1
|
Peng Z, Wang H, Zheng J, Chen H, Wang J, Weber HC, Yuan L, Qin X, Xiang Y, Liu C, Ji M, Liu H, Qu X. Attenuation of renal fibrosis in mice due to lack of bombesin receptor-activated protein homologue. Clin Exp Pharmacol Physiol 2024; 51:e13916. [PMID: 39155151 DOI: 10.1111/1440-1681.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024]
Abstract
Bombesin receptor-activated protein (BRAP), encoded by the C6orf89 gene in humans, is expressed in various cells with undefined functions. BC004004, the mouse homologue of C6orf89, has been shown to play a role in bleomycin-induced pulmonary fibrosis through the use of a BC004004 gene knockout mouse (BC004004-/-). In this study, we investigated the potential involvement of BRAP in renal fibrosis using two mouse models: unilateral ureteral obstruction (UUO) and type 2 diabetes mellitus induced by combination of a high-fat diet (HFD) and streptozocin (STZ). BRAP or its homologue was expressed in tubular epithelial cells (TECs) in the kidneys of patients with chronic kidney disease (CKD) and in BC004004+/+ mice. Compared to control mice, BC004004-/- mice exhibited attenuated renal injury and renal fibrosis after UUO or after HFD/STZ treatment. Immunohistochemistry and immunoblot analyses of the kidneys of BC004004+/+ mice after UUO surgery showed a more significant decrease in E-cadherin expression and a more significant increase in both α smooth muscle actin (α-SMA) and vimentin expression compared to BC004004-/- mice. Additionally, stimulation with transforming growth factor-β1 (TGF-β1) led to a more significant decrease in E-cadherin expression and a more significant increase in α-SMA and vimentin expression in isolated TECs from BC004004+/+ than in those from BC004004-/- mice. These results suggest that an enhanced epithelial-mesenchymal transition (EMT) process occurred in TECs in BC004004+/+ mice during renal injury, which might contribute to renal fibrosis. The loss of the BRAP homologue in BC004004-/- mice suppressed EMT activation in kidneys and contributed to the suppression of fibrosis during renal injury.
Collapse
Affiliation(s)
- Zhi Peng
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Hui Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jiaoyun Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Chen
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jie Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Horst Christian Weber
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Section of Gastroenterology, Boston, Massachusetts, USA
| | - Lin Yuan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Hunan Provincial Institutions of Higher Education for Lung Diseases Research, Changsha, China
- National Demonstration Center for Teaching and Learning of Medical Functional Experimentation, Changsha, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Hunan Provincial Institutions of Higher Education for Lung Diseases Research, Changsha, China
- National Demonstration Center for Teaching and Learning of Medical Functional Experimentation, Changsha, China
| | - Chi Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Hunan Provincial Institutions of Higher Education for Lung Diseases Research, Changsha, China
- National Demonstration Center for Teaching and Learning of Medical Functional Experimentation, Changsha, China
| | - Ming Ji
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Hunan Provincial Institutions of Higher Education for Lung Diseases Research, Changsha, China
- National Demonstration Center for Teaching and Learning of Medical Functional Experimentation, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Hunan Provincial Institutions of Higher Education for Lung Diseases Research, Changsha, China
- National Demonstration Center for Teaching and Learning of Medical Functional Experimentation, Changsha, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Hunan Provincial Institutions of Higher Education for Lung Diseases Research, Changsha, China
- National Demonstration Center for Teaching and Learning of Medical Functional Experimentation, Changsha, China
| |
Collapse
|
2
|
Hochrainer N, Serafin P, D’Ingiullo S, Mollica A, Granica S, Brytan M, Kleczkowska P, Spetea M. In Vitro and In Vivo Pharmacological Profiles of LENART01, a Dermorphin-Ranatensin Hybrid Peptide. Int J Mol Sci 2024; 25:4007. [PMID: 38612817 PMCID: PMC11012005 DOI: 10.3390/ijms25074007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Diverse chemical and pharmacological strategies are currently being explored to minimize the unwanted side effects of currently used opioid analgesics while achieving effective pain relief. The use of multitarget ligands with activity at more than one receptor represents a promising therapeutic approach. We recently reported a bifunctional peptide-based hybrid LENART01 combining dermorphin and ranatensin pharmacophores, which displays activity to the mu-opioid receptor (MOR) and dopamine D2 receptor (D2R) in rat brains and spinal cords. In this study, we investigated the in vitro binding and functional activities to the human MOR and the in vivo pharmacology of LENART01 in mice after subcutaneous administration. In vitro binding assays showed LENART01 to bind and be selective to the human MOR over the other opioid receptor subtypes and delta, kappa and nociceptin receptors. In the [35S]GTPγS binding assay, LENART01 acted as a potent and full agonist to the human MOR. In mice, LENART01 produced dose-dependent antinociceptive effects in formalin-induced inflammatory pain, with increased potency than morphine. Antinociceptive effects were reversed by naloxone, indicating MOR activation in vivo. Behavioral studies also demonstrated LENART01's properties to induce less adverse effects without locomotor dysfunction and withdrawal syndrome compared to conventional opioid analgesics, such as morphine. LENART01 is the first peptide-based MOR-D2R ligand known to date and the first dual MOR-dopamine D2R ligand for which in vivo pharmacology is reported with antinociceptive efficacy and reduced opioid-related side effects. Our current findings may pave the way to new pain therapeutics with limited side effects in acute and chronic use.
Collapse
Affiliation(s)
- Nadine Hochrainer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (P.S.); (M.B.)
| | - Sara D’Ingiullo
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.D.); (A.M.)
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.D.); (A.M.)
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Marek Brytan
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (P.S.); (M.B.)
| | | | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|