1
|
Forester CM, Oses-Prieto JA, Phillips NJ, Miglani S, Pang X, Byeon GW, DeMarco R, Burlingame A, Barna M, Ruggero D. Regulation of eIF4E guides a unique translational program to control erythroid maturation. SCIENCE ADVANCES 2022; 8:eadd3942. [PMID: 36563140 PMCID: PMC9788769 DOI: 10.1126/sciadv.add3942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 05/22/2023]
Abstract
Translation control is essential in balancing hematopoietic precursors and differentiation; however, the mechanisms underlying this program are poorly understood. We found that the activity of the major cap-binding protein eIF4E is unexpectedly regulated in a dynamic manner throughout erythropoiesis that is uncoupled from global protein synthesis rates. Moreover, eIF4E activity directs erythroid maturation, and increased eIF4E expression maintains cells in an early erythroid state associated with a translation program driving the expression of PTPN6 and Igf2bp1. A cytosine-enriched motif in the 5' untranslated region is important for eIF4E-mediated translation specificity. Therefore, selective translation of key target genes necessary for the maintenance of early erythroid states by eIF4E highlights a unique mechanism used by hematopoietic precursors to rapidly elicit erythropoietic maturation upon need.
Collapse
Affiliation(s)
- Craig M. Forester
- Department of Pediatrics, University of Colorado, Denver, CO 80045, USA
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Children’s Hospital Colorado, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Juan A. Oses-Prieto
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nancy J. Phillips
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sohit Miglani
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaming Pang
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gun Woo Byeon
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94309, USA
| | - Rachel DeMarco
- Department of Pediatrics, University of Colorado, Denver, CO 80045, USA
| | - Al Burlingame
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94309, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Bagchi A, Devaraju N, Chambayil K, Rajendiran V, Venkatesan V, Sayed N, Pai AA, Nath A, David E, Nakamura Y, Balasubramanian P, Srivastava A, Thangavel S, Mohankumar KM, Velayudhan SR. Erythroid lineage-specific lentiviral RNAi vectors suitable for molecular functional studies and therapeutic applications. Sci Rep 2022; 12:14033. [PMID: 35982069 PMCID: PMC9388678 DOI: 10.1038/s41598-022-13783-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous genes exert multifaceted roles in hematopoiesis. Therefore, we generated novel lineage-specific RNA interference (RNAi) lentiviral vectors, H23B-Ery-Lin-shRNA and H234B-Ery-Lin-shRNA, to probe the functions of these genes in erythroid cells without affecting other hematopoietic lineages. The lineage specificity of these vectors was confirmed by transducing multiple hematopoietic cells to express a fluorescent protein. Unlike the previously reported erythroid lineage RNAi vector, our vectors were designed for cloning the short hairpin RNAs (shRNAs) for any gene, and they also provide superior knockdown of the target gene expression with a single shRNA integration per cell. High-level lineage-specific downregulation of BCL11A and ZBTB7A, two well-characterized transcriptional repressors of HBG in adult erythroid cells, was achieved with substantial induction of fetal hemoglobin with a single-copy lentiviral vector integration. Transduction of primary healthy donor CD34+ cells with these vectors resulted in >80% reduction in the target protein levels and up to 40% elevation in the γ-chain levels in the differentiated erythroid cells. Xenotransplantation of the human CD34+ cells transduced with H23B-Ery-Lin-shBCL11A LV in immunocompromised mice showed ~ 60% reduction in BCL11A protein expression with ~ 40% elevation of γ-chain levels in the erythroid cells derived from the transduced CD34+ cells. Overall, the novel erythroid lineage-specific lentiviral RNAi vectors described in this study provide a high-level knockdown of target gene expression in the erythroid cells, making them suitable for their use in gene therapy for hemoglobinopathies. Additionally, the design of these vectors also makes them ideal for high-throughput RNAi screening for studying normal and pathological erythropoiesis.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Nivedhitha Devaraju
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Nilofer Sayed
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, 3050074, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Kumarasamypet M Mohankumar
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India.
| | - Shaji R Velayudhan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India.
