1
|
Khandagale P, Chougale P, Mujawar N, Momin M, Dhabbe R, Kakade R, Nipane S, Sabale S, Kim DK. Honeycomb waste-derived carbon dots as a sensitive sensing probe for detection of capecitabine chemo drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126241. [PMID: 40252539 DOI: 10.1016/j.saa.2025.126241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/18/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Anticancer medication provoked concerns owing to its adverse health effects from overdose and henceforth, its sensitive monitoring is crucial. Carbon dots (CDs), as a pioneering carbon nanomaterial, have particles lower than 10 nm. CDs have an extensive multitude of applications based on their luminous qualities. The present era is focused on turning waste into economically viable products. The current research demonstrates a feasible method for preparing green fluorescent CDs from honeycomb waste (HCCDs). The HCCDs display excitation-dependent emission properties, exhibiting a blue shift with a change in excitation wavelength, and acquiring good stability with a zeta potential of -14.8 mV. Nevertheless, the particle size ranges between 2-5 nm. It is noteworthy that the fluorescence intensity of HCCDs was remarkably enhanced by the addition of increasing concentrations of capecitabine due to complex formation. Additionally, the sensor shows a determined detection limit of 1.04 μmolL-1 without interference from ions. This demonstrates exclusive selectivity and sensitivity which paves a new way for the determination of the capecitabine drug.
Collapse
Affiliation(s)
- Pradnya Khandagale
- Department of Chemistry, Jaysingpur College, Jaysingpur 416101, MS, India; Department of Chemistry, Smt. Kasturbai Walchand College of Arts and Science, Sangli 416416, MS, India
| | | | - Nafeesa Mujawar
- Department of Chemistry, Jaysingpur College, Jaysingpur 416101, MS, India
| | - Muskan Momin
- Department of Chemistry, Jaysingpur College, Jaysingpur 416101, MS, India
| | - Rohant Dhabbe
- Department of Chemistry, Jaysingpur College, Jaysingpur 416101, MS, India
| | - Rajratna Kakade
- Department of Botany, Padmbhushan Dr. Vasantraodada Patil Mahavidyalaya, Tasgaon 416312, MS, India
| | - Sandip Nipane
- Department of Chemistry, Smt. Kasturbai Walchand College of Arts and Science, Sangli 416416, MS, India.
| | - Sandip Sabale
- Department of Chemistry, Jaysingpur College, Jaysingpur 416101, MS, India; Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, South Korea.
| | - Deok-Kee Kim
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
2
|
Zhu C, Li Y, Hou T, Gu X, Li X, Sang L, Zhang J. A MPB-intensified tube microreactor system for continuous synthesis of Ag + doped CdS quantum dots. NANOSCALE 2025. [PMID: 40387585 DOI: 10.1039/d5nr01114k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Recent advances in microreactor technology have established these systems as promising platforms for colloidal nanocrystal synthesis. Nevertheless, the continuous production of high-quality doped quantum dots (QDs) with precise control over their optical properties continues to present significant technical challenge. This study introduces a micropacked bed (MPB) intensified tube microreactor system for the efficient and continuous synthesis of Ag+ doped CdS QDs (CdS:Ag+ doped-QDs). Through systematic optimization of reaction parameters, the MPB system achieved a photoluminescent quantum yield (PLQY) of 50.8% under optimized conditions (18 cm MPB filled with 2.0 mm glass beads, 0.2 mL min-1 flow rate, and 70 °C reaction temperature), and the yield increased to 64.6%. These results represent significant improvements over the traditional batch flask method (40% PLQY, 43.01% yield) and the microreactor method (43% PLQY, 48.41% yield). The developed MPB system demonstrates multiple operational advantages: reaction duration reduced to 30 minutes, simplified fluidic architecture requiring only two pumps (vs. three in conventional systems), and enhanced flow rate (0.2 mL min-1vs. 40 μL min-1). Production capacity analysis revealed 6-fold and 2.67-fold increases in CdS:Ag+ doped-QD output compared to the batch flask method and the microreactor method, respectively, per unit time. This continuous flow strategy establishes a viable pathway for industrial-scale synthesis of doped quantum dots with enhanced process efficiency and material quality.
Collapse
Affiliation(s)
- Chuwei Zhu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yuxi Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Tailei Hou
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiaole Gu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xinyuan Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Le Sang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
3
|
Bin Jardan YA, Mostafa AM, Barker J, Ali ABH, El-Wekil MM. A novel route for fabrication of yellow emissive carbon dots for selective and sensitive detection of vitamin B12. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3007-3016. [PMID: 40163184 DOI: 10.1039/d5ay00107b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
This study pioneers a sustainable strategy for synthesizing yellow-emissive carbon dots (Y-CDs) using expired rabeprazole sodium tablets, thereby transforming pharmaceutical waste into valuable nanomaterials. The as-prepared Y-CDs displayed a high quantum yield of 48.89%, strong photostability, and pronounced environmental resilience. These attributes establish their potential as reliable fluorometric probes. The fluorescence of Y-CDs was effectively quenched by vitamin B12 through a dual mechanism involving the inner-filter effect (IFE) and static quenching. Under optimized conditions, the fluorescence intensity ratio (F0/F) showed excellent linearity in the range of 0-300 μM and achieved a detection limit of 8.0 nM (S/N = 3). The developed method demonstrated high accuracy (recoveries of 96.8-105.9%) for pharmaceutical formulations. Beyond its analytical merits, this work introduces a green nanotechnology route that addresses pharmaceutical waste management by converting expired drugs into efficient, multifunctional nanomaterials.
Collapse
Affiliation(s)
- Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aya M Mostafa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, London KT1 2EE, UK
| | - Almontaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
4
|
Mulugeta E, Tegafaw T, Liu Y, Zhao D, Baek A, Kim J, Chang Y, Lee GH. Synthesis, Characterization, Magnetic Properties, and Applications of Carbon Dots as Diamagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agents: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:542. [PMID: 40214587 PMCID: PMC11990683 DOI: 10.3390/nano15070542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Carbon dots (CDs) are metal-free carbon-based nanoparticles. They possess excellent photoluminescent properties, various physical properties, good chemical stability, high water solubility, high biocompatibility, and tunable surface functionalities, suitable for biomedical applications. Their properties are subject to synthetic conditions such as pH, reaction time, temperature, precursor, and solvent. Until now, a large number of articles on the synthesis and biomedical applications of CDs using their photoluminescent properties have been reported. However, their research on magnetic properties and especially, diamagnetic chemical exchange saturation transfer (diaCEST) in magnetic resonance imaging (MRI) is very poor. The diaCEST MRI contrast agents are based on exchangeable protons of materials with bulk water protons and thus, different from conventional MRI contrast agents, which are based on enhancements of proton spin relaxations of bulk water and tissue. In this review, various syntheses, characterizations, magnetic properties, and potential applications of CDs as diaCEST MRI contrast agents are reviewed. Finally, future perspectives of CDs as the next-generation diaCEST MRI contrast agents are discussed.
Collapse
Affiliation(s)
- Endale Mulugeta
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (E.M.); (T.T.); (Y.L.); (D.Z.)
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (E.M.); (T.T.); (Y.L.); (D.Z.)
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (E.M.); (T.T.); (Y.L.); (D.Z.)
