1
|
Gutzen R, De Bonis G, De Luca C, Pastorelli E, Capone C, Allegra Mascaro AL, Resta F, Manasanch A, Pavone FS, Sanchez-Vives MV, Mattia M, Grün S, Paolucci PS, Denker M. A modular and adaptable analysis pipeline to compare slow cerebral rhythms across heterogeneous datasets. CELL REPORTS METHODS 2024; 4:100681. [PMID: 38183979 PMCID: PMC10831958 DOI: 10.1016/j.crmeth.2023.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Neuroscience is moving toward a more integrative discipline where understanding brain function requires consolidating the accumulated evidence seen across experiments, species, and measurement techniques. A remaining challenge on that path is integrating such heterogeneous data into analysis workflows such that consistent and comparable conclusions can be distilled as an experimental basis for models and theories. Here, we propose a solution in the context of slow-wave activity (<1 Hz), which occurs during unconscious brain states like sleep and general anesthesia and is observed across diverse experimental approaches. We address the issue of integrating and comparing heterogeneous data by conceptualizing a general pipeline design that is adaptable to a variety of inputs and applications. Furthermore, we present the Collaborative Brain Wave Analysis Pipeline (Cobrawap) as a concrete, reusable software implementation to perform broad, detailed, and rigorous comparisons of slow-wave characteristics across multiple, openly available electrocorticography (ECoG) and calcium imaging datasets.
Collapse
Affiliation(s)
- Robin Gutzen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany.
| | - Giulia De Bonis
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Chiara De Luca
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy; Institute of Neuroinformatics, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Elena Pastorelli
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Cristiano Capone
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Florence, Italy; Neuroscience Institute, National Research Council, Pisa, Italy
| | - Francesco Resta
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Florence, Italy; Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Arnau Manasanch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Florence, Italy; Department of Physics and Astronomy, University of Florence, Florence, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maurizio Mattia
- National Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | | | - Michael Denker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
2
|
Capone C, De Luca C, De Bonis G, Gutzen R, Bernava I, Pastorelli E, Simula F, Lupo C, Tonielli L, Resta F, Allegra Mascaro AL, Pavone F, Denker M, Paolucci PS. Simulations approaching data: cortical slow waves in inferred models of the whole hemisphere of mouse. Commun Biol 2023; 6:266. [PMID: 36914748 PMCID: PMC10011502 DOI: 10.1038/s42003-023-04580-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
The development of novel techniques to record wide-field brain activity enables estimation of data-driven models from thousands of recording channels and hence across large regions of cortex. These in turn improve our understanding of the modulation of brain states and the richness of traveling waves dynamics. Here, we infer data-driven models from high-resolution in-vivo recordings of mouse brain obtained from wide-field calcium imaging. We then assimilate experimental and simulated data through the characterization of the spatio-temporal features of cortical waves in experimental recordings. Inference is built in two steps: an inner loop that optimizes a mean-field model by likelihood maximization, and an outer loop that optimizes a periodic neuro-modulation via direct comparison of observables that characterize cortical slow waves. The model reproduces most of the features of the non-stationary and non-linear dynamics present in the high-resolution in-vivo recordings of the mouse brain. The proposed approach offers new methods of characterizing and understanding cortical waves for experimental and computational neuroscientists.
Collapse
Affiliation(s)
| | - Chiara De Luca
- INFN, Sezione di Roma, Rome, Italy
- PhD Program in Behavioural Neuroscience, "Sapienza" University of Rome, Rome, Italy
| | | | - Robin Gutzen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Francesco Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- University of Florence, Physics and Astronomy Department, Sesto Fiorentino, Italy
| | - Michael Denker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | | |
Collapse
|
3
|
Golosio B, De Luca C, Capone C, Pastorelli E, Stegel G, Tiddia G, De Bonis G, Paolucci PS. Thalamo-cortical spiking model of incremental learning combining perception, context and NREM-sleep. PLoS Comput Biol 2021; 17:e1009045. [PMID: 34181642 PMCID: PMC8270441 DOI: 10.1371/journal.pcbi.1009045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
The brain exhibits capabilities of fast incremental learning from few noisy examples, as well as the ability to associate similar memories in autonomously-created categories and to combine contextual hints with sensory perceptions. Together with sleep, these mechanisms are thought to be key components of many high-level cognitive functions. Yet, little is known about the underlying processes and the specific roles of different brain states. In this work, we exploited the combination of context and perception in a thalamo-cortical model based on a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. After calibrating this model to express awake and deep-sleep states with features comparable with biological measures, we demonstrate the model capability of fast incremental learning from few examples, its resilience when proposed with noisy perceptions and contextual signals, and an improvement in visual classification after sleep due to induced synaptic homeostasis and association of similar memories. We created a thalamo-cortical spiking model (ThaCo) with the purpose of demonstrating a link among two phenomena that we believe to be essential for the brain capability of efficient incremental learning from few examples in noisy environments. Grounded in two experimental observations—the first about the effects of deep-sleep on pre- and post-sleep firing rate distributions, the second about the combination of perceptual and contextual information in pyramidal neurons—our model joins these two ingredients. ThaCo alternates phases of incremental learning, classification and deep-sleep. Memories of handwritten digit examples are learned through thalamo-cortical and cortico-cortical plastic synapses. In absence of noise, the combination of contextual information with perception enables fast incremental learning. Deep-sleep becomes crucial when noisy inputs are considered. We observed in ThaCo both homeostatic and associative processes: deep-sleep fights noise in perceptual and internal knowledge and it supports the categorical association of examples belonging to the same digit class, through reinforcement of class-specific cortico-cortical synapses. The distributions of pre-sleep and post-sleep firing rates during classification change in a manner similar to those of experimental observation. These changes promote energetic efficiency during recall of memories, better representation of individual memories and categories and higher classification performances.