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
3
|
Papasavva PL, Patsali P, Loucari CC, Kurita R, Nakamura Y, Kleanthous M, Lederer CW. CRISPR Editing Enables Consequential Tag-Activated MicroRNA-Mediated Endogene Deactivation. Int J Mol Sci 2022; 23:1082. [PMID: 35163006 PMCID: PMC8834719 DOI: 10.3390/ijms23031082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular therapies and functional studies greatly benefit from spatial and temporal precision of genetic intervention. We therefore conceived and explored tag-activated microRNA (miRNA)-mediated endogene deactivation (TAMED) as a research tool and potential lineage-specific therapy. For proof of principle, we aimed to deactivate γ-globin repressor BCL11A in erythroid cells by tagging the 3' untranslated region (UTR) of BCL11A with miRNA recognition sites (MRSs) for the abundant erythromiR miR-451a. To this end, we employed nucleofection of CRISPR/Cas9 ribonucleoprotein (RNP) particles alongside double- or single-stranded oligodeoxynucleotides for, respectively, non-homologous-end-joining (NHEJ)- or homology-directed-repair (HDR)-mediated MRS insertion. NHEJ-based tagging was imprecise and inefficient (≤6%) and uniformly produced knock-in- and indel-containing MRS tags, whereas HDR-based tagging was more efficient (≤18%), but toxic for longer donors encoding concatenated and thus potentially more efficient MRS tags. Isolation of clones for robust HEK293T cells tagged with a homozygous quadruple MRS resulted in 25% spontaneous reduction in BCL11A and up to 36% reduction after transfection with an miR-451a mimic. Isolation of clones for human umbilical cord blood-derived erythroid progenitor-2 (HUDEP-2) cells tagged with single or double MRS allowed detection of albeit weak γ-globin induction. Our study demonstrates suitability of TAMED for physiologically relevant modulation of gene expression and its unsuitability for therapeutic application in its current form.
Collapse
Affiliation(s)
- Panayiota L. Papasavva
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Petros Patsali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Constantinos C. Loucari
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Koto-ku, Tokyo 135-8521, Japan;
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan;
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
4
|
King R, Lin Z, Balbin-Cuesta G, Myers G, Friedman A, Zhu G, McGee B, Saunders TL, Kurita R, Nakamura Y, Engel JD, Reddy P, Khoriaty R. SEC23A rescues SEC23B-deficient congenital dyserythropoietic anemia type II. SCIENCE ADVANCES 2021; 7:eabj5293. [PMID: 34818036 PMCID: PMC8612686 DOI: 10.1126/sciadv.abj5293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/04/2021] [Indexed: 05/12/2023]
Abstract
Congenital dyserythropoietic anemia type II (CDAII) results from loss-of-function mutations in SEC23B. In contrast to humans, SEC23B-deficient mice deletion do not exhibit CDAII but die perinatally with pancreatic degeneration. Here, we demonstrate that expression of the full SEC23A protein (the SEC23B paralog) from the endogenous regulatory elements of Sec23b completely rescues the SEC23B-deficient mouse phenotype. Consistent with these data, while mice with erythroid-specific deletion of either Sec23a or Sec23b do not exhibit CDAII, we now show that mice with erythroid-specific deletion of all four Sec23 alleles die in mid-embryogenesis with features of CDAII and that mice with deletion of three Sec23 alleles exhibit a milder erythroid defect. To test whether the functional overlap between the SEC23 paralogs is conserved in human erythroid cells, we generated SEC23B-deficient HUDEP-2 cells. Upon differentiation, these cells exhibited features of CDAII, which were rescued by increased expression of SEC23A, suggesting a novel therapeutic strategy for CDAII.
