1
|
Dar AI, Randhawa S, Verma M, Saini TC, Acharya A. Debugging the dynamics of protein corona: Formation, composition, challenges, and applications at the nano-bio interface. Adv Colloid Interface Sci 2025; 342:103535. [PMID: 40319752 DOI: 10.1016/j.cis.2025.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The intricate interplay between nanomaterials and the biological molecules has garnered considerable interest in understanding the dynamics of protein corona formation at the nano-bio interface. This review provides an in-depth exploration of protein-nanoparticle interactions, elucidating their structural dynamics and thermodynamics at the nano-Bio interface and further on emphasizing its formation, composition, challenges, and applications in the biomedical and nanotechnological domains, such as drug delivery, theranostics, and the translational medicine. We delve the nuanced mechanisms governing protein corona formation on nanoparticle surfaces, highlighting the influence of nanoparticle and biological factors, and review the impact of corona formation on the biological identity and functionality of nanoparticles. Notably, emerging applications of artificial intelligence and machine learning have begun to revolutionize this field, enabling accurate prediction of corona composition and related biological outcomes. These tools not only enhance efficiency over traditional experimental methods but also help decode complex protein-nanoparticle interaction patterns, offering new insights into corona-driven cellular responses and disease diagnostics. Additionally, it discusses recent advancements in the field of protein corona, particularly in translational nanomedicine and associated applications entailing current and future strategies which are aimed at mitigating the adverse effects of protein-nanoparticle interactions at the biological interface, for tailoring the protein coronas by engineering of the nanomaterials. This comprehensive assessment from chemical, technological, and biological aspects serves as a guiding beacon for the development of future nanomedicine, enabling the more effective emulation of the biological milieu and the design of protein-NP systems for enhanced biomedical applications.
Collapse
Affiliation(s)
- Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Trilok Chand Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Dal-Cheri BKA, de Souza W, Lima LMTR, Yoshihara NMA, Sant'Anna C, Boldrini LC, Leite PEC. In vitroinflammatory and cytotoxic responses of human alveolar cells to amorphous silica nanoparticles exposure. NANOTECHNOLOGY 2025; 36:175101. [PMID: 40043323 DOI: 10.1088/1361-6528/adbcb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Silicon dioxide nanoparticles (SiO2NPs) are widely used to manufacture products for human consumption. However, their large-scale use in many fields poses risks to industrial workers. In this study, we investigated the cytotoxic and inflammatory potential of SiO2NPs in the human cell line A549, representing the human alveolar epithelium. The NPs were characterized using energy-dispersive x-ray spectroscopy coupled with scanning electron microscopy, x-ray diffraction, transmission electron microscopy, dispersion, and dynamic light scattering. The effects on A549 cells were monitored by cell adhesion and proliferation using electrical impedance, as well as cell viability, apoptosis, necrosis, and secretion of multiple inflammatory mediators. SiO2NPs did not alter the adhesion and proliferation of A549 cells but led to cell death by apoptosis at the highest concentrations tested. SiO2NP impacted the secretion of pro-inflammatory (tumor necrosis factor-α, interleukin (IL)-8, monocyte chemoattractant protein-1, eotaxin, regulated upon activation, normal T cell expressed and secreted, vascular growth factor, granulocyte-macrophage colony-stimulating factor, and granulocyte-colony stimulating factor) and anti-inflammatory (IL-1ra and IL-10) mediators. These results indicate that, even with little impact on cell viability, SiO2NPs can represent a silent danger, owing to their influence on inflammatory mediator secretion and unbalanced local homeostasis.
Collapse
Affiliation(s)
- Beatriz K A Dal-Cheri
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Wanderson de Souza
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Luis Mauricio T R Lima
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Natalia M A Yoshihara
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Celso Sant'Anna
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Leonardo C Boldrini
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Paulo Emilio C Leite
- Postgraduate Program in Science and Biotechnology, Fluminense Federal University (UFF), Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Han Q, Candiloro ZPJ, Cai X, El Mohamad M, Dyett BP, Rosado CJ, Zhai J, Bryant G, Drummond CJ, Greaves TL. Silica Nanoparticle-Protein Aggregation and Protein Corona Formation Investigated with Scattering Techniques. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8574-8587. [PMID: 39864068 DOI: 10.1021/acsami.4c19591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Protein-nanoparticle interactions and the resulting corona formation play crucial roles in the behavior and functionality of nanoparticles in biological environments. In this study, we present a comprehensive analysis of protein corona formation with superfolder green fluorescent protein (sfGFP) and bovine serum albumin in silica nanoparticle dispersions using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). For the first time, we subtracted the scattering of individual proteins in solution and individual nanoparticles from the protein-nanoparticle complexes. This approach effectively isolated the contributions of specific components within the corona. Our form factor analysis revealed consistent core-shell sphere thicknesses but varied attractive interaction strengths of the nanoparticle complexes, influenced by the protein corona and the surface properties of silica and aminated silica nanoparticles. Interestingly, fractal analysis of nanoparticles showed a transition from surface to mass fractals for sfGFP samples at high protein:nanoparticle molar ratios of over 264,000:1. DLS analysis highlighted aggregation behaviors, including the increasing size of protein-nanoparticle complexes and significant aggregation of both free proteins and complexes at ∼264,000 molar ratio. Large polydispersity and heterogeneous protein aggregation were observed at these high molar ratios. Both SAXS and DLS revealed transitions and changes in protein-nanoparticle interactions at molar ratios of 4000 to 44,000, consistent with corona formation, while pronounced aggregation was observed at a molar ratio of ∼264,000. These findings advance our understanding of the structural complexities in protein-nanoparticle association and suggest further avenues for refining characterization techniques in protein corona research.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Zachary P J Candiloro
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Xudong Cai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Mohamad El Mohamad
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Brendan P Dyett
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Carlos J Rosado
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3004, Australia
- Department of Biochemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Donato A, Nadkarni S, Tiwari L, Poran S, Sunasee R, Ckless K. Post-Sterilization Physicochemical Characterization and Biological Activity of Cellulose Nanocrystals Coated with PDDA. Molecules 2024; 29:5600. [PMID: 39683756 DOI: 10.3390/molecules29235600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The rapid expansion of medical nanotechnology has significantly broadened the potential applications of cellulose nanocrystals (CNCs). While CNCs were initially developed for drug delivery, they are now being investigated for a range of advanced biomedical applications. As these applications evolve, it becomes crucial to understand the physicochemical behavior of CNCs in biologically relevant media to optimize their design and ensure biocompatibility. Functionalized CNCs can adsorb biomolecules, forming a "protein corona" that can impact their physicochemical properties, including alterations in particle size, zeta potential, and overall functionality. In this study, CNCs were coated with low (8500 Da)- and high (400,000-500,000 Da)-molecular-weight cationic polymer (poly(diallyldimethylammonium chloride-(PDDA) via non-covalent grafting, and their physicochemical characteristics, as well as their biological effects, were assessed in physiologically relevant media after sterilization. Our findings show that autoclaving significantly alters the physicochemical properties of CNC-PDDA, particularly when coated with low-molecular-weight (LMW) polymer. Furthermore, we observed that CNC-PDDA of a high molecular weight (HMW) has a greater impact on cell viability and blood biocompatibility than its LMW counterpart. Moreover, cellular immune responses to both CNC-PDDA LMW and HMW vary in the presence or absence of serum, implying that protein adsorption influences cell-nanomaterial recognition and their biological activity. This study provides valuable insights for optimizing CNC-based nanomaterials for therapeutic applications.