Collapse
Affiliation(s)
- Bruno Golosio
- Dipartimento di Fisica, Università di Cagliari, Cagliari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Cagliari, Italy
| | - Chiara De Luca
- Ph.D. Program in Behavioural Neuroscience, “Sapienza” Università di Roma, Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
- * E-mail:
| | - Cristiano Capone
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Elena Pastorelli
- Ph.D. Program in Behavioural Neuroscience, “Sapienza” Università di Roma, Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Giovanni Stegel
- Dipartimento di Chimica e Farmacia, Università di Sassari, Sassari, Italy
| | - Gianmarco Tiddia
- Dipartimento di Fisica, Università di Cagliari, Cagliari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Cagliari, Italy
| | - Giulia De Bonis
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | | |
Collapse
|
4
|
Cecchini G, Scaglione A, Allegra Mascaro AL, Checcucci C, Conti E, Adam I, Fanelli D, Livi R, Pavone FS, Kreuz T. Cortical propagation tracks functional recovery after stroke. PLoS Comput Biol 2021; 17:e1008963. [PMID: 33999967 PMCID: PMC8159272 DOI: 10.1371/journal.pcbi.1008963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/27/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
Stroke is a debilitating condition affecting millions of people worldwide. The development of improved rehabilitation therapies rests on finding biomarkers suitable for tracking functional damage and recovery. To achieve this goal, we perform a spatiotemporal analysis of cortical activity obtained by wide-field calcium images in mice before and after stroke. We compare spontaneous recovery with three different post-stroke rehabilitation paradigms, motor training alone, pharmacological contralesional inactivation and both combined. We identify three novel indicators that are able to track how movement-evoked global activation patterns are impaired by stroke and evolve during rehabilitation: the duration, the smoothness, and the angle of individual propagation events. Results show that, compared to pre-stroke conditions, propagation of cortical activity in the subacute phase right after stroke is slowed down and more irregular. When comparing rehabilitation paradigms, we find that mice treated with both motor training and pharmacological intervention, the only group associated with generalized recovery, manifest new propagation patterns, that are even faster and smoother than before the stroke. In conclusion, our new spatiotemporal propagation indicators could represent promising biomarkers that are able to uncover neural correlates not only of motor deficits caused by stroke but also of functional recovery during rehabilitation. In turn, these insights could pave the way towards more targeted post-stroke therapies. Millions of people worldwide suffer from long-lasting motor deficits caused by stroke. Very recently, the two basic therapeutic approaches, motor training and pharmacological intervention, have been combined in order to achieve a more efficient functional recovery. In this study, we analyze the neurophysiological activity in the brain of mice observed with in vivo calcium imaging before and after the induction of a stroke. We use a newly developed universal approach based on the temporal sequence of local activation in different brain regions to quantify three properties of global propagation patterns: duration, smoothness and angle. These innovative spatiotemporal propagation indicators allow us to track damage and functional recovery following stroke and to quantify the relative success of motor training, pharmacological inactivation, and a combination of both, compared to spontaneous recovery. We show that all three treatments reverse the alterations observed during the subacute phase right after stroke. We also find that combining motor training and pharmacological intervention does not restore pre-stroke features but rather leads to the emergence of new propagation patterns that, surprisingly, are even faster and smoother than the pre-stroke patterns.
Collapse
Affiliation(s)
- Gloria Cecchini
- Department of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- * E-mail:
| | - Alessandro Scaglione
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Curzio Checcucci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Emilia Conti
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Ihusan Adam
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- Department of Information Engineering, University of Florence, Sesto Fiorentino, Italy
| | - Duccio Fanelli
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- INFN, Florence Section, Sesto Fiorentino, Italy
| | - Roberto Livi
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- INFN, Florence Section, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics (INO), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Thomas Kreuz
- Institute for Complex Systems (ISC), National Research Council (CNR), Sesto Fiorentino, Italy
| |
Collapse
|