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (E.M.); (T.T.); (Y.L.); (D.Z.)
| | - Ahrum Baek
- Institute of Biomedical Engineering Research, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Jihyun Kim
- Department of Chemistry Education, Teachers’ College, Kyungpook National University, Taegu 41566, Republic of Korea;
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (E.M.); (T.T.); (Y.L.); (D.Z.)
| |
Collapse
|
5
|
Upadhyaya AK, Agarwala P, Sharma C, Sasmal DK. Synthesis and Characterization of N-Doped Carbon Quantum Dots and its Application for Efficient Delivery of Curcumin in Live Cell. Chemphyschem 2025; 26:e202400855. [PMID: 39714983 DOI: 10.1002/cphc.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
To improve bioavailability, enhance the solubility and stability of the hydrophobic drug curcumin, nanoparticles such as carbon quantum dots (CQDs) are unique choices. In this study, we present a simple, cost-effective, and eco-friendly method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) and their application in the efficient delivery of hydrophobic drugs curcumin into live cancer cells. The N-CQDs produced in this study exhibit excellent water solubility, remarkable stability, and high biocompatibility. To synthesize the N-CQD, we use a carbon source found naturally (lemon juice) and for doping, we use N-rich doping agents such as ethylene diamine and urea by using eco-friendly chemical oxidation methods. The resulting N-CQDs, with particle sizes under 10 nm, exhibit a good quantum yield, reinforcing their utility for biomedical applications. N-CQDs and drug-loaded particles are evaluated using various techniques like UV-Vis, Fluorescence Spectroscopy, Dynamic Light Scattering (DLS), and Atomic Force Microscopy (AFM) as well. Additionally, we report a remarkable method to use N-CQDs as carriers for the anticancer drug curcumin, significantly enhancing the solubility in live cells. Our research also delved into the application of N-CQDs in in vivo bioimaging and drug release studies within live cancer cells, with a particular focus on their pH-dependence behavior.
Collapse
Affiliation(s)
- Arun K Upadhyaya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| | - Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| | - Chanchal Sharma
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| | - Dibyendu K Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| |
Collapse
|
6
|
Jalilian M, Parvizi P, Zangeneh MR. Advances in graphene-based nanomaterials for heavy metal removal from water: Mini review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70062. [PMID: 40123408 DOI: 10.1002/wer.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/18/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The environment and public health are seriously at risk from the increasing levels of heavy metal (HM) pollution in water bodies, hence efficient remediation techniques must be developed. Unique physicochemical properties of graphene (Gn) such as its enormous surface area, chemical stability, and extraordinary adsorption capabilities have made it a promising candidate for application in various adsorption processes. Recent studies indicate the heavy metal removal capabilities of Gn-based materials such as Gn oxide (GO) and reduced GO (rGO) reach 99% efficiency rates for lead (Pb2+), cadmium (Cd2+), and mercury (Hg2+) through strong electrostatic bonds and metal coordination along with π-π stacking interactions. In addition, the selective nature of Gn-based adsorbents grows better through functionalization because it incorporates thiol, amine, and sulfonic acid groups. The integration of Gn-based materials with metal-organic frameworks (MOFs) combined with magnetic nanoparticles along with bio-based polymers enhances adsorption efficiency and increases stability while offering recyclability features. The conclusion of this study discusses the current obstacles such as cost, scalability, environmental impact, and selectivity and potential future developments for the widespread use of Gn-based adsorbents in water treatment, highlighting the significance of continued research to improve these substances for useful environmental applications. PRACTITIONER POINTS: Graphene-based materials exhibit high capacity for adsorbing various heavy metals, enhancing water purification. Functionalization of graphene improves its ability to selectively target and remove specific heavy metals like mercury and lead. Graphene derivatives can achieve heavy metal removal within minutes, making them efficient for water treatment. Despite high synthesis costs, graphene's superior performance may lower long-term operational costs in wastewater treatment.
Collapse
Affiliation(s)
- Milad Jalilian
- Department of Physics, Faculty of Science, Lorestan University, Khorramabad, Iran
- Pooya Power Knowledge Enterprise, Tehran, Iran
| | - Pooya Parvizi
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, Edgbaston, UK
| | - Mohammad Reza Zangeneh
- Pooya Power Knowledge Enterprise, Tehran, Iran
- Department of Energy and Mechanical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Ovuoraye PE, Ugonabo VI, Enyoh CE, Igwegbe CA, Egbosiuba TC, Ibrahim I. Exploring Mechanistic Insights Into Coagulation-flocculation-aided Adsorption Design: a Comprehensive Study On the Removal of Toxic Metals and Organic Pollutants From Vegetable Oil Processing Wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:304. [PMID: 39961953 DOI: 10.1007/s10661-025-13732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/04/2025] [Indexed: 03/11/2025]
Abstract
Industrial wastewater treatment is crucial for environmental protection and public health. This study aimed to investigate the efficiency of the coagulation-flocculation-aided adsorption (C/F-A) system utilizing aluminum salt (AS) coagulant and characterized acid-activated kaolin clay adsorbent (KC) for the removal of pollutants from vegetable oil processing industrial wastewater (VOPIW). The objectives were to optimize the operational parameters of the C/F-A system, evaluate the adsorption capacity of KC, analyze the removal mechanisms, and assess the feasibility of scale-up for industrial applications. Batch experiments were conducted at 25 °C and pH 6-8 to determine optimal conditions for turbidity and total suspended solids (TSS) removal. The Smoluchoski kinetic model and various isotherms (Redlich-Peterson, Elovich, and Dubinin-Radushkevich) were employed for mechanistic analysis. Optimal conditions of 0.2 g/L dosage, pH 6, and 12 min settling time resulted in 96% turbidity and 97% TSS removals. Significant reductions were achieved for various pollutants, including Cu (84%), Fe (80%), Mn (85%), Pb (71%), and Al (98%). The sorption capacities of KC for various pollutants were determined, with the highest recorded for Cu at 35.47 mg/g C. Scale-up analysis was conducted to meet WHO effluent discharge requirements resulting in organic loading corresponding to TDS (2.94 × 109 mg/day), DO (5.1 × 108 mg/day), BOD (4.33 × 108 mg/day), and COD (3.99 × 108 mg/day). The mechanistic parameters confirmed an optimum sweep-flocculation constant, 6.2 × 10-3 L/g·min, and half-life, 101 min-1. The study highlighted the effectiveness of the C/F-A system using KC for removing contaminants from VOPIW, suggesting its potential as a cost-effective and sustainable method for industrial wastewater treatment, thereby aiding environmental protection.
Collapse
Affiliation(s)
- Prosper Eguono Ovuoraye
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, 420218, Nigeria.
- Department of Chemical Engineering, Federal University of Petroleum Resources, P.M.B. 1221, Effurun, Nigeria.
| | - Victor Ifeanyi Ugonabo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, 420218, Nigeria
| | - Christian Ebere Enyoh
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama City, Saitama, 338-8570, Japan
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, 420218, Nigeria.
- Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland.
| | - Titus Chinedu Egbosiuba
- Sustainable Materials Laboratory (SusMatLab), Missouri University of Science and Technology, Rolla, MO, 65409, USA
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology Rolla, Rolla, MO, 65409, USA
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, P.M.B. 02, Uli, Anambra State, Nigeria
| | | |
Collapse
|
8
|
Adaikalapandi S, Thangadurai TD, Sivakumar S, Nataraj D, Schechter A, Kalarikkal N, Thomas S. Aggregation induced emission "Turn on" ultra-low detection of anti-inflammatory drug flufenamic acid in human urine samples by carbon dots derived from bamboo stem waste. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125278. [PMID: 39423556 DOI: 10.1016/j.saa.2024.125278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Carbon dot-based fluorescence sensors have attracted research interest for the selective determination of anti-inflammatory drugs in biological fluids and environments. The overdose and accumulation of anti-inflammatory drugs in tissues can cause chronic side effects including abdominal pain, and renal damage. Herein, we report a new fluorescent probe, bamboo stem waste-derived carbon dots (BS-CDs) for highly sensitive detection of Flufenamic acid (FA), a hazardous anti-inflammatory drug. The UV-vis absorption spectra of BS-CDs show a redshifted absorption peak at 283 nm upon the addition of FA suggesting strong binding interaction between BS-CDs and FA molecule. The BS-CDs showed a fluorescence enhancement (∼2-fold) detection for FA (400 μM) in the linear concentration range (0.40 → 0.65 μM) with a limit of detection (LoD; 17 nM) and binding constant (Ka = 1.33 × 10-3 M-1). The time-resolved fluorescence decay analysis showed that the average lifetime of BS-CDs has slightly changed (4.42 → 4.67 ns) by the interaction with FA through the aggregation-induced emission (AIE) process. The interference, pH, and effect of time results suggest that BS-CDs are highly selective probes for FA detection and do not show any interference involvement during FA detection. The confirmation of the structure and morphology changes of BS-CDs after interaction with FA was carried out by XRD, FESEM, HRTEM, FTIR, and Raman spectroscopy. The practicability of the BS-CDs probe was proved by the detection of FA in human urine samples with recovery of 103-109 %. This suggests that the proposed BS-CDs-based 'turn-on' sensor could be used to determine the FA in biological fluids.