Collapse
Affiliation(s)
- Richard King
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ginette Balbin-Cuesta
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Gregg Myers
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ann Friedman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Beth McGee
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas L. Saunders
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Mukherjee M, Rahaman M, Ray SK, Shukla PC, Dolai TK, Chakravorty N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: a review of natural products, conventional and combinatorial therapies. Mol Biol Rep 2021; 49:2359-2373. [PMID: 34822068 DOI: 10.1007/s11033-021-06977-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Beta-hemoglobinopathies exhibit a heterogeneous clinical picture with varying degrees of clinical severity. Pertaining to the limited treatment options available, where blood transfusion still remains the commonest mode of treatment, pharmacological induction of fetal hemoglobin (HbF) has been a lucrative therapeutic intervention. Till now more than 70 different HbF inducers have been identified. The practical usage of many pharmacological drugs has been limited due to safety concerns. Natural compounds, like Resveratrol, Ripamycin and Bergaptene, with limited cytotoxicity and high efficacy have started capturing the attention of researchers. In this review, we have summarized pharmacological drugs and bioactive compounds isolated from natural sources that have been shown to increase HbF significantly. It primarily discusses recently identified synthetic and natural compounds, their mechanism of action, and their suitable screening platforms, including high throughput drug screening technology and biosensors. It also delves into the topic of combinatorial therapy and drug repurposing for HbF induction. Overall, we aim to provide insights into where we stand in HbF induction strategies for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Mandrita Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Suman Kumar Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Tuphan Kanti Dolai
- Department of Hematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, 700014, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
6
|
Nath A, Rayabaram J, Ijee S, Bagchi A, Chaudhury AD, Roy D, Chambayil K, Singh J, Nakamura Y, Velayudhan SR. Comprehensive Analysis of microRNAs in Human Adult Erythropoiesis. Cells 2021; 10:3018. [PMID: 34831239 PMCID: PMC8616439 DOI: 10.3390/cells10113018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which play an important role in various cellular and developmental processes. The study of miRNAs in erythropoiesis is crucial to uncover the cellular pathways that are modulated during the different stages of erythroid differentiation. Using erythroid cells derived from human CD34+ hematopoietic stem and progenitor cells (HSPCs)and small RNA sequencing, our study unravels the various miRNAs involved in critical cellular pathways in erythroid maturation. We analyzed the occupancy of erythroid transcription factors and chromatin accessibility in the promoter and enhancer regions of the differentially expressed miRNAs to integrate miRNAs in the transcriptional circuitry of erythropoiesis. Analysis of the targets of the differentially expressed miRNAs revealed novel pathways in erythroid differentiation. Finally, we described the application of Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) based editing of miRNAs to study their function in human erythropoiesis.
Collapse
Affiliation(s)
- Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Janakiram Rayabaram
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Anurag Dutta Chaudhury
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Debanjan Roy
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
- Manipal Academy of Higher Education, Manipal 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Jyoti Singh
- National Centre for Cell Science, University of Pune Campus, Pune 411007, India;
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan;
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| |
Collapse
|
7
|
Himadewi P, Wang XQD, Feng F, Gore H, Liu Y, Yu L, Kurita R, Nakamura Y, Pfeifer GP, Liu J, Zhang X. 3'HS1 CTCF binding site in human β-globin locus regulates fetal hemoglobin expression. eLife 2021; 10:e70557. [PMID: 34585664 PMCID: PMC8500713 DOI: 10.7554/elife.70557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in the adult β-globin gene can lead to a variety of hemoglobinopathies, including sickle cell disease and β-thalassemia. An increase in fetal hemoglobin expression throughout adulthood, a condition named hereditary persistence of fetal hemoglobin (HPFH), has been found to ameliorate hemoglobinopathies. Deletional HPFH occurs through the excision of a significant portion of the 3' end of the β-globin locus, including a CTCF binding site termed 3'HS1. Here, we show that the deletion of this CTCF site alone induces fetal hemoglobin expression in both adult CD34+ hematopoietic stem and progenitor cells and HUDEP-2 erythroid progenitor cells. This induction is driven by the ectopic access of a previously postulated distal enhancer located in the OR52A1 gene downstream of the locus, which can also be insulated by the inversion of the 3'HS1 CTCF site. This suggests that genetic editing of this binding site can have therapeutic implications to treat hemoglobinopathies.