Collapse
Affiliation(s)
- Ashley Donato
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Siddharth Nadkarni
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Lakshay Tiwari
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Serafina Poran
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Rajesh Sunasee
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Karina Ckless
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| |
Collapse
|
5
|
Soliman MG, Martinez-Serra A, Antonello G, Dobricic M, Wilkins T, Serchi T, Fenoglio I, Monopoli MP. Understanding the role of biomolecular coronas in human exposure to nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2024; 11:4421-4448. [PMID: 39263008 PMCID: PMC11382216 DOI: 10.1039/d4en00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better in vivo outcomes and address the complexities of NM interactions with biological systems.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
- Physics Department, Faculty of Science, Al-Azhar University Cairo Egypt
| | - Alberto Martinez-Serra
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Giulia Antonello
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marko Dobricic
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Terence Wilkins
- School of Chemical & Process Innovation, University of Leeds Engineering Building Leeds LS2 9JT UK
| | - Tommaso Serchi
- Environmental Research and Innovation Department (Luxembourg Institute of Science and Technology) 41, Rue du Brill L4422 Belvaux GD Luxembourg
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| |
Collapse
|
6
|
Schvartz M, Saudrais F, Boulard Y, Renault JP, Henry C, Chédin S, Pin S, Aude JC. Dual Fractions Proteomic Analysis of Silica Nanoparticle Interactions with Protein Extracts. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4909. [PMID: 39410479 PMCID: PMC11478063 DOI: 10.3390/ma17194909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
Dual-fraction proteomics reveals a novel class of proteins impacted by nanoparticle exposure. BACKGROUND Nanoparticles (NPs) interact with cellular proteomes, altering biological processes. Understanding these interactions requires comprehensive analyses beyond solely characterizing the NP corona. METHODS We utilized a dual-fraction mass spectrometry (MS) approach to analyze both NP-bound and unbound proteins in Saccharomyces cerevisiae sp. protein extracts exposed to silica nanoparticles (SiNPs). We identified unique protein signatures for each fraction and quantified protein abundance changes using spectral counts. RESULTS Strong correlations were observed between protein profiles in each fraction and non-exposed controls, while minimal correlation existed between the fractions themselves. Linear models demonstrated equal contributions from both fractions in predicting control sample abundance. Combining both fractions revealed a larger proteomic response to SiNP exposure compared to single-fraction analysis. We identified 302/56 proteins bound/unbound to SiNPs and an additional 196 "impacted" proteins demonstrably affected by SiNPs. CONCLUSION This dual-fraction MS approach provides a more comprehensive understanding of nanoparticle interactions with cellular proteomes. It reveals a novel class of "impacted" proteins, potentially undergoing conformational changes or aggregation due to NP exposure. Further research is needed to elucidate their biological functions and the mechanisms underlying their impact.
Collapse
Affiliation(s)
- Marion Schvartz
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Florent Saudrais
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Yves Boulard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | | - Céline Henry
- PAPPSO, Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Stéphane Chédin
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Serge Pin
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Jean-Christophe Aude
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Pellico J, Vass L, Carrascal-Miniño A, Man F, Kim J, Sunassee K, Parker D, Blower PJ, Marsden PK, T M de Rosales R. In vivo real-time positron emission particle tracking (PEPT) and single particle PET. NATURE NANOTECHNOLOGY 2024; 19:668-676. [PMID: 38242986 PMCID: PMC11106003 DOI: 10.1038/s41565-023-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Positron emission particle tracking (PEPT) enables 3D localization and tracking of single positron-emitting radiolabelled particles with high spatiotemporal resolution. The translation of PEPT to the biomedical imaging field has been limited due to the lack of methods to radiolabel biocompatible particles with sufficient specific activity and protocols to isolate a single particle in the sub-micrometre size range, below the threshold for capillary embolization. Here we report two key developments: the synthesis and 68Ga-radiolabelling of homogeneous silica particles of 950 nm diameter with unprecedented specific activities (2.1 ± 1.4 kBq per particle), and the isolation and manipulation of a single particle. We have combined these developments to perform in vivo PEPT and dynamic positron emission tomography (PET) imaging of a single radiolabelled sub-micrometre size particle using a pre-clinical positron emission tomography/computed tomography scanner. This work opens possibilities for quantitative assessment of haemodynamics in vivo in real time, at the whole-body level using minimal amounts of injected radioactive dose and material.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Laurence Vass
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Amaia Carrascal-Miniño
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Francis Man
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jana Kim
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Kavitha Sunassee
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - David Parker
- School of Physics and Astronomy, University of Birmingham, Birmingham, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Paul K Marsden
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Rafael T M de Rosales
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
8
|
Soliman MG, Trinh DN, Ravagli C, Meleady P, Henry M, Movia D, Doumett S, Cappiello L, Prina-Mello A, Baldi G, Monopoli MP. Development of a fast and simple method for the isolation of superparamagnetic iron oxide nanoparticles protein corona from protein-rich matrices. J Colloid Interface Sci 2024; 659:503-519. [PMID: 38184993 DOI: 10.1016/j.jcis.2023.11.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
The adsorption of proteins onto the surface of nanoparticle (NP) leads to the formation of the so-called "protein corona" as consisting both loosely and tightly bound proteins. It is well established that the biological identity of NPs that may be acquired after exposure to a biological matrix is mostly provided by the components of the hard corona as the pristine surface is generally less accessible for binding. For that reason, the isolation and the characterisation of the NP-corona complexes and identification of the associated biomolecules can help in understanding its biological behaviour. Established methods for the isolation of the NP-HC complexes are time-demanding and can lead to different results based on the isolation method applied. Herein, we have developed a fast and simple method using ferromagnetic beads isolated from commercial MACS column and used for the isolation of superparamagnetic NP following exposure to different types of biological milieu. We first demonstrated the ability to easily isolate superparamagnetic iron oxide NPs (IONPs) from different concentrations of human blood plasma, and also tested the method on the corona isolation using more complex biological matrices, such as culture medium containing pulmonary mucus where the ordinary corona methods cannot be applied. Our developed method showed less than 20% difference in plasma corona composition when compared with centrifugation. It also showed effective isolation of NP-HC complexes from mucus-containing culture media upon comparing with centrifugation and MACS columns, which failed to wash out the unbound proteins. Our study was supported with a full characterisation profile including dynamic light scattering, nanoparticle tracking analysis, analytical disk centrifuge, and zeta potentials. The biomolecules/ proteins composing the HC were separated by vertical gel electrophoresis and subsequently analysed by liquid chromatography-tandem mass spectrometry. In addition to our achievements in comparing different isolation methods to separate IONPs with corona from human plasma, this is the first study that provides a complete characterisation profile of particle protein corona after exposure in vitro to pulmonary mucus-containing culture media.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland; Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Duong N Trinh
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland
| | - Costanza Ravagli
- Research Center Colorobbia, Cericol, Colorobbia Consulting, Via Pietramarina 123, 50053, Vinci, Florence, Italy
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Dania Movia
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin 8, Ireland; Applied Radiation Therapy Trinity (ARTT), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin 8, Ireland
| | - Saer Doumett
- Research Center Colorobbia, Cericol, Colorobbia Consulting, Via Pietramarina 123, 50053, Vinci, Florence, Italy
| | - Laura Cappiello
- Research Center Colorobbia, Cericol, Colorobbia Consulting, Via Pietramarina 123, 50053, Vinci, Florence, Italy
| | - Adriele Prina-Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin 8, Ireland; Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Giovanni Baldi
- Research Center Colorobbia, Cericol, Colorobbia Consulting, Via Pietramarina 123, 50053, Vinci, Florence, Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland.