Collapse
Affiliation(s)
- Subitha Adaikalapandi
- Department of Chemistry, and Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Coimbatore, 641407, Tamil Nadu, India
| | - T Daniel Thangadurai
- Department of Chemistry, and Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Coimbatore, 641407, Tamil Nadu, India.
| | - S Sivakumar
- Department of Chemistry, and Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Coimbatore, 641407, Tamil Nadu, India
| | - D Nataraj
- Department of Physics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Alex Schechter
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560, Kerala, India
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India
| |
Collapse
|
9
|
Rezaei M, Mehdinia A. A Review on the Applications of Quantum Dots in Sample Preparation. J Sep Sci 2025; 48:e70061. [PMID: 39823177 DOI: 10.1002/jssc.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025]
Abstract
In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions. One of the most basic issues in the development of adsorbents is to increase the effective surface and, as a result, their extraction efficiency. QDs, having an effective surface much higher than conventional nanomaterials, are a suitable option for extracting target compounds in different environments. This work comprehensively reviews QD-based extraction methods and surface modification strategies of QDs based on functional groups, ligands, and materials from 2013 to 2024. In addition, the applications of QD-based composites for the extraction of organic and inorganic analytes (residues of drugs in human blood and plasma, toxins, pesticides, pollutants from chemical industries, heavy metals, etc.) in different matrices are investigated.
Collapse
Affiliation(s)
- Mahdie Rezaei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Mehdinia
- Department of Ocean Science, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran
| |
Collapse
|
10
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
11
|
Mohammed SJ, Sidiq MK, Najmuldeen HH, Kayani KF, Kader DA, Aziz SB. A comprehensive review on nitrogen-doped carbon dots for antibacterial applications. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:114444. [DOI: 10.1016/j.jece.2024.114444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Tsai TH, Lo W, Wang HY, Tsai TL. Carbon Dot Micelles Synthesized from Leek Seeds in Applications for Cobalt (II) Sensing, Metal Ion Removal, and Cancer Therapy. J Funct Biomater 2024; 15:347. [PMID: 39590551 PMCID: PMC11595631 DOI: 10.3390/jfb15110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Popular photoluminescent (PL) nanomaterials, such as carbon dots, have attracted substantial attention from scientists due to their photophysical properties, biocompatibility, low cost, and diverse applicability. Carbon dots have been used in sensors, cell imaging, and cancer therapy. Leek seeds with anticancer, antimicrobial, and antioxidant functions serve as traditional Chinese medicine. However, leek seeds have not been studied as a precursor of carbon dots. In this study, leek seeds underwent a supercritical fluid extraction process. Leek seed extract was obtained and then carbonized using a dry heating method, followed by hydrolysis to form carbon dot micelles (CD-micelles). CD-micelles exhibited analyte-induced PL quenching against Co2+ through the static quenching mechanism, with the formation of self-assembled Co2+-CD-micelle sphere particles. In addition, CD-micelles extracted metal ion through liquid-liquid extraction, with removal efficiencies of >90% for Pb2+, Al3+, Fe3+, Cr3+, Pd2+, and Au3+. Moreover, CD-micelles exhibited ABTS•+ radical scavenging ability and cytotoxicity for cisplatin-resistant lung cancer cells. CD-micelles killed cisplatin-resistant small-cell lung cancer cells in a dose-dependent manner with a cancer cell survival rate down to 12.8 ± 4.2%, with a similar treatment function to that of cisplatin. Consequently, CD-micelles functionalized as novel antioxidants show great potential as anticancer nanodrugs in cancer treatment.
Collapse
Affiliation(s)
- Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Wei Lo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Hsiu-Yun Wang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tsung-Lin Tsai
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
13
|
Soni H, Jain V, Ballal S, Ariffin IA, Chahar M, Saini S, Bhattu M, Singh H, Bechelany M, Singh J. From Structure to Sensing: Molecular Mechanistic Insights into Plant-Derived Carbon Dots for Heavy Metal Ion Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1766. [PMID: 39513846 PMCID: PMC11547485 DOI: 10.3390/nano14211766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Plant-derived carbon dots (P-CDs) are gaining attention in environmental remediation due to their cost-effectiveness, availability, and lower toxicity compared with chemically synthesized carbon dots. This review comprehensively examines the recent advancements in the synthesis and application of P-CDs, with a particular emphasis on their efficacy in the sensing of heavy metals, which are among the most pervasive environmental contaminants. A detailed comparative analysis is presented by evaluating the performance of P-CDs against their chemically synthesized counterparts based on key parameters, such as optimal operating conditions and detection limits. Furthermore, sensing the potential of P-CDs towards every heavy metal ion has been discussed with in-depth mechanistic insights. Additionally, this review explores the industrial applications and future directions of P-CDs. This review provides a comprehensive analysis of -P-CDs for heavy metal sensing, aiming to enhance their sensitivity and selectivity toward heavy metal ions.
Collapse
Affiliation(s)
- Himanshi Soni
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India;
| | - Vicky Jain
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India;
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore 560027, Karnataka, India;
| | | | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur 303121, Rajasthan, India;
| | - Suman Saini
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges—Jhanjeri, Mohali 140307, Punjab, India;
| | - Monika Bhattu
- Research & Incubation Centre, Department of Chemistry, Rayat Bahra University, Mohali 140103, Punjab, India;
- Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| | - Harbinder Singh
- University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah 32093, Kuwait
| | - Jagpreet Singh
- Research & Incubation Centre, Department of Chemistry, Rayat Bahra University, Mohali 140103, Punjab, India;
| |
Collapse
|
14
|
Usman M, Cheng S. Recent Trends and Advancements in Green Synthesis of Biomass-Derived Carbon Dots. ENG 2024; 5:2223-2263. [DOI: 10.3390/eng5030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The push for sustainability in nanomaterials has catalyzed significant advancements in the green synthesis of carbon dots (CDs) from renewable resources. This review uniquely explores recent innovations, including the integration of hybrid techniques, such as micro-wave-assisted and ultrasonic-assisted hydrothermal methods, as well as photocatalytic synthesis. These combined approaches represent a breakthrough, offering rapid production, precise control over CD properties, and enhanced environmental sustainability. In addition, the review emphasizes the growing use of green solvents and bio-based reducing agents, which further reduce the environmental footprint of CD production. This work also addresses key challenges, such as consistently controlling CD properties—size, shape, and surface characteristics—across different synthesis processes. Advanced characterization techniques and process optimizations are highlighted as essential strategies to overcome these hurdles. Furthermore, this review pioneers the integration of circular economy principles into CD production, proposing novel strategies for sustainable material use and waste reduction. By exploring innovative precursor materials, refining doping and surface engineering techniques, and advocating for comprehensive life cycle assessments, this work sets a new direction for future research. The insights provided here represent a significant contribution to the field, paving the way for more sustainable, efficient, and scalable CD production with diverse applications in optoelectronics, sensing, and environmental remediation.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shuo Cheng
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
15
|
Elshenawy EA, Yassin MG, Marie AA. P-doped carbon dot nano-probe for inner filter effect-based determination of sarecycline in pharmaceutical dosage form and human plasma. LUMINESCENCE 2024; 39:e4889. [PMID: 39223967 DOI: 10.1002/bio.4889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Based on novel phosphorus-doped carbon dots (PCDs), a simple, quick, and accurate fluorescence probe for sarecycline (SAR) determination has been created. The PCDs were prepared in just five minutes using green, straightforward one-step microwave pyrolysis. To create the PCD probe, sodium phosphate monobasic was utilized as a phosphorus dopant and citric acid as a carbon supply. The proposed synthesis method was energy efficient and yielded CDs with a narrow particle size distribution. Based on inner-filter effect mechanism, the generated PCDs were used as nano-probe for SAR determination. The fluorescence quenching intensity showed a strong linear relationship with SAR concentration in the 3-90-μM range with a detection limit of 0.88 μM. Because there is no surface alteration of the CDs or creation of a covalent bond between SAR and PCDs, the developed approach is quick, easy, inexpensive, and requires less time. The new probe's enhanced sensitivity, broad linear range, and acceptable selectivity made it suitable for SAR measurement in pharmaceutical formulations and spiked human plasma. Most importantly, the Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE) assessments showed that the suggested method was environmentally friendly.