Collapse
Affiliation(s)
- Pamela Himadewi
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Xue Qing David Wang
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Fan Feng
- Department of Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Haley Gore
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Yushuai Liu
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Lei Yu
- Cell and Development Biology, University of MichiganAnn ArborUnited States
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross SocietyTokyoJapan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research CenterTsukubaJapan
- Faculty of Medicine, University of TsukubaTsukubaJapan
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Xiaotian Zhang
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| |
Collapse
|
8
|
Daniels DE, Ferguson DCJ, Griffiths RE, Trakarnsanga K, Cogan N, MacInnes KA, Mordue KE, Andrienko T, Ferrer-Vicens I, Ramos Jiménez D, Lewis PA, Wilson MC, Canham MA, Kurita R, Nakamura Y, Anstee DJ, Frayne J. Reproducible immortalization of erythroblasts from multiple stem cell sources provides approach for sustainable RBC therapeutics. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:26-39. [PMID: 34485592 PMCID: PMC8390520 DOI: 10.1016/j.omtm.2021.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/01/2021] [Indexed: 12/01/2022]
Abstract
Developing robust methodology for the sustainable production of red blood cells in vitro is essential for providing an alternative source of clinical-quality blood, particularly for individuals with rare blood group phenotypes. Immortalized erythroid progenitor cell lines are the most promising emergent technology for achieving this goal. We previously created the erythroid cell line BEL-A from bone marrow CD34+ cells that had improved differentiation and enucleation potential compared to other lines reported. In this study we show that our immortalization approach is reproducible for erythroid cells differentiated from bone marrow and also from far more accessible peripheral and cord blood CD34+ cells, consistently generating lines with similar improved erythroid performance. Extensive characterization of the lines shows them to accurately recapitulate their primary cell equivalents and provides a molecular signature for immortalization. In addition, we show that only cells at a specific stage of erythropoiesis, predominantly proerythroblasts, are amenable to immortalization. Our methodology provides a step forward in the drive for a sustainable supply of red cells for clinical use and for the generation of model cellular systems for the study of erythropoiesis in health and disease, with the added benefit of an indefinite expansion window for manipulation of molecular targets.
Collapse
Affiliation(s)
- Deborah E Daniels
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK
| | | | | | - Kongtana Trakarnsanga
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nicola Cogan
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol BS34 7QH, UK
| | - Katherine A MacInnes
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK
| | - Kathryn E Mordue
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | - Phillip A Lewis
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | | | - Maurice A Canham
- Tissues, Cells & Advanced Therapeutics, Scottish National Blood Transfusion Service, The Jack Copland Centre, 52 Research Avenue North, Edinburgh, EH14 4BE, UK
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - David J Anstee
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol BS34 7QH, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
9
|
Jeffery NN, Davidson C, Peslak SA, Kingsley PD, Nakamura Y, Palis J, Bulger M. Histone H2A.X phosphorylation and Caspase-Initiated Chromatin Condensation in late-stage erythropoiesis. Epigenetics Chromatin 2021; 14:37. [PMID: 34330317 PMCID: PMC8325214 DOI: 10.1186/s13072-021-00408-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background Condensation of chromatin prior to enucleation is an essential component of terminal erythroid maturation, and defects in this process are associated with inefficient erythropoiesis and anemia. However, the mechanisms involved in this phenomenon are not well understood. Here, we describe a potential role for the histone variant H2A.X in erythropoiesis. Results We find in multiple model systems that this histone is essential for normal maturation, and that the loss of H2A.X in erythroid cells results in dysregulation in expression of erythroid-specific genes as well as a nuclear condensation defect. In addition, we demonstrate that erythroid maturation is characterized by phosphorylation at both S139 and Y142 on the C-terminal tail of H2A.X during late-stage erythropoiesis. Knockout of the kinase BAZ1B/WSTF results in loss of Y142 phosphorylation and a defect in nuclear condensation, but does not replicate extensive transcriptional changes to erythroid-specific genes observed in the absence of H2A.X. Conclusions We relate these findings to Caspase-Initiated Chromatin Condensation (CICC) in terminal erythroid maturation, where aspects of the apoptotic pathway are invoked while apoptosis is specifically suppressed. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00408-5.
Collapse
Affiliation(s)
- Nazish N Jeffery
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Christina Davidson
- Wilmot Cancer Institute, Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Scott A Peslak
- Department of Medicine, Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - James Palis
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Michael Bulger
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
10
|
Abstract
Congenital dyserythropoietic anemias (CDAs) are a heterogeneous group of inherited anemias that affect the normal differentiation-proliferation pathways of the erythroid lineage. They belong to the wide group of ineffective erythropoiesis conditions that mainly result in monolinear cytopenia. CDAs are classified into the 3 major types (I, II, III), plus the transcription factor-related CDAs, and the CDA variants, on the basis of the distinctive morphological, clinical, and genetic features. Next-generation sequencing has revolutionized the field of diagnosis of and research into CDAs, with reduced time to diagnosis, and ameliorated differential diagnosis in terms of identification of new causative/modifier genes and polygenic conditions. The main improvements regarding CDAs have been in the study of iron metabolism in CDAII. The erythroblast-derived hormone erythroferrone specifically inhibits hepcidin production, and its role in the mediation of hepatic iron overload has been dissected out. We discuss here the most recent advances in this field regarding the molecular genetics and pathogenic mechanisms of CDAs, through an analysis of the clinical and molecular classifications, and the complications and clinical management of patients. We summarize also the main cellular and animal models developed to date and the possible future therapies.
Collapse
|
11
|
Bagchi A, Nath A, Thamodaran V, Ijee S, Palani D, Rajendiran V, Venkatesan V, Datari P, Pai AA, Janet NB, Balasubramanian P, Nakamura Y, Srivastava A, Mohankumar KM, Thangavel S, Velayudhan SR. Direct Generation of Immortalized Erythroid Progenitor Cell Lines from Peripheral Blood Mononuclear Cells. Cells 2021; 10:523. [PMID: 33804564 PMCID: PMC7999632 DOI: 10.3390/cells10030523] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023] Open
Abstract
Reliable human erythroid progenitor cell (EPC) lines that can differentiate to the later stages of erythropoiesis are important cellular models for studying molecular mechanisms of human erythropoiesis in normal and pathological conditions. Two immortalized erythroid progenitor cells (iEPCs), HUDEP-2 and BEL-A, generated from CD34+ hematopoietic progenitors by the doxycycline (dox) inducible expression of human papillomavirus E6 and E7 (HEE) genes, are currently being used extensively to study transcriptional regulation of human erythropoiesis and identify novel therapeutic targets for red cell diseases. However, the generation of iEPCs from patients with red cell diseases is challenging as obtaining a sufficient number of CD34+ cells require bone marrow aspiration or their mobilization to peripheral blood using drugs. This study established a protocol for culturing early-stage EPCs from peripheral blood (PB) and their immortalization by expressing HEE genes. We generated two iEPCs, PBiEPC-1 and PBiEPC-2, from the peripheral blood mononuclear cells (PBMNCs) of two healthy donors. These cell lines showed stable doubling times with the properties of erythroid progenitors. PBiEPC-1 showed robust terminal differentiation with high enucleation efficiency, and it could be successfully gene manipulated by gene knockdown and knockout strategies with high efficiencies without affecting its differentiation. This protocol is suitable for generating a bank of iEPCs from patients with rare red cell genetic disorders for studying disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vasanth Thamodaran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Dhavapriya Palani
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Phaneendra Datari
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Aswin Anand Pai
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Nancy Beryl Janet
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Poonkuzhali Balasubramanian
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 3050074, Japan;
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Kumarasamypet Murugesan Mohankumar
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| |
Collapse
|
12
|
Daniels DE, Downes DJ, Ferrer-Vicens I, Ferguson DCJ, Singleton BK, Wilson MC, Trakarnsanga K, Kurita R, Nakamura Y, Anstee DJ, Frayne J. Comparing the two leading erythroid lines BEL-A and HUDEP-2. Haematologica 2020; 105:e389-e394. [PMID: 31753923 PMCID: PMC7395286 DOI: 10.3324/haematol.2019.229211] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Deborah E Daniels
- School of Biochemistry, University of Bristol, Bristol, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Belinda K Singleton
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, UK
| | | | - Kongtana Trakarnsanga
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - David J Anstee
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
| |
Collapse
|
13
|
Abstract
Congenital dyserythropoietic anaemia type I (CDA-I) is one of a heterogeneous group of inherited anaemias characterised by ineffective erythropoiesis. CDA-I is caused by bi-allelic mutations in either CDAN1 or C15orf41 and, to date, 56 causative mutations have been documented. The diagnostic pathway is reviewed and the utility of genetic testing in reducing the time taken to reach an accurate molecular diagnosis and avoiding bone marrow aspiration, where possible, is described. The management of CDA-I patients is discussed, highlighting both general and specific measures which impact on disease progression. The use of interferon alpha and careful management of iron overload are reviewed and suggest the most favourable outcomes are achieved when CDA-I patients are managed with a holistic and multidisciplinary approach. Finally, the current understanding of the molecular and cellular pathogenesis of CDA-I is presented, highlighting critical questions likely to lead to improved therapy for this disease.
Collapse
Affiliation(s)
- Noémi B. A. Roy
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- BRC Blood Theme and BRC/NHS Translational Molecular Diagnostics CentreJohn Radcliffe HospitalOxfordUK
- Oxford University Hospitals NHS Foundation TrustJohn Radcliffe HospitalOxfordUK
| | - Christian Babbs
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
14
|
Nussbaum L, Telenius JM, Hill S, Hirschfeld PP, Suciu MC, The WIGWAM Consortium, Downes DJ, Hughes JR. High-Throughput Genotyping of CRISPR/Cas Edited Cells in 96-Well Plates. Methods Protoc 2018; 1:E29. [PMID: 31164571 PMCID: PMC6481090 DOI: 10.3390/mps1030029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022] Open
Abstract
The emergence in recent years of DNA editing technologies-Zinc finger nucleases (ZFNs), transcription activator-like effector (TALE) guided nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/Cas family enzymes, and Base-Editors-have greatly increased our ability to generate hundreds of edited cells carrying an array of alleles, including single-nucleotide substitutions. However, the infrequency of homology-dependent repair (HDR) in generating these substitutions in general requires the screening of large numbers of edited cells to isolate the sequence change of interest. Here we present a high-throughput method for the amplification and barcoding of edited loci in a 96-well plate format. After barcoding, plates are indexed as pools which permits multiplexed sequencing of hundreds of clones simultaneously. This protocol works at high success rate with more than 94% of clones successfully genotyped following analysis.
Collapse
Affiliation(s)
- Lea Nussbaum
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DU, UK; (L.N.); (J.M.T.); (S.H.); (P.P.H.); (M.C.S.)
| | - Jelena M. Telenius
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DU, UK; (L.N.); (J.M.T.); (S.H.); (P.P.H.); (M.C.S.)
- MRC WIMM Center for Computational Biology, Weatherall Institute of Molecular Medicine, Oxford OX3 9DU, UK
| | - Stephanie Hill
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DU, UK; (L.N.); (J.M.T.); (S.H.); (P.P.H.); (M.C.S.)
| | - Priscila P. Hirschfeld
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DU, UK; (L.N.); (J.M.T.); (S.H.); (P.P.H.); (M.C.S.)
| | - Maria C. Suciu
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DU, UK; (L.N.); (J.M.T.); (S.H.); (P.P.H.); (M.C.S.)
- Genomics plc, Oxford OX1 1JD, UK
| | - The WIGWAM Consortium
- Weatherall Institute of Molecular Medicine, Oxford OX3 9DU, UK;
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Damien J. Downes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DU, UK; (L.N.); (J.M.T.); (S.H.); (P.P.H.); (M.C.S.)
| | - Jim R. Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DU, UK; (L.N.); (J.M.T.); (S.H.); (P.P.H.); (M.C.S.)
- MRC WIMM Center for Computational Biology, Weatherall Institute of Molecular Medicine, Oxford OX3 9DU, UK
| |
Collapse
|