| |
Collapse
|
9
|
Ao LH, Wei YG, Tian HR, Zhao H, Li J, Ban JQ. Advances in the study of silica nanoparticles in lung diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169352. [PMID: 38110102 DOI: 10.1016/j.scitotenv.2023.169352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Silicon dioxide nanoparticles (SiNPs) are one of the major forms of silicon dioxide and are composed of the most-abundant compounds on earth. Based on their excellent properties, SiNPs are widely used in food production, synthetic processes, medical diagnostics, drug delivery, and other fields. The mass production and wide application of SiNPs increases the risk of human exposure to SiNPs. In the workplace and environment, SiNPs mainly enter the human body through the respiratory tract and reach the lungs; therefore, the lungs are the most important and most toxicologically affected target organ of SiNPs. An increasing number of studies have shown that SiNP exposure can cause severe lung toxicity. However, studies on the toxicity of SiNPs in ex vivo and in vivo settings are still in the exploratory phase. The molecular mechanisms underlying the lung toxicity of SiNPs are varied and not yet fully understood. As a result, this review summarizes the possible mechanisms of SiNP-induced lung toxicity, such as oxidative stress, endoplasmic reticulum stress, mitochondrial damage, and cell death. Moreover, this study provides a summary of the progression of diseases caused by SiNPs, thereby establishing a theoretical basis for future studies on the mechanisms of SiNP-induced lung toxicity.
Collapse
Affiliation(s)
- Li-Hong Ao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun-Geng Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-Ru Tian
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hua Zhao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jun Li
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jia-Qi Ban
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
10
|
Janjua TI, Cao Y, Kleitz F, Linden M, Yu C, Popat A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv Drug Deliv Rev 2023; 203:115115. [PMID: 37844843 DOI: 10.1016/j.addr.2023.115115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Silica nanoparticles (SNP) have gained tremendous attention in the recent decades. They have been used in many different biomedical fields including diagnosis, biosensing and drug delivery. Medical uses of SNP for anti-cancer, anti-microbial and theranostic applications are especially prominent due to their exceptional performance to deliver many different small molecules and recently biologics (mRNA, siRNA, antigens, antibodies, proteins, and peptides) at targeted sites. The physical and chemical properties of SNP such as large specific surface area, tuneable particle size and porosity, excellent biodegradability and biocompatibility make them an ideal drug delivery and diagnostic platform. Based on the available data and the pre-clinical performance of SNP, recent interest has driven these innovative materials towards clinical application with many of the formulations already in Phase I and Phase II trials. Herein, the progress of SNP in biomedical field is reviewed, and their safety aspects are analysed. Importantly, we critically evaluate the key structural characteristics of SNP to overcome different biological barriers including the blood-brain barrier (BBB), skin, tumour barrier and mucosal barrier. Future directions, potential pathways, and target areas towards rapid clinical translation of SNP are also recommended.
Collapse
Affiliation(s)
- Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mika Linden
- Institute of Inorganic Chemistry II, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
11
|
Dolci M, Wang Y, Nooteboom SW, Soto Rodriguez PED, Sánchez S, Albertazzi L, Zijlstra P. Real-Time Optical Tracking of Protein Corona Formation on Single Nanoparticles in Serum. ACS NANO 2023; 17:20167-20178. [PMID: 37802067 PMCID: PMC10604089 DOI: 10.1021/acsnano.3c05872] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
The formation of a protein corona, where proteins spontaneously adhere to the surface of nanomaterials in biological environments, leads to changes in their physicochemical properties and subsequently affects their intended biomedical functionalities. Most current methods to study protein corona formation are ensemble-averaging and either require fluorescent labeling, washing steps, or are only applicable to specific types of particles. Here we introduce real-time all-optical nanoparticle analysis by scattering microscopy (RONAS) to track the formation of protein corona in full serum, at the single-particle level, without any labeling. RONAS uses optical scattering microscopy and enables real-time and in situ tracking of protein adsorption on metallic and dielectric nanoparticles with different geometries directly in blood serum. We analyzed the adsorbed protein mass, the affinity, and the kinetics of the protein adsorption at the single particle level. While there is a high degree of heterogeneity from particle to particle, the predominant factor in protein adsorption is surface chemistry rather than the underlying nanoparticle material or size. RONAS offers an in-depth understanding of the mechanisms related to protein coronas and, thus, enables the development of strategies to engineer efficient bionanomaterials.
Collapse
Affiliation(s)
- Mathias Dolci
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sjoerd W. Nooteboom
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | | | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute for
Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys,
23, 08010 Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
12
|
Tobias T, Doran C, Nguyen H, Kumar S, Corley W, Sunasee R, Ckless K. In vitro immune and redox response induced by cationic cellulose-based nanomaterials. Toxicol In Vitro 2023; 91:105616. [PMID: 37279824 DOI: 10.1016/j.tiv.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Cellulose nanocrystals (CNCs) display remarkable strength and physicochemical properties with significant potential applications. To better understand the potential adjuvanticity of a nanomaterial, it is important to investigate the extent of the immunological response, the mechanisms by which they elicit this response, and how this response is associated with their physicochemical characteristics. In this study, we investigated the potential mechanisms of immunomodulation and redox activity of two chemically related cationic CNC derivatives (CNC-METAC-1B and CNC-METAC-2B), using human peripheral blood mononuclear cells and mouse macrophage cells (J774A.1). Our data demonstrated that the biological effects caused by these nanomaterials occurred mainly with short term exposure. We observed opposite immunomodulatory activity between the tested nanomaterials. CNC-METAC-2B, induced IL-1β secretion at 2 h while CNC-METAC-1B decreased it at 24 h of treatment. In addition, both nanomaterials caused more noticeable increases in mitochondrial reactive oxygen species (ROS) at early time. The differences in apparent sizes of the two cationic nanomaterials could explain, at least in part, the discrepancies in biological effects, despite their closely related surface charges. This work provides initial insights about the complexity of the in vitro mechanism of action of these nanomaterials as well as foundation knowledge for the development of cationic CNCs as potential immunomodulators.