Collapse
Affiliation(s)
- Eman A Elshenawy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Aya A Marie
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
16
|
Ma Y, Mao L, Cui C, Hu Y, Chen Z, Zhan Y, Zhang Y. Nitrogen-doped carbon dots as fluorescent probes for sensitive and selective determination of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124347. [PMID: 38678843 DOI: 10.1016/j.saa.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
At present, the contamination of water resources by heavy metal ions has posed a significant threat to human survival. Therefore, it is particularly critical to develop low-cost, easy-to-use, and highly efficient heavy metal detection technologies. In this work, a fast and cost-effective fluorescent probe for nitrogen-doped carbon dots (N-CDs) was prepared using one-step hydrothermal method with citric acid (CA) as carbon source, and melamine as nitrogen source. The structural and optical characterizations of the resulting N-CDs were investigated in details. The results showed that the quantum yield of the prepared fluorescent probe was as high as 45 %, and an average fluorescence lifetime was about 7.80 ns. N-CDs have excellent water solubility and dispersibility, with an average size of 2.58 nm. N-CDs exhibited excellent specific responsiveness to Fe3+ and can be used as an effective method for detecting Fe3+ at low-concentrations (the concentrations of N-CDs as low as 0.24 μg/mL) using fluorescent probes. The linear response of the fluorescent probe N-CDs to Fe3+ was formed in the concentration range of 20-80 μM, and the detection limit was 3.18 μM. In addition, in the actual water samples analysis, the recovery rate reached 97.05-100.58 %. The prepared of N-CDs provide available Fe3+ fluorescent probes in the environment.
Collapse
Affiliation(s)
- Yulin Ma
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Linhan Mao
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Congcong Cui
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yong Hu
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhaoxia Chen
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuan Zhan
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yuhong Zhang
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
17
|
Sánchez-Pineda PA, López-Pacheco IY, Villalba-Rodríguez AM, Godínez-Alemán JA, González-González RB, Parra-Saldívar R, Iqbal HMN. Enhancing the production of PHA in Scenedesmus sp. by the addition of green synthesized nitrogen, phosphorus, and nitrogen-phosphorus-doped carbon dots. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:77. [PMID: 38835059 PMCID: PMC11149319 DOI: 10.1186/s13068-024-02522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Plastic consumption has increased globally, and environmental issues associated with it have only gotten more severe; as a result, the search for environmentally friendly alternatives has intensified. Polyhydroxyalkanoates (PHA), as biopolymers produced by microalgae, might be an excellent option; however, large-scale production is a relevant barrier that hinders their application. Recently, innovative materials such as carbon dots (CDs) have been explored to enhance PHA production sustainably. This study added green synthesized multi-doped CDs to Scenedesmus sp. microalgae cultures to improve PHA production. Prickly pear was selected as the carbon precursor for the hydrothermally synthesized CDs doped with nitrogen, phosphorous, and nitrogen-phosphorous elements. CDs were characterized by different techniques, such as FTIR, SEM, ζ potential, UV-Vis, and XRD. They exhibited a semi-crystalline structure with high concentrations of carboxylic groups on their surface and other elements, such as copper and phosphorus. A medium without nitrogen and phosphorous was used as a control to compare CDs-enriched mediums. Cultures regarding biomass growth, carbohydrates, lipids, proteins, and PHA content were analyzed. The obtained results demonstrated that CDs-enriched cultures produced higher content of biomass and PHA; CDs-enriched cultures presented an increase of 26.9% in PHA concentration and an increase of 32% in terms of cell growth compared to the standard cultures.
Collapse
Affiliation(s)
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | | | | | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| |
Collapse
|
18
|
Yan Y, Wang W, Liu F, Zhang M, Gao J, Lu C. Reducing nitrogen loss from farmland by layered double hydroxide-supported carbon dots-enhanced ammonium immobilization. CHEMOSPHERE 2024; 351:141160. [PMID: 38219985 DOI: 10.1016/j.chemosphere.2024.141160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
It remains a significant challenge to develop a kind of cost-effective and eco-friendly adsorbent with strong immobilization capabilities for ammonium in farmland. In this work, we employed Ca/Al layered double hydroxide-supported carbon dots (CDs@Ca/Al-LDHs) as a novel and efficient adsorbent for ammonium immobilization both in aqueous and soil environments. Such a composite could exhibit a high adsorption capacity towards ammonium in solution, which was four times higher than zeolite and three times higher than biochar under the same conditions. The mechanism investigations revealed that electrostatic interactions between the negatively charged CDs and the positively charged ammonium played a key role in the adsorption. In 30-day leaching experiments, the fabricated composite cumulatively reduced ammonium and nitrate by 6.3% and 9.7%, respectively at a dosage of 0.1% (w/w). Incubation experiments further confirmed that the developed composite could effectively inhibit ammonia volatilization and nitrification by immobilizing the ammonium within soil matrices. Our results demonstrated that CDs@Ca/Al-LDHs represented a promising candidate for cost-effective and eco-friendly immobilization of excess ammonium from over-fertilized farmland.
Collapse
Affiliation(s)
- Yixin Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Fan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengnan Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
19
|
Jing X, Liu Y, Liu X, Zhang Y, Wang G, Yang F, Zhang Y, Chang D, Zhang ZL, You CX, Zhang S, Wang XF. Enhanced photosynthetic efficiency by nitrogen-doped carbon dots via plastoquinone-involved electron transfer in apple. HORTICULTURE RESEARCH 2024; 11:uhae016. [PMID: 38495032 PMCID: PMC10940122 DOI: 10.1093/hr/uhae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/10/2024] [Indexed: 03/19/2024]
Abstract
Artificially enhancing photosynthesis is critical for improving crop yields and fruit qualities. Nanomaterials have demonstrated great potential to enhance photosynthetic efficiency; however, the mechanisms underlying their effects are poorly understood. This study revealed that the electron transfer pathway participated in nitrogen-doped carbon dots (N-CDs)-induced photosynthetic efficiency enhancement (24.29%), resulting in the improvements of apple fruit qualities (soluble sugar content: 11.43%) in the orchard. We also found that N-CDs alleviated mterf5 mutant-modulated photosystem II (PSII) defects, but not psa3 mutant-modulated photosystem I (PSI) defects, suggesting that the N-CDs-targeting sites were located between PSII and PSI. Measurements of chlorophyll fluorescence parameters suggested that plastoquinone (PQ), the mobile electron carrier in the photosynthesis electron transfer chain (PETC), was the photosynthesis component that N-CDs targeted. In vitro experiments demonstrated that plastoquinone-9 (PQ-9) could accept electrons from light-excited N-CDs to produce the reduced plastoquinone 9 (PQH2-9). These findings suggested that N-CDs, as electron donors, offer a PQ-9-involved complement of PETC to improve photosynthesis and thereby fruit quality. Our study uncovered a mechanism by which nanomaterials enhanced plant photosynthesis and provided some insights that will be useful in the design of efficient nanomaterials for agricultural/horticultural applications.
