of Medical Research, Northwestern Polytechnical University, Xian 710072, China; Sanhang Institute for Brain Science and Technology, Northwestern Polytechnical University, Xian 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Bodong Chen
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian 712046, China
| | - Ben Niu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian 712046, China
| | - Yongyong Ren
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian 712046, China
| | - Lu Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian 712046, China
| | - Meng Sun
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian 712046, China
| | - Zhenyu Zuo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian 712046, China
| | - Jin Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian 712046, China.
| | - Anqi Geng
- Institute of Medical Research, Northwestern Polytechnical University, Xian 710072, China; Sanhang Institute for Brain Science and Technology, Northwestern Polytechnical University, Xian 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China.
| |
Collapse
|
6
|
Gu X, Wang H, Wang L, Zhang K, Tian Y, Wang X, Xu G, Guo Z, Ahmad S, Egide H, Liu J, Li J, Savelkoul HFJ, Zhang J, Wang X. The antioxidant activity and metabolomic analysis of the supernatant of Streptococcus alactolyticus strain FGM. Sci Rep 2024; 14:8413. [PMID: 38600137 PMCID: PMC11006861 DOI: 10.1038/s41598-024-58933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 μL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.
Collapse
Affiliation(s)
- Xueyan Gu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Heng Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Kang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Yuhu Tian
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoya Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Guowei Xu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Zhiting Guo
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Saad Ahmad
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Hanyurwumutima Egide
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jiahui Liu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Xuezhi Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, China.
| |
Collapse
|