Collapse
Affiliation(s)
- Tanner Tobias
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Cameron Doran
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Hoang Nguyen
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Shreshth Kumar
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Willie Corley
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Rajesh Sunasee
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Karina Ckless
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA.
| |
Collapse
|
13
|
Schvartz M, Saudrais F, Devineau S, Chédin S, Jamme F, Leroy J, Rakotozandriny K, Taché O, Brotons G, Pin S, Boulard Y, Renault JP. Role of the Protein Corona in the Colloidal Behavior of Microplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4291-4303. [PMID: 36930733 DOI: 10.1021/acs.langmuir.2c03237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microparticles of polyethylene and polypropylene are largely found in aquatic environments because they are the most produced and persistent plastic materials. Once in biological media, they are covered by a layer of molecules, the so-called corona, mostly composed of proteins. A yeast protein extract from Saccharomyces cerevisiae was used as a protein system to observe interactions in complex biological media. Proteins, acting as surfactants and providing hydrophilic surfaces, allow the dispersion of highly hydrophobic particles in water and stabilize them. After 24 h, the microplastic quantity was up to 1 × 1011 particles per liter, whereas without protein, no particles remained in solution. Label-free imaging of the protein corona by synchrotron radiation deep UV fluorescence microscopy (SR-DUV) was performed. In situ images of the protein corona were obtained, and the adsorbed protein quantity, the coverage rate, and the corona heterogeneity were determined. The stability kinetics of the microplastic suspensions were measured by light transmission using a Turbiscan analyzer. Together, the microscopic and kinetics results demonstrate that the protein corona can very efficiently stabilize microplastics in solution provided that the protein corona quality is sufficient. Microplastic stability depends on different parameters such as the particle's intrinsic properties (size, density, hydrophobicity) and the protein corona formation that changes the particle wettability, electrostatic charge, and steric hindrance. By controlling these parameters with proteins, it becomes possible to keep microplastics in and out of solution, paving the way for applications in the field of microplastic pollution control and remediation.
Collapse
Affiliation(s)
- Marion Schvartz
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Florent Saudrais
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
| | - Stéphanie Devineau
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Stéphane Chédin
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, Saint-Aubin, 91190 Gif sur Yvette Cedex, France
| | - Jocelyne Leroy
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
| | - Karol Rakotozandriny
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
| | - Guillaume Brotons
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
| | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
14
|
Schvartz M, Saudrais F, Devineau S, Aude JC, Chédin S, Henry C, Millán-Oropeza A, Perrault T, Pieri L, Pin S, Boulard Y, Brotons G, Renault JP. A proteome scale study reveals how plastic surfaces and agitation promote protein aggregation. Sci Rep 2023; 13:1227. [PMID: 36681766 PMCID: PMC9867740 DOI: 10.1038/s41598-023-28412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Protein aggregation in biotherapeutics can reduce their activity and effectiveness. It may also promote immune reactions responsible for severe adverse effects. The impact of plastic materials on protein destabilization is not totally understood. Here, we propose to deconvolve the effects of material surface, air/liquid interface, and agitation to decipher their respective role in protein destabilization and aggregation. We analyzed the effect of polypropylene, TEFLON, glass and LOBIND surfaces on the stability of purified proteins (bovine serum albumin, hemoglobin and α-synuclein) and on a cell extract composed of 6000 soluble proteins during agitation (P = 0.1-1.2 W/kg). Proteomic analysis revealed that chaperonins, intrinsically disordered proteins and ribosomes were more sensitive to the combined effects of material surfaces and agitation while small metabolic oligomers could be protected in the same conditions. Protein loss observations coupled to Raman microscopy, dynamic light scattering and proteomic allowed us to propose a mechanistic model of protein destabilization by plastics. Our results suggest that protein loss is not primarily due to the nucleation of small aggregates in solution, but to the destabilization of proteins exposed to material surfaces and their subsequent aggregation at the sheared air/liquid interface, an effect that cannot be prevented by using LOBIND tubes. A guidance can be established on how to minimize these adverse effects. Remove one of the components of this combined stress - material, air (even partially), or agitation - and proteins will be preserved.
Collapse
Affiliation(s)
- Marion Schvartz
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-Sur-Yvette, France.
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085, Le Mans Cedex, France.
| | - Florent Saudrais
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-Sur-Yvette, France
| | - Stéphanie Devineau
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013, Paris, France
| | - Jean-Christophe Aude
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Stéphane Chédin
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-Sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Céline Henry
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, PAPPSO, 78350, Jouy-en-Josas, France
| | - Aarón Millán-Oropeza
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, PAPPSO, 78350, Jouy-en-Josas, France
| | - Thomas Perrault
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085, Le Mans Cedex, France
| | - Laura Pieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-Sur-Yvette, France
| | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Guillaume Brotons
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085, Le Mans Cedex, France
| | | |
Collapse
|
15
|
Panico S, Capolla S, Bozzer S, Toffoli G, Dal Bo M, Macor P. Biological Features of Nanoparticles: Protein Corona Formation and Interaction with the Immune System. Pharmaceutics 2022; 14:pharmaceutics14122605. [PMID: 36559099 PMCID: PMC9781747 DOI: 10.3390/pharmaceutics14122605] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoparticles (NPs) are versatile candidates for nanomedical applications due to their unique physicochemical properties. However, their clinical applicability is hindered by their undesirable recognition by the immune system and the consequent immunotoxicity, as well as their rapid clearance in vivo. After injection, NPs are usually covered with layers of proteins, called protein coronas (PCs), which alter their identity, biodistribution, half-life, and efficacy. Therefore, the characterization of the PC is for in predicting the fate of NPs in vivo. The aim of this review was to summarize the state of the art regarding the intrinsic factors closely related to the NP structure, and extrinsic factors that govern PC formation in vitro. In addition, well-known opsonins, including complement, immunoglobulins, fibrinogen, and dysopsonins, such as histidine-rich glycoprotein, apolipoproteins, and albumin, are described in relation to their role in NP detection by immune cells. Particular emphasis is placed on their role in mediating the interaction of NPs with innate and adaptive immune cells. Finally, strategies to reduce PC formation are discussed in detail.
Collapse
Affiliation(s)
- Sonia Panico
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Sara Bozzer
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0405588683
| |
Collapse
|
16
|
Lee A, Sousa de Almeida M, Milinkovic D, Septiadi D, Taladriz-Blanco P, Loussert-Fonta C, Balog S, Bazzoni A, Rothen-Rutishauser B, Petri-Fink A. Substrate stiffness reduces particle uptake by epithelial cells and macrophages in a size-dependent manner through mechanoregulation. NANOSCALE 2022; 14:15141-15155. [PMID: 36205559 PMCID: PMC9585528 DOI: 10.1039/d2nr03792k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 05/23/2023]
Abstract
Cells continuously exert forces on their environment and respond to changes in mechanical forces by altering their behaviour. Many pathologies such as cancer and fibrosis are hallmarked by dysregulation in the extracellular matrix, driving aberrant behaviour through mechanotransduction pathways. We demonstrate that substrate stiffness can be used to regulate cellular endocytosis of particles in a size-dependent fashion. Culture of A549 epithelial cells and J774A.1 macrophages on polystyrene/glass (stiff) and polydimethylsiloxane (soft) substrates indicated that particle uptake is increased up to six times for A549 and two times for macrophages when cells are grown in softer environments. Furthermore, we altered surface characteristics through the attachment of submicron-sized particles as a method to locally engineer substrate stiffness and topography to investigate the biomechanical changes which occurred within adherent epithelial cells, i.e. characterization of A549 cell spreading and focal adhesion maturation. Consequently, decreasing substrate rigidity and particle-based topography led to a reduction of focal adhesion size. Moreover, expression levels of Yes-associated protein were found to correlate with the degree of particle endocytosis. A thorough appreciation of the mechanical cues may lead to improved solutions to optimize nanomedicine approaches for treatment of cancer and other diseases with abnormal mechanosignalling.
Collapse
Affiliation(s)
- Aaron Lee
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Daela Milinkovic
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
- International Iberian Nanotechnology Laboratory (INL), Water Quality Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Céline Loussert-Fonta
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Amelie Bazzoni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
17
|
The Effect of Trehalose Coating for Magnetite Nanoparticles on Stability of Egg White Lysozyme. Int J Mol Sci 2022; 23:ijms23179657. [PMID: 36077055 PMCID: PMC9456156 DOI: 10.3390/ijms23179657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, the protein stability of hen egg-white lysozymes (HEWL) by Fe3O4 and Fe3O4-coated trehalose (Fe3O4@Tre) magnetic nanoparticles (NPs) is investigated. For this purpose, the co-precipitation method was used to synthesize magnetic NPs. The synthesized NPs were characterized by XRD, FT-IR spectroscopy, FE-SEM, and VSM analysis. In addition, the stability of HEWLs exposed to different NP concentrations in the range of 0.001–0.1 mg mL−1 was investigated by circular dichroism (CD) spectroscopy, fluorescence, and UV-Vis analysis. Based on the results, in the NP concentration range of 0.001–0.04 mg mL−1 the protein structure is more stable, and this range was identified as the range of kosmotropic concentration. The helicity was measured at two concentration points of 0.02 and 0.1 mg mL−1. According to the results, the α-helix at 0.02 mg mL−1 of Fe3O4 and Fe3O4@Tre was increased from 35.5% for native protein to 37.7% and 38.7%, respectively. The helicity decreased to 36.1% and 37.4%, respectively, with increasing the concentration of Fe3O4 and Fe3O4@Tre to 0.1 mg mL−1. The formation of hydrated water shells around protein molecules occurred by using Fe3O4@Tre NPs. Hence, it can be concluded that the trehalose as a functional group along with magnetic NPs can improve the stability of proteins in biological environments.
Collapse
|
18
|
Khan S, Sharifi M, Gleghorn JP, Babadaei MMN, Bloukh SH, Edis Z, Amin M, Bai Q, Ten Hagen TLM, Falahati M, Cho WC. Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy. J Control Release 2022; 348:127-147. [PMID: 35660636 DOI: 10.1016/j.jconrel.2022.05.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have been used in numerous applications as anticancer, antibacterial and antioxidant agents. Artificial engineering of protein interactions with NPs in biological systems is crucial to develop potential NPs for drug delivery and cancer nanotherapy. The protein corona (PC) on the NP surface, displays an interface between biomacromolecules and NPs, governing their pharmacokinetics and pharmacodynamics. Upon interaction of proteins with the NPs, their surface features are modified and they can easily be removed from the circulation by the mononuclear phagocytic system (MPS). PC properties heavily depend on the biological microenvironment and NP physicochemical parameters. Based on this context, we have surveyed different approaches that have been used for artificial engineering of the PC composition on NP surfaces. We discussed the effects of NP size, shape, surface modifications (PEGylation, self-peptide, other polymers), and protein pre-coating on the PC properties. Additionally, other factors including protein source and structure, intravenous injection and the subsequent shear flow, plasma protein gradients, temperature and local heat transfer, and washing media were considered in the context of their effects on the PC properties and overall target cellular effects. Moreover, the effects of NP-PC complexes on cancer cells based on cellular interactions, organization of intracellular PC (IPC), targeted drug delivery (TDD) and regulation of burst drug release profile of nanoplatforms, enhanced biocompatibility, and clinical applications were discussed followed by challenges and future perspective of the field. In conclusion, this paper can provide useful information to manipulate PC properties on the NP surface, thus trying to provide a literature survey to shorten their shipping from preclinical to clinical trials and to lay the basis for a personalized PC.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, USA; Department of Biological Sciences, University of Delaware, Newark, USA
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Mohammadreza Amin
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| |
Collapse
|
19
|
Carbohydrate anchored lipid nanoparticles. Int J Pharm 2022; 618:121681. [PMID: 35307469 DOI: 10.1016/j.ijpharm.2022.121681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/18/2022]
Abstract
Nanotechnology has been a dynamic field for formulation scientists with multidisciplinary research being conducted worldwide. Advancements in development of functional nanosystems have led to evolution of breakthrough technologies. Lipidic nanosystems, in particular, are highly preferred owing to their non-immunogenic safety profiles along with a range of versatile intrinsic properties. Surface modification of lipid nanoparticles by anchoring carbohydrates to these systems is one such attractive drug delivery technology. Carbohydrates confer interesting properties to the nanosystems such as stealth, biostability, bioavailability, reduced toxicity due to decreased immunogenic response, targeting potential as well as ease of commercial availability. The carbohydrate anchored systems can be developed using methods such as adsorption, incorporation (nanoprecipitation or solvent displacement method), crosslinking and grafting. Current review provides a detailed overview of potential lipid based nanoparticulate systems with an emphasis on liposomes, solid lipid nanoparticles, nanostructures lipid carriers and micelles. Review further explores basics of surface modification, methods applied therein, advantages of carbohydrates as surface modifiers, their versatile applications, techniques for characterization of carbohydrate anchored systems and vital regulatory aspects concerned with these specialized systems.
Collapse
|
20
|
Bilardo R, Traldi F, Vdovchenko A, Resmini M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1788. [PMID: 35257495 PMCID: PMC9539658 DOI: 10.1002/wnan.1788] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
Nanomaterials offer promising solutions as drug delivery systems and imaging agents in response to the demand for better therapeutics and diagnostics. However, the limited understanding of the interaction between nanoparticles and biological entities is currently hampering the development of new systems and their applications in clinical settings. Proteins and lipids in biological fluids are known to complex with nanoparticles to form a "biomolecular corona". This has been shown to affect particles' morphology and behavior in biological systems and their interactions with cells. Hence, understanding how nanomaterials' physicochemical properties affect the formation and composition of this biocorona is a crucial step. This work evaluates existing literature on how morphology (size and shape), and surface chemistry (charge and hydrophobicity) of nanoparticles influence the formation of protein corona. The latest evidence suggest that although surface charge promotes the interaction with proteins and lipids, surface chemistry plays a leading role in determining the affinity of the nanoparticle for biomolecules and, ultimately, the composition of the corona. More recently the study of additional nanoparticles' properties like shape and surface chirality have demonstrated a significant effect on protein corona architecture, providing new tools to tailor biomolecular corona formation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Roberta Bilardo
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Federico Traldi
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Alena Vdovchenko
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Marina Resmini
- Department of Chemistry, Queen Mary University of London, London, UK
| |
Collapse
|
21
|
Mills-Goodlet R, Johnson L, Hoppe IJ, Regl C, Geppert M, Schenck M, Huber S, Hauser M, Ferreira F, Hüsing N, Huber CG, Brandstetter H, Duschl A, Himly M. The nanotopography of SiO 2 particles impacts the selectivity and 3D fold of bound allergens. NANOSCALE 2021; 13:20508-20520. [PMID: 34854455 PMCID: PMC8675021 DOI: 10.1039/d1nr05958k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
A detailed description of the changes that occur during the formation of protein corona represents a fundamental question in nanoscience, given that it not only impacts the behaviour of nanoparticles but also affects the bound proteins. Relevant questions include whether proteins selectively bind particles, whether a specific orientation is preferred for binding, and whether particle binding leads to a modulation of their 3D fold. For allergens, it is important to answer these questions given that all these effects can modify the allergenic response of atopic individuals. These potential impacts on the bound allergen are closely related to the specific properties of the involved nanoparticles. One important property influencing the formation of protein corona is the nanotopography of the particles. Herein, we studied the effect of nanoparticle porosity on allergen binding using mesoporous and non-porous SiO2 NPs. We investigated (i) the selectivity of allergen binding from a mixture such as crude pollen extract, (ii) whether allergen binding results in a preferred orientation, (iii) the influence of binding on the conformation of the allergen, and (iv) how the binding affects the allergenic response. Nanotopography was found to play a major role in the formation of protein corona, impacting the physicochemical and biological properties of the NP-bound allergen. The porosity of the surface of the SiO2 nanoparticles resulted in a higher binding capacity with pronounced selectivity for (preferentially) binding the major birch pollen allergen Bet v 1. Furthermore, the binding of Bet v 1 to the mesoporous rather than the non-porous SiO2 nanoparticles influenced the 3D fold of the protein, resulting in at least partial unfolding. Consequently, this conformational change influenced the allergenic response, as observed by mediator release assays employing the sera of patients and immune effector cells. For an in-depth understanding of the bio-nano interactions, the properties of the particles need to be considered not only regarding the identity and morphology of the material, but also their nanotopography, given that porosity may greatly influence the structure, and hence the biological behaviour of the bound proteins. Thus, thorough structural investigations upon the formation of protein corona are important when considering immunological outcomes, as particle binding can influence the allergenic response elicited by the bound allergen.
Collapse
Affiliation(s)
| | - Litty Johnson
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Isabel J Hoppe
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, Paris Lodron University of Salzburg, Austria
| | - Christof Regl
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Mark Geppert
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Milena Schenck
- Dept. Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Austria
| | - Sara Huber
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Michael Hauser
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Fátima Ferreira
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Nicola Hüsing
- Dept. Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Austria
| | - Christian G Huber
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, Paris Lodron University of Salzburg, Austria
| | - Hans Brandstetter
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, Paris Lodron University of Salzburg, Austria
| | - Albert Duschl
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Martin Himly
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| |
Collapse
|
22
|
Prospero AG, Buranello LP, Fernandes CA, Dos Santos LD, Soares G, C Rossini B, Zufelato N, Bakuzis AF, de Mattos Fontes MR, de Arruda Miranda JR. Corona protein impacts on alternating current biosusceptometry signal and circulation times of differently coated MnFe 2O 4 nanoparticles. Nanomedicine (Lond) 2021; 16:2189-2206. [PMID: 34533056 DOI: 10.2217/nnm-2021-0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: We evaluated the impacts of corona protein (CP) formation on the alternating current biosusceptometry (ACB) signal intensity and in vivo circulation times of three differently coated magnetic nanoparticles (MNP): bare, citrate-coated and bovine serum albumin-coated MNPs. Methods: We employed the ACB system, gel electrophoresis and mass spectrometry analysis. Results: Higher CP formation led to a greater reduction in the in vitro ACB signal intensity and circulation time. We found fewer proteins forming the CP for the bovine serum albumin-coated MNPs, which presented the highest circulation time in vivo among the MNPs studied. Conclusion: These data showed better biocompatibility, stability and magnetic signal uniformity in biological media for bovine serum albumin-coated MNPs than for citrate-coated MNPs and bare MNPs.
Collapse
Affiliation(s)
- Andre Gonçalves Prospero
- Department of Biophysics and Pharmacology, São Paulo State University, Botucatu, São Paulo, 18618-689, Brazil
| | - Lais Pereira Buranello
- Department of Biophysics and Pharmacology, São Paulo State University, Botucatu, São Paulo, 18618-689, Brazil
| | - Carlos Ah Fernandes
- Department of Biophysics and Pharmacology, São Paulo State University, Botucatu, São Paulo, 18618-689, Brazil.,Museum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, UMR 7590, CNRS, Paris, France
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, 18618-687, Brazil.,Biotechnology Institute, São Paulo State University, Botucatu, São Paulo, 18607-440, Brazil
| | - Guilherme Soares
- Department of Biophysics and Pharmacology, São Paulo State University, Botucatu, São Paulo, 18618-689, Brazil
| | - Bruno C Rossini
- Biotechnology Institute, São Paulo State University, Botucatu, São Paulo, 18607-440, Brazil
| | - Nícholas Zufelato
- Institute of Physics and CNanoMed, Federal University of Goiás, Goiânia, 74690-900, Brazil
| | | | - Marcos R de Mattos Fontes
- Department of Biophysics and Pharmacology, São Paulo State University, Botucatu, São Paulo, 18618-689, Brazil
| | - José R de Arruda Miranda
- Department of Biophysics and Pharmacology, São Paulo State University, Botucatu, São Paulo, 18618-689, Brazil
| |
Collapse
|
23
|
Jobdeedamrong A, Theerasilp M, Nasongkla N, Crespy D. Nanocapsules with excellent biocompatibility and stability in protein solutions. Biomater Sci 2021; 9:5781-5784. [PMID: 34152342 DOI: 10.1039/d1bm00510c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Silica nanocapsules (SiO2NCs) are usually prepared with cationic surfactants that are not cytocompatible. Dialysis can be used to remove surfactants but leads to instability of the SiO2NCs when they are in the presence of proteins or biological media. Herein, SiO2NCs stabilized with a reactive surfactant are synthesized to prevent leaching upon dialysis. The SiO2NCs show superior stability and biocompatibility compared with SiO2NCs prepared with conventional surfactants. The SiO2NCs can be used in self-healing materials, smart agriculture and biomedical applications.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand.
| | | | | | | |
Collapse
|
24
|
Phue WH, Bahadi M, Dynes JJ, Wang J, Kuppili VSC, Ismail A, Hameed A, George S. Protein-biomolecule interactions play a major role in shaping corona proteome: studies on milk interacted dietary particles. NANOSCALE 2021; 13:13353-13367. [PMID: 34477741 DOI: 10.1039/d1nr03712a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the significance of surface absorbed proteins in determining the biological identity of nanoparticles (NPs) entering the human body, little is known about the surface corona and factors that shape their formation on dietary particles used as food additives. In this study, food grade NPs of silica and titania and their food additive counterparts (E551 and E171) were interacted with milk proteins or with skimmed milk and the levels of protein adsorption were quantified. Characteristics of proteins correlating with their level of adsorption to NPs were determined using partial least squares regression analysis. Results from individual protein-particle interactions revealed the significance of factors such as zeta potential, hydrophobicity and hydrodynamic size of particles, and protein characteristics such as the number of beta strands, isoelectric points, the number of amino acid units (Ile, Tyr, Ala, Gly, Pro, Asp, and Arg), and phosphorylation sites on their adsorption to particles. Similar regression analysis was performed to identify the characteristics of twenty abundant and enriched proteins (identified using LC-MS/MS analysis) for their association with the surface corona of milk-interacted particles. Contrary to individual protein-particle interactions, protein characteristics such as helices, turns, protein structures, disulfide bonds, the number of amino acid units (Cys, Met, Leu, and Trp), and Fe binding sites were significant for their association with the surface corona of milk interacted particles. This difference in factors identified from individual proteins and milk interacted particles suggested possible interactions of proteins with surface adsorbed biomolecules as revealed by scanning transmission X-ray microscopy and other biochemical assays.
Collapse
Affiliation(s)
- Wut H Phue
- Department of Food Science & Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada H9X 3V9.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021; 13:570. [PMID: 33920503 PMCID: PMC8072651 DOI: 10.3390/pharmaceutics13040570] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the theragnostic potential of mesoporous silica nanoparticles (MSNs), these were extensively investigated as a novel approach to improve clinical outcomes. Boasting an impressive array of formulations and modifications, MSNs demonstrate significant in vivo efficacy when used to identify or treat myriad malignant diseases in preclinical models. As MSNs continue transitioning into clinical trials, a thorough understanding of the characteristics of effective MSNs is necessary. This review highlights recent discoveries and advances in MSN understanding and technology. Specific focus is given to cancer theragnostic approaches using MSNs. Characteristics of MSNs such as size, shape, and surface properties are discussed in relation to effective nanomedicine practice and projected clinical efficacy. Additionally, tumor-targeting options used with MSNs are presented with extensive discussion on active-targeting molecules. Methods for decreasing MSN toxicity, improving site-specific delivery, and controlling release of loaded molecules are further explained. Challenges facing the field and translation to clinical environments are presented alongside potential avenues for continuing investigations.
Collapse
Affiliation(s)
- Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Jordan M. Hagood
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Collin N. Britten
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Brandon S. Abbott
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Catherine A. Vopat
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
| | - Eian G. Patterson
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA;
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Ajay Jain
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| | - Keisha B. Walters
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| |
Collapse
|
26
|
Huang W, Xiao G, Zhang Y, Min W. Research progress and application opportunities of nanoparticle-protein corona complexes. Biomed Pharmacother 2021; 139:111541. [PMID: 33848776 DOI: 10.1016/j.biopha.2021.111541] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles (NPs) can be used to design for nanomedicines with different chemical surface properties owing to their size advantages and the capacity of specific delivery to targeted sites in organisms. The discovery of the presence of protein corona (PC) has changed our classical view of NPs, stimulating researchers to investigate the in vivo fate of NPs as they enter biological systems. Both NPs and PC have their specificity but complement each other, so they should be considered as a whole. The formation and characterization of NP-PC complexes provide new insights into the design, functionalization, and application of nanocarriers. Based on progress of recent researches, we reviewed the formation, characterization, and composition of the PC, and introduced those critical factors influencing PC, simultaneously expound the effect of PC on the biological function of NPs. Especially we put forward the opportunities and challenges when NP-PC as a novel nano-drug carrier for targeted applications. Furthermore, we discussed the pros versus cons of the PC, as well as how to make better PC in the future application of NPs.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pharmacy, The First People's Hospital of Jiande, Jiande 311600, China; Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Gao Xiao
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Yujuan Zhang
- Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China.
| | - Weiping Min
- Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China
| |
Collapse
|
27
|
Guo C, Liu Y, Li Y. Adverse effects of amorphous silica nanoparticles: Focus on human cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124626. [PMID: 33296760 DOI: 10.1016/j.jhazmat.2020.124626] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Amorphous silica nanoparticle (SiNPs) has tremendous potential for a host of applications, while its mass production, broad application and environmental release inevitably increase the risk of human exposure. SiNPs could enter into the human body through different routes such as inhalation, ingestion, skin contact and even injection for medical applications. The cardiovascular system is gradually recognized as one of the primary sites for engineered NPs exerting adverse effects. Accumulating epidemiological or experimental evidence support the association between SiNPs exposure and adverse cardiovascular effects. However, this topic is still in its infancy, and the literature shows high inter-study variability and even contradictory results. New challenges still present in the safety evaluation of SiNPs, and its toxicological mechanisms are poorly understood. Here, scientific papers related to cardiovascular studies of SiNPs in vivo and in vitro were selected, and the updated particle-caused cardiovascular toxicity and potential mechanisms were summarized. Moreover, the understanding of how factors primarily including exposure dose, route of administration, particle size and surface properties, influence the interaction between SiNPs and cardiovascular system was discussed. In particular, the adverse outcome pathway (AOP) framework by which SiNPs cause deleterious effects in the cardiovascular system was described, aiming to provide useful information necessary for the regulatory decision and to guide a safer application of nanotechnology.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
28
|
Singh N, Marets C, Boudon J, Millot N, Saviot L, Maurizi L. In vivo protein corona on nanoparticles: does the control of all material parameters orient the biological behavior? NANOSCALE ADVANCES 2021; 3:1209-1229. [PMID: 36132858 PMCID: PMC9416870 DOI: 10.1039/d0na00863j] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 05/18/2023]
Abstract
Nanomaterials have a huge potential in research fields from nanomedicine to medical devices. However, surface modifications of nanoparticles (NPs) and thus of their physicochemical properties failed to predict their biological behavior. This requires investigating the "missing link" at the nano-bio interface. The protein corona (PC), the set of proteins binding to the NPs surface, plays a critical role in particle recognition by the innate immune system. Still, in vitro incubation offers a limited understanding of biological interactions and fails to explain the in vivo fate. To date, several reports explained the impact of PC in vitro but its applications in the clinical field have been very limited. Furthermore, PC is often considered as a biological barrier reducing the targeting efficiency of nano vehicles. But the protein binding can actually be controlled by altering PC both in vitro and in vivo. Analyzing PC in vivo could accordingly provide a deep understanding of its biological effect and speed up the transfer to clinical applications. This review demonstrates the need for clarifications on the effect of PC in vivo and the control of its behavior by changing its physicochemical properties. It unfolds the recent in vivo developments to understand mechanisms and challenges at the nano-bio interface. Finally, it reports recent advances in the in vivo PC to overcome and control the limitations of the in vitro PC by employing PC as a boosting resource to prolong the NPs half-life, to improve their formulations and thereby to increase its use for biomedical applications.
Collapse
Affiliation(s)
- Nimisha Singh
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Célia Marets
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| |
Collapse
|
29
|
Bao J, Zhang Q, Duan T, Hu R, Tang J. The Fate of Nanoparticles In Vivo and the Strategy of Designing Stealth Nanoparticle for Drug Delivery. Curr Drug Targets 2021; 22:922-946. [PMID: 33461465 DOI: 10.2174/1389450122666210118105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Nano-drug delivery systems (Nano-DDS) offer powerful advantages in drug delivery and targeted therapy for diseases. Compared to the traditional drug formulations, Nano-DDS can increase solubility, biocompatibility, and reduce off-targeted side effects of free drugs. However, they still have some disadvantages that pose a limitation in reaching their full potential in clinical use. Protein adsorption in blood, activation of the complement system, and subsequent sequestration by the mononuclear phagocyte system (MPS) consequently result in nanoparticles (NPs) to be rapidly cleared from circulation. Therefore, NPs have low drug delivery efficiency. So, it is important to develop stealth NPs for reducing bio-nano interaction. In this review, we first conclude the interaction between NPs and biological environments, such as blood proteins and MPS, and factors influencing each other. Next, we will summarize the new strategies to reduce NPs protein adsorption and uptake by the MPS based on current knowledge of the bio-nano interaction. Further directions will also be highlighted for the development of biomimetic stealth nano-delivery systems by combining targeted strategies for a better therapeutic effect.
Collapse
Affiliation(s)
- Jianwei Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tijie Duan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rongfeng Hu
- key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Anhui "115" Xin'an Medicine Research & Development Innovation Team, Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Jihui Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
30
|
Rao C, Yadav A, Kaur R, Prasad A, Nandi CK. Direct visualization of the protein corona using carbon nanodots as a specific contrasting agent. Chem Commun (Camb) 2020; 56:13599-13602. [PMID: 33057518 DOI: 10.1039/d0cc06333a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cellular uptake of the nanoparticles is greatly affected by the formation of protein corona. As a result, an in-depth knowledge of direct visualization of the corona and quantification thereof is extremely important. Although transmission electron microscopy is one of the best techniques for visualization, the heavy metals that are used to increase the contrast of protein are non-specific and may lead to artifacts and erroneous conclusions. Here, we present a new strategy using carbogenic nanodots that showed excellent contrast, under a transmission electron microscope for the direct visualization and quantification of the single particle protein corona.
Collapse
Affiliation(s)
- Chethana Rao
- School of Basic Sciences, Indian Institiute of Technology, Mandi, India.
| | | | | | | | | |
Collapse
|
31
|
Déciga-Alcaraz A, Medina-Reyes EI, Delgado-Buenrostro NL, Rodríguez-Ibarra C, Ganem-Rondero A, Vázquez-Zapién GJ, Mata-Miranda MM, Limón-Pacheco JH, García-Cuéllar CM, Sánchez-Pérez Y, Chirino YI. Toxicity of engineered nanomaterials with different physicochemical properties and the role of protein corona on cellular uptake and intrinsic ROS production. Toxicology 2020; 442:152545. [PMID: 32755642 DOI: 10.1016/j.tox.2020.152545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
The Organisation for Economic Co-operation and Development has listed thirteen engineered nanomaterials (ENM) in order to investigate their toxicity on human health. Silicon dioxide (SiO2) and titanium dioxide (TiO2) are included on that list and we added indium tin oxide (ITO) nanoparticles (NPs) to our study, which is not listed on OECD suggested ENM to be investigated, however ITO NPs has a high potential of industrial production. We evaluate the physicochemical properties of SiO2 NPs (10-20 nm), TiO2 nanofibers (NFs; 3 μm length) and ITO NPs (<50 nm) and the impact of protein-corona formation on cell internalization. Then, we evaluated the toxicity of uncoated ENM on human lung epithelial cells exposed to 10 and 50 μg/cm2 for 24 h. TiO2 NFs showed the highest capability to adsorb proteins onto the particle surface followed by SiO2 NPs and ITO NPs after acellular incubation with fetal bovine serum. The protein adsorption had no impact on Alizarin Red S conjugation, intrinsic properties for reactive oxygen (ROS) formation or cell uptake for all types of ENM. Moreover, TiO2 NFs induced highest cell alterations in human lung epithelial cells exposed to 10 and 50 μg/cm2 while ITO NPs induced moderated cytotoxicity and SiO2 NPs caused even lower cytotoxicity under the same conditions. DNA, proteins and lipids were mainly affected by TiO2 NFs followed by SiO2 NPs with toxic effects in protein and lipids while limited variations were detected after exposure to ITO NPs on spectra analyzed by Fourier Transform Infrared Spectroscopy.
Collapse
Affiliation(s)
- Alejandro Déciga-Alcaraz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de Mexico, Mexico
| | - Estefany I Medina-Reyes
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de Mexico, CDMX, 04510, Programa de becas posdoctorales en la UNAM, DGAPA, Mexico
| | - Norma L Delgado-Buenrostro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de Mexico, Mexico
| | - Carolina Rodríguez-Ibarra
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de Mexico, Mexico
| | - Adriana Ganem-Rondero
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Av. 1° de Mayo s/n, Cuautitlán Izcalli, CP 54740, Estado de Mexico, Mexico
| | - Gustavo J Vázquez-Zapién
- Laboratorio de Embriología, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, C.P. 11200, Ciudad de Mexico, Mexico
| | - Mónica M Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, C.P. 11200, Ciudad de Mexico, Mexico
| | - Jorge H Limón-Pacheco
- Laboratorio de Biología Celular y Tisular, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, C.P. 11200, Ciudad de Mexico, Mexico
| | - Claudia M García-Cuéllar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de Mexico, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de Mexico, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de Mexico, Mexico.
| |
Collapse
|
32
|
Marichal L, Degrouard J, Gatin A, Raffray N, Aude JC, Boulard Y, Combet S, Cousin F, Hourdez S, Mary J, Renault JP, Pin S. From Protein Corona to Colloidal Self-Assembly: The Importance of Protein Size in Protein-Nanoparticle Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8218-8230. [PMID: 32585107 DOI: 10.1021/acs.langmuir.0c01334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein adsorption on nanoparticles is an important field of study, particularly with regard to nanomedicine and nanotoxicology. Many factors can influence the composition and structure of the layer(s) of adsorbed proteins, the so-called protein corona. However, the role of protein size has not been specifically investigated, although some evidence has indicated its potential important role in corona composition and structure. To assess the role of protein size, we studied the interactions of hemoproteins (spanning a large size range) with monodisperse silica nanoparticles. We combined various techniques-adsorption isotherms, isothermal titration calorimetry, circular dichroism, and transmission electron cryomicroscopy-to address this issue. Overall, the results show that small proteins behaved as typical model proteins, forming homogeneous monolayers on the nanoparticle surface (protein corona). Their adsorption is purely enthalpy-driven, with subtle structural changes. In contrast, large proteins interact with nanoparticles via entropy-driven mechanisms. Their structure is completely preserved during adsorption, and any given protein can directly bind to several nanoparticles, forming bridges in these newly formed protein-nanoparticle assemblies. Protein size is clearly an overlooked factor that should be integrated into proteomics and toxicological studies.
Collapse
Affiliation(s)
- Laurent Marichal
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, I2BC, B3S, 91190 Gif-sur-Yvette, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Anouchka Gatin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
| | - Nolwenn Raffray
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
| | | | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, I2BC, B3S, 91190 Gif-sur-Yvette, France
| | - Sophie Combet
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Fabrice Cousin
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Stéphane Hourdez
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Team DYDIV, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Jean Mary
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Team DYDIV, Station Biologique de Roscoff, 29680 Roscoff, France
| | | | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
| |
Collapse
|