Collapse
Affiliation(s)
- Xiuli Jing
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yankai Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xuzhe Liu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yi Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Guanzhu Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Fei Yang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yani Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Dayong Chang
- Yantai Goodly Biotechnology Co., Ltd, Yantai 264000, Shandong, China
| | - Zhen-Lu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiao-Fei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| |
Collapse
|
20
|
Tafese BN, Ganesh T, Solomon A, Sundararaju B, Garg N, Alebachew B. Efficient Adsorptive Removal of Methylene Blue Dye from Aqueous Solution Using Eragrostis Teff Biomass-Derived Nitrogen and Phosphorus-Codoped Carbon Quantum Dots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:72-83. [PMID: 38147594 DOI: 10.1021/acs.langmuir.3c01813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Carbon quantum dots have a great application potential in environmental protection via adsorption technology due to their large specific surface area and negative zeta potential. In this work, nitrogen and phosphorus-codoped carbon quantum dots (NP-CQDs) with a large specific surface area and negative zeta potential were successfully synthesized by a single-step hydrothermal synthesis. Batch adsorption studies were utilized to assess the adsorbent's capacity to remove common methylene blue (MB) dye contaminants from an aqueous solution. The experiment showed that MB dye could be removed in 30 min under optimum experimental conditions, with a removal efficiency of 93.73%. The adsorbent's large surface area of 526.063 m2/g and negative zeta potential of -12.3 mV contribute to the high removal efficiency. The Freundlich isotherm model fits the adsorption process well at 298 K, with R2 and n values of 0.99678 and 4.564, respectively, indicating its applicability. A kinetic study demonstrated that the pseudo-second-order model, rather than the pseudo-first-order model, is more suited to represent the process of MB dye adsorption onto NP-CQDs. This research established a simple and cost-effective method for developing a highly efficient NP-CQD adsorbent for organic dye degradation by adsorption.
Collapse
Affiliation(s)
- Bisrat Nigusie Tafese
- Department of Materials Science and Engineering, School of Mechanical, Chemical, and Materials Engineering (SoMCME), Adama Science and Technology University (ASTU), P.O. Box 1888, Adama 1888, Ethiopia
| | - Thothadri Ganesh
- Department of Materials Science and Engineering, School of Mechanical, Chemical, and Materials Engineering (SoMCME), Adama Science and Technology University (ASTU), P.O. Box 1888, Adama 1888, Ethiopia
| | - Abraham Solomon
- Department of Materials Science and Engineering, School of Mechanical, Chemical, and Materials Engineering (SoMCME), Adama Science and Technology University (ASTU), P.O. Box 1888, Adama 1888, Ethiopia
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Nidhi Garg
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Biruk Alebachew
- Department of Soft Matter Physics, University of Potsdam, Am Neuen Palais 10, Potsdam 14469, Germany
| |
Collapse
|
21
|
Ye JQ, Dai YZ, Xu SY, Wang PX, Sun ZH, Qian JF, Liang Q, He MY, Chen Q. Synergistic Enhancement of Photocatalytic H 2 Evolution over NH 2-MIL-125 Modified with Dual Cocatalyst. Inorg Chem 2023; 62:21396-21408. [PMID: 38060836 DOI: 10.1021/acs.inorgchem.3c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The construction of efficient photocatalysts for water splitting to enable H2 evolution is pivotal to alleviate energy issues and environmental concerns. In this work, carbon dots (CDs) were prepared by employing "green solvent" ionic liquids as carbon sources and then combined with Pt/NH2-MIL-125, resulting in the emergence of a high-efficiency photocatalyst termed CDs-Pt/NH2-MIL-125 for the first time. This composite photocatalyst exhibited outstanding photocatalytic activity in H2 production under visible light irradiation. Notably, the H2 production rate of CDs100-Pt/NH2-MIL-125 reaches up to 951.4 μmol/g/h, which was 3.1 times that of Pt/NH2-MIL-125. The characterization results indicate that CDs and Pt uniformly dispersed on the surface of NH2-MIL-125 and fabricated a synergistic compact structure, providing a high BET surface area (985 m2 g-1) and a suitable band gap. Furthermore, the distinctive embeddable-dispersed CDs and Pt, as dual cocatalyst, can harvest light and facilitate the transfer of photogenerated electrons, thereby significantly augmenting the exploitation of visible light. The plausible mechanism of photocatalytic H2 evolution over the CDs-Pt/NH2-MIL-125 catalyst was also discussed. This work introduces a promising strategy for designing high-performance CDs-MOFs-based photocatalysts, an innovative step toward achieving efficient photocatalytic water splitting for H2 production.
Collapse
Affiliation(s)
- Jun-Qing Ye
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Yan-Zi Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Shu-Ying Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Pin-Xi Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Zhong-Hua Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Jun-Feng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Qian Liang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| |
Collapse
|
22
|
Sadeghi J, Lakzian A, Halajnia A, Alikhani M. Effects of fungal carbon dots application on growth characteristics and cadmium uptake in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108102. [PMID: 39492165 DOI: 10.1016/j.plaphy.2023.108102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
The advancement of nanotechnology has led to the increased use of nanomaterials for the purpose of restoring contaminated soils. However, so far no research has been reported on the interactions of carbon dots with heavy metals (loid)s in phytoremediation. The purpose of this study was to investigate the effect of a new carbon dots derived from fungal exopolysaccharide (EPSs) on the growth and cadmium uptake in maize plants. This research was carried out using a completely randomized design with three replications in a greenhouse condition. Treatments included control, carbon dots (150 mg kg-1), cadmium (50 mg kg-1) and cadmium + carbon dots (50 mg kg-1+150 mg kg-1). The carbon dots synthesized by hydrothermal method from EPSs. The results showed that shoot dry weight and chlorophyll content of maize increased 9.7% and 23.2% in the presence of carbon dots, respectively. Carbon dots improved the chlorophyll content of maize by 24.3% in the cadmium treatment. Cadmium concentration increased (106%) in maize shoot but it decreased in root maize (68%). Carbon dots caused an increase of 5.7 and 6.7 times in the transfer factor and phytoremediation rate of cadmium, respectively. The presence of carbon dots triggered an increase of 77.9% and 39.9% of dissolved organic carbon in non-contaminated and cadmium-contaminated soils, respectively. Soil microbial biomass carbon increased 54.9% and 24.1% carbon dots and cadmium + carbon dots treatments, respectively. The study demonstrates the potential of fungal carbon dots for phytoremediation of heavy metal (loid)s contaminated soils. It also highlights the potential of nanotechnology in environmental remediation efforts.
Collapse
Affiliation(s)
- Jalal Sadeghi
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran
| | - Amir Lakzian
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran.
| | - Akram Halajnia
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran
| | - Mina Alikhani
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| |
Collapse
|
23
|
Supajaruwong S, Porahong S, Wibowo A, Yu YS, Khan MJ, Pongchaikul P, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Scaling-up of carbon dots hydrothermal synthesis from sugars in a continuous flow microreactor system for biomedical application as in vitro antimicrobial drug nanocarrier. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2260298. [PMID: 37859865 PMCID: PMC10583617 DOI: 10.1080/14686996.2023.2260298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
Carbon dots (CDs) are a new class of nanomaterials exhibiting high biocompatibility, water solubility, functionality, and tunable fluorescence (FL) property. Due to the limitations of batch hydrothermal synthesis in terms of low CDs yield and long synthesis duration, this work aimed to increase its production capacity through a continuous flow reactor system. The influence of temperature and time was first studied in a batch reactor for glucose, xylose, sucrose and table sugar precursors. CDs synthesized from sucrose precursor exhibited the highest quantum yield (QY) (175.48%) and the average diameter less than 10 nm (~6.8 ± 1.1 nm) when synthesized at 220°C for 9 h. For a flow reactor system, the best condition for CDs production from sucrose was 1 mL min-1 flow rate at 280°C, and 0.2 MPa pressure yielding 53.03% QY and ~ 6.5 ± 0.6 nm average diameter (6.6 mg min-1 of CDs productivity). CDs were successfully used as ciprofloxacin (CP) nanocarrier for antimicrobial activity study. The cytotoxicity study showed that no effect of CDs on viability of L-929 fibroblast cells was detected until 1000 µg mL-1 CDs concentration. This finding demonstrates that CDs synthesized via a flow reactor system have a high zeta potential and suitable surface properties for nano-theranostic applications.
Collapse
Affiliation(s)
- Siriboon Supajaruwong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Sirawich Porahong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Yu-Sheng Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
24
|
Szczepankowska J, Khachatryan G, Khachatryan K, Krystyjan M. Carbon Dots-Types, Obtaining and Application in Biotechnology and Food Technology. Int J Mol Sci 2023; 24:14984. [PMID: 37834430 PMCID: PMC10573487 DOI: 10.3390/ijms241914984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Materials with a "nano" structure are increasingly used in medicine and biotechnology as drug delivery systems, bioimaging agents or biosensors in the monitoring of toxic substances, heavy metals and environmental variations. Furthermore, in the food industry, they have found applications as detectors of food adulteration, microbial contamination and even in packaging for monitoring product freshness. Carbon dots (CDs) as materials with broad as well as unprecedented possibilities could revolutionize the economy, if only their synthesis was based on low-cost natural sources. So far, a number of studies point to the positive possibilities of obtaining CDs from natural sources. This review describes the types of carbon dots and the most important methods of obtaining them. It also focuses on presenting the potential application of carbon dots in biotechnology and food technology.
Collapse
Affiliation(s)
- Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| |
Collapse
|
25
|
Boukhvalov DW, Zatsepin DA, Kuznetsova YA, Pryakhina VI, Zatsepin AF. Uncommon 2D diamond-like carbon nanodots derived from nanotubes: atomic structure, electronic states, and photonic properties. Phys Chem Chem Phys 2023. [PMID: 37365886 DOI: 10.1039/d3cp01158e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In this article, we report the results of a relatively facile fabrication of carbon nanodots from single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs). The results of X-ray photoelectron spectroscopy (XPS) and Raman measurements show that the obtained carbon nanodots are quasi-two-dimensional objects with a diamond-like structure. Based on the characterization results, a theoretical model of the synthesized carbon nanodots was developed. The measured absorption spectra demonstrate the similarity in the local atomic structure of carbon nanodots synthesized from single-walled and multi-walled carbon nanotubes. However, the photoluminescence (PL) spectra of nanodots synthesized from both sources turned out to be completely different. Carbon dots fabricated from MWCNTs exhibit PL spectra similar to those of nanoscale carbon systems with sp3 hybridization and a valuable edge contribution. At the same time nanodots synthesized from SWCNTs exhibit PL spectra which are typical for quantum dots with an estimated size of ∼0.6-1.3 nm.
Collapse
Affiliation(s)
- D W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China.
- Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
| | - D A Zatsepin
- Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
- Institute of Metal Physics, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia, 620108
| | - Yu A Kuznetsova
- Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
| | - V I Pryakhina
- Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
| | - A F Zatsepin
- Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
| |
Collapse
|
26
|
Hu Z, Long W, Liu T, Guan Y, Lei G, Suo Y, Jia M, He J, Chen H, She Y, Fu H. A sensitive fluorescence sensor based on a glutathione modified quantum dot for visual detection of copper ions in real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122517. [PMID: 36868024 DOI: 10.1016/j.saa.2023.122517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Copper (Cu2+), as a heavy metal, accumulates in the human body to a certain extent, which can induce various diseases and endanger human health. Rapid and sensitive detection of Cu2+ is highly desired. In present work, a glutathione modified quantum dot (GSH-CdTe QDs) was synthesized and applied in a "turn-off" fluorescence probe to detect Cu2+. The fluorescence of GSH-CdTe QDs could be rapidly quenched in the presence of Cu2+ through aggregation-caused quenching (ACQ), resulting from the interaction between the surface functional groups of GSH-CdTe QDs and Cu2+ and the electrostatic attraction. In the range of 20-1100 nM, the Cu2+ concentration showed a good linear relationship with the fluorescence decline of the sensor, and the LOD is 10.12 nM, which was lower than the U.S. Environmental Protection Agency (EPA) defined limit (20 μM). Moreover, aiming to attain visual analysis, colorimetric method was also used for rapidly detecting Cu2+ by capturing the change in fluorescence color. Interestingly, the proposed approach has successfully been applied for the detection of Cu2+ in real samples (i.e., environment water, food and traditional Chinese medicine) with satisfactory results, which provides a promising strategy for the detection of Cu2+ in practical application with the merits of being rapid, simple and sensitive.
Collapse
Affiliation(s)
- Zikang Hu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Tingkai Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuting Guan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Guanghua Lei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yixin Suo
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Mengguo Jia
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jieling He
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
27
|
Zhang F, Zhang C, Teng J, Han D, Wu L, Hou W. Preparation of hydrogels based on poplar cellulose and their removal efficiency of Cd(II) from aqueous solutions. JOURNAL OF WATER AND HEALTH 2023; 21:676-686. [PMID: 37387335 PMCID: wh_2023_252 DOI: 10.2166/wh.2023.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Industrial heavy metal-contaminated wastewater is one of the main water pollution problems. Adsorbents are a promising method for the removal of heavy metal contaminants. Herein, polyaspartic acid/carboxymethyl poplar sawdust hydrogels (PASP/CMPP) and ascorbic acid/carboxymethyl poplar sawdust hydrogels (VC/CMPP) were prepared by aqueous polymerization using alkalized poplar sawdust (CMPP) as the substrate and PASP and vitamin C (VC) as modifiers. The effective results, provided by the characterization analysis of SEM and BET, indicate that the surface of the PASP/CMPP hydrogel has a larger number of loose pores and a larger pore volume than the VC/CMPP hydrogel. The treatment effects of the two hydrogels on simulated wastewater containing Cd(II) were investigated by a batch of experiments. The results showed that PASP/CMPP had a better adsorption effect than VC/CMPP under the same adsorption conditions. Interestingly, the solid concentration effect was found in the process of sorption kinetics and sorption isotherms. The sorption kinetic curves of Cd(II) on PASP/CMPP were well-fitted by the quasi-second-order kinetics under different adsorbent concentrations. The adsorption conforms to Langmuir and Freundlich adsorption isotherm models. More importantly, PASP/CMPP composites are expected to be used as a new kind of environmental adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Fengrong Zhang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China E-mail:
| | | | - Jia Teng
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Dandan Han
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Lishun Wu
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| |
Collapse
|
28
|
Gill SS, Goyal T, Goswami M, Patel P, Das Gupta G, Verma SK. Remediation of environmental toxicants using carbonaceous materials: opportunity and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27364-9. [PMID: 37160511 DOI: 10.1007/s11356-023-27364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Adsorption and photocatalytic properties of carbonaceous materials, viz., carbon nanotubes (CNTs), fullerene, graphene, graphene oxide, carbon nanofiber nanospheres, and activated carbon, are the legitimate weapons for the remediation of emerging and persistent inorganic/organic contaminants, heavy metals, and radionucleotides from the environment. High surface area, low or non-toxic nature, ease of synthesis, regeneration, and chemical modification of carbonaceous material make them ideal for the removal of toxicants. The research techniques investigated during the last decade for the elimination of environmental toxicants using carbonaceous materials are reviewed to offer comprehensive insight into the mechanism, efficiency, applications, advantages, and shortcomings. Opportunities and challenges associated with carbon materials have been discussed to suggest future perspectives in the remediation of environmental toxicants.
Collapse
Affiliation(s)
| | - Tanish Goyal
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Megha Goswami
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Preeti Patel
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | | | | |
Collapse
|
29
|
Atchudan R, Gangadaran P, Perumal S, Edison TNJI, Sundramoorthy AK, Rajendran RL, Ahn BC, Lee YR. Green Synthesis of Multicolor Emissive Nitrogen-Doped Carbon Dots for Bioimaging of Human Cancer Cells. J CLUST SCI 2023; 34:1583-1594. [DOI: 10.1007/s10876-022-02337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/10/2022] [Indexed: 01/20/2023]
|
30
|
Kahraman O, Turunc E, Dogen A, Binzet R. Synthesis of Graphene Quantum Dot Magnesium Hydroxide Nanocomposites and Investigation of Their Antioxidant and Antimicrobial Activities. Curr Microbiol 2023; 80:181. [PMID: 37046124 DOI: 10.1007/s00284-023-03286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
In this paper, we synthesized graphene quantum dots magnesium hydroxide nanocomposites (GQDs/Mg(OH)2). The synthesized nanocomposites were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Malvern Zetasizer. The antimicrobial and antioxidant properties of the obtained GQDs/Mg(OH)2 nanocomposites were investigated. GQDs/Mg(OH)2 nanocomposites have MIC values of 15.625 μg/mL against fungi (C. metapsilosis and C. parapsilosis) and 62.5 μg/mL against Gram (+) (S. pneumonia and E. faecalis) and Gram (-) (E. coli). The synthesized GQDs/Mg(OH)2 nanocomposites showed moderate antioxidant activity. The results showed that at 100-µg/mL GQDs/Mg(OH)2 nanocomposite concentration, the H2O2 scavenging activity was 62.18%.
Collapse
Affiliation(s)
- Oskay Kahraman
- Department of Biology, Faculty of Science, Mersin University, 33343, Mersin, Turkey
| | - Ersan Turunc
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| | - Aylin Dogen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, 33160, Mersin, Turkey
| | - Riza Binzet
- Department of Biology, Faculty of Science, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
31
|
Zulfajri M, Sudewi S, Damayanti R, Huang GG. Rambutan seed waste-derived nitrogen-doped carbon dots with l-aspartic acid for the sensing of Congo red dye. RSC Adv 2023; 13:6422-6432. [PMID: 36845584 PMCID: PMC9944313 DOI: 10.1039/d2ra07620a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
In this study, new nitrogen-doped carbon dots (N-CDs) were prepared by utilizing rambutan seed waste and l-aspartic acid as dual precursors (carbon and nitrogen sources) through a hydrothermal treatment method. The N-CDs showed blue emission in solution under UV light irradiation. Their optical and physicochemical properties were examined via UV-vis, TEM, FTIR spectroscopy, SEM, DSC, DTA, TGA, XRD, XPS, Raman spectroscopy, and zeta potential analyses. They showed a strong emission peak at 435 nm and excitation-dependent emission behavior with strong electronic transitions of C[double bond, length as m-dash]C/C[double bond, length as m-dash]O bonds. The N-CDs exhibited high water dispersibility and great optical properties in response to some environmental conditions such as heating temperature, light irradiation, ionic strength, and storage time. They have an average size of 3.07 nm and good thermal stability. Owing to their great properties, they have been used as a fluorescent sensor for Congo red dye. The N-CDs selectively and sensitively detected Congo red dye with a detection limit of 0.035 μM. Moreover, the N-CDs were utilized to detect Congo red in tap and lake water samples. Thus, rambutan seed waste was successfully converted into N-CDs and these functional nanomaterials are promising for use in important applications.
Collapse
Affiliation(s)
- Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah Banda Aceh Aceh 23245 Indonesia
| | - Sri Sudewi
- Department of Pharmacy, Universitas Sam Ratulangi Manado 95115 Indonesia
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| | - Rizki Damayanti
- Department of Chemistry Education, Universitas Serambi Mekkah Banda Aceh Aceh 23245 Indonesia
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| |
Collapse
|
32
|
Boukhvalov DW, Osipov VY, Hogan BT, Baldycheva A. A comprehensive model of nitrogen-free ordered carbon quantum dots. DISCOVER NANO 2023; 18:1. [PMID: 36719545 PMCID: PMC9889594 DOI: 10.1186/s11671-023-03773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/26/2022] [Indexed: 05/24/2023]
Abstract
We propose and demonstrate a novel range of models to accurately determine the optical properties of nitrogen-free carbon quantum dots (CQDs) with ordered graphene layered structures. We confirm the results of our models against the full range of experimental results for CQDs available from an extensive review of the literature. The models can be equally applied to CQDs with varied sizes and with different oxygen contents in the basal planes of the constituent graphenic sheets. We demonstrate that the experimentally observed blue fluorescent emission of nitrogen-free CQDs can be associated with either small oxidised areas on the periphery of the graphenic sheets, or with sub-nanometre non-functionalised islands of sp2-hybridised carbon with high symmetry confined in the centres of oxidised graphene sheets. Larger and/or less symmetric non-functionalised regions in the centre of functionalised graphene sheet are found to be sources of green and even red fluorescent emission from nitrogen-free CQDs. We also demonstrate an approach to simplify the modelling of the discussed sp2-islands by substitution with equivalent strained polycyclic aromatic hydrocarbons. Additionally, we show that the bandgaps (and photoluminescence) of CQDs are not dependent on either out-of-plane corrugation of the graphene sheet or the spacing between sp2-islands. Advantageously, our proposed models show that there is no need to involve light-emitting polycyclic aromatic molecules (nanographenes) with arbitrary structures grafted to the particle periphery to explain the plethora of optical phenomena observed for CQDs across the full range of experimental works.
Collapse
Affiliation(s)
- Danil W. Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Institute of Physics and Technology, Ural Federal University, Mira 19 Str., Yekaterinburg, Russia 620002
| | | | - Benjamin Thomas Hogan
- STEMM Laboratory, University of Exeter, North Park Road, Exeter, EX4 4QF UK
- Department of Electrical and Information Engineering, University of Oulu, 90014 Oulu, Finland
- Department of Chemical Engineering, Queen’s University, 45 Union St., Kingston, ON K7L 3N6 Canada
| | - Anna Baldycheva
- STEMM Laboratory, University of Exeter, North Park Road, Exeter, EX4 4QF UK
| |
Collapse
|
33
|
Moustafa RM, Talaat W, Youssef RM, Kamal MF. Carbon dots as fluorescent nanoprobes for assay of some non-fluorophoric nitrogenous compounds of high pharmaceutical interest. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:8. [PMID: 36686602 PMCID: PMC9844168 DOI: 10.1186/s43088-023-00346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Background Carbon dots, CDs, have excellent photoluminescence properties, good biocompatibility, low toxicity and good light stability. The optical, magnetic and electronic properties of CDs make them a hugely relevant tool to be used in pharmaceutical analysis, bioimaging, drug delivery, and other fields. The fluorescence of carbon nanodots makes it suitable for assay of some nitrogenous compounds of high pharmaceutical interest. In this work, we develop simple, fast and green spectrophotometric methods for quantification of Azithromycin and Rasagiline mesilate using synthesized fluorescent CDs from garlic peels. Results The spectrometric methods depend on stoichiometric reactions of both drugs with fluorescent CDs. Carbon dots exhibit a declared absorption peak λmax at 238 nm and potent fluorimetric emission at λem 528 nm, upon excitation at λex 376 nm. Drugs' concentrations in ppm are efficiently calculated using Stern-Volmer Equation. Decrease in fluorescence (ΔF = F o - F) and the F-ratio values are linearly correlated to molar concentration of each quencher (drug). A significant linear diminish in the dots' measured absorbance and fluorimetric emission values was observed. Validation of all the developed methods was according to the ICH guidelines. Conclusions In a new way, this work successfully indicates, spectrometric methods for rapid detection of two non-fluorophoric nitrogenous compounds using potent carbon nanodots. Consequently, these green developed methods offer several benefits as simplicity, ease of quantification, accuracy and precision that encourage the application of the developed methods in routine analysis of Azithromycin and Rasagiline mesilate in quality control laboratories as analytical tool. Supplementary Information The online version contains supplementary material available at 10.1186/s43088-023-00346-z.
Collapse
Affiliation(s)
- Rana M. Moustafa
- grid.442603.70000 0004 0377 4159Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Wael Talaat
- grid.449014.c0000 0004 0583 5330Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Rasha M. Youssef
- grid.7155.60000 0001 2260 6941Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Miranda F. Kamal
- grid.449014.c0000 0004 0583 5330Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
34
|
Tohamy HS, El‑Sakhawy M, Kamel S. Eco-friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent. J Fluoresc 2023; 33:423-435. [PMID: 36435905 PMCID: PMC9957867 DOI: 10.1007/s10895-022-03085-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Fluorescent carbon quantum dots (CQDs) were prepared by an economical, green, and single-step procedure with the assistance of microwave heating of urea with bagasse (SCB), cellulose (C), or carboxymethyl cellulose (CMC). The prepared CQDs were characterized using a series of spectroscopic techniques, and they had petite size, intense absorption in the UV, and excitation wavelength-dependent fluorescence. The prepared CQDs were used for Pb(II) adsorption from an aqueous solution. The removal efficiency percentages (R %) were 99.16, 96.36, and 98.48% for QCMC, QC, and QSCB, respectively. The findings validated the efficiency of CQDs synthesized from CMC, cellulose, and SCB as excellent materials for further utilization in the environmental fields of wastewater pollution detection, adsorption, and chemical sensing applications. The kinetics and isotherms studied found that all CQDs isotherms fit well with the Langmuir model than Freundlich and Temkin models. According to R2, the pseudo-second-order fits the adsorption of QCMC, while the first-order one fits with QC and QSCB.
Collapse
Affiliation(s)
| | - Mohamed El‑Sakhawy
- Cellulose and Paper Department, National Research Centre, Cairo, 12622 Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo, 12622 Egypt
| |
Collapse
|
35
|
Ghezzi F, Donnini R, Sansonetti A, Giovanella U, La Ferla B, Vercelli B. Nitrogen-Doped Carbon Quantum Dots for Biosensing Applications: The Effect of the Thermal Treatments on Electrochemical and Optical Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010072. [PMID: 36615268 PMCID: PMC9821838 DOI: 10.3390/molecules28010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
The knowledge of the ways in which post-synthesis treatments may influence the properties of carbon quantum dots (CDs) is of paramount importance for their employment in biosensors. It enables the definition of the mechanism of sensing, which is essential for the application of the suited design strategy of the device. In the present work, we studied the ways in which post-synthesis thermal treatments influence the optical and electrochemical properties of Nitrogen-doped CDs (N-CDs). Blue-emitting, N-CDs for application in biosensors were synthesized through the hydrothermal route, starting from citric acid and urea as bio-synthesizable and low-cost precursors. The CDs samples were thermally post-treated and then characterized through a combination of spectroscopic, structural, and electrochemical techniques. We observed that the post-synthesis thermal treatments show an oxidative effect on CDs graphitic N-atoms. They cause their partially oxidation with the formation of mixed valence state systems, [CDs]0+, which could be further oxidized into the graphitic N-oxide forms. We also observed that thermal treatments cause the decomposition of the CDs external ammonium ions into ammonia and protons, which protonate their pyridinic N-atoms. Photoluminescence (PL) emission is quenched.
Collapse
Affiliation(s)
- Francesco Ghezzi
- Istituto per la Scienza e Tecnologia dei Plasmi, CNR-ISTP, Via Cozzi 53, 20125 Milano, Italy
| | - Riccardo Donnini
- Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, CNR-ICMATE, Via Cozzi 53, 20125 Milano, Italy
| | - Antonio Sansonetti
- Istituto di Scienze del Patrimonio Culturale, CNR-ISPC, Via Cozzi 53, 20125 Milano, Italy
| | - Umberto Giovanella
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR-SCITEC, Via Alfonso Corti 12, 20133 Milano, Italy
| | - Barbara La Ferla
- Dipartimento di Biotecnologie e di Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Barbara Vercelli
- Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, CNR-ICMATE, Via Cozzi 53, 20125 Milano, Italy
- Correspondence:
| |
Collapse
|
36
|
Rajendran S, UshaVipinachandran V, Badagoppam Haroon KH, Ashokan I, Bhunia SK. A comprehensive review on multi-colored emissive carbon dots as fluorescent probes for the detection of pharmaceutical drugs in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4263-4291. [PMID: 36278849 DOI: 10.1039/d2ay01288j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exposure to constituent hazardous chemicals in medical products has become a threat to environmental health across the globe. Excessive medication and the mishandling of pharmaceutical drugs can lead to the increased presence of chemicals in the aquatic environment, causing water pollution. Only a few nanomaterials exist for the detection of these chemicals and they are limited in use due to their adverse toxicity, instability, cost, and low aqueous solubility. In contrast, carbon dots (C-dots), a member of the family of carbon-based nanomaterials, have various beneficial properties including excellent biocompatibility, strong photoluminescence, low photobleaching, tunable fluorescence, and easy surface modification. Herein, we summarize recent advancements in various synthetic strategies for high-quality tunable fluorescent C-dots. The root of fluorescence has been briefly explained via the quantum confinement effect, surface defects, and molecular fluorescence. The surface functional moieties of C-dots have been investigated in depth to recognize the various types of pharmaceutical drugs that are used for the treatment of patients. The modulation of C-dot fluorescence in the course of their interactions with these drugs has been carefully explained. Different types of interaction mechanisms behind the C-dot fluorescence alteration have been discussed. Finally, the challenges and future perspectives of C-dots have been proposed for the vibrant field development of C-dot-based drug sensors.
Collapse
Affiliation(s)
- Sathish Rajendran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Varsha UshaVipinachandran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | | | - Indhumathi Ashokan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Susanta Kumar Bhunia
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
37
|
Selvaraju N, Ganesh PS, Palrasu V, Venugopal G, Mariappan V. Evaluation of Antimicrobial and Antibiofilm Activity of Citrus medica Fruit Juice Based Carbon Dots against Pseudomonas aeruginosa. ACS OMEGA 2022; 7:36227-36234. [PMID: 36278088 PMCID: PMC9583329 DOI: 10.1021/acsomega.2c03465] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the common immortal pathogens that cause intense chronic infections in low-immunity patients, significantly evading the immune system and suppressing the respiratory system. This work reports on the synthesis of prominent members of the carbon family, carbon quantum dots (CQDs), from a natural carbon precursor, Citrus medica (C. medica) fruit, and their inhibiting property against P. aeruginosa. CQDs synthesized by the conventional hydrothermal method with an average particle size of 4.5 nm exhibit renowned antimicrobial properties. To enhance the properties of the CQDs, nitrogen was doped using ammonium hydroxide as a nitrogen source, and absorption and fluorescence studies and the elemental composition of CQDs were also reported. CQDs potentially inhibited the growth of bacteria at the lowest concentration level of 1.25% (v/v). Similarly, CQDs moderately inhibited biofilm formation at the concentration level of 0.07% (v/v) for both clinical and control strains of P. aeruginosa. A fluorescence microscopy study revealed that the treated strain shows a moderately reduced biofilm formation when compared to the control strain of P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Nithya Selvaraju
- Advanced
Nanomaterials and System Lab, Department of Materials Science, School
of Technology, Central University of Tamil
Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department
of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences
(SIMATS), Velappanchavadi, PH Road, Chennai 600077, India
| | - Veeramurali Palrasu
- Department
of Electronics, Government Arts College, Kulithalai, Karur District, 639120, Tamil Nadu, India
| | - Gunasekaran Venugopal
- Advanced
Nanomaterials and System Lab, Department of Materials Science, School
of Technology, Central University of Tamil
Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - Vanitha Mariappan
- Center
for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
38
|
Saengsrichan A, Khemthong P, Wanmolee W, Youngjan S, Phanthasri J, Arjfuk P, Pongchaikul P, Ratchahat S, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Platinum/carbon dots nanocomposites from palm bunch hydrothermal synthesis as highly efficient peroxidase mimics for ultra-low H2O2 sensing platform through dual mode of colorimetric and fluorescent detection. Anal Chim Acta 2022; 1230:340368. [DOI: 10.1016/j.aca.2022.340368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022]
|
39
|
Ratiometric detection of propafenone hydrochloride with one-pot synthesized dual emissive carbon dots. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Yuan N, Tan K, Zhang X, Zhao A, Guo R. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag. CHEMOSPHERE 2022; 303:134839. [PMID: 35537628 DOI: 10.1016/j.chemosphere.2022.134839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Since the human consumption of coal is increasingly growing and coal-based solid wastes are discharged in large quantities, the resource utilization of coal-based solid wastes has been paid more attention. In the present work, for the first time, the coal gasification fine slag is subjected to prepare ZSM-5 zeolites with ultra-low n(SiO2)/n(Al2O3) ratios (less than 20) and hierarchical pore structures. The increase in the concentration of the alkaline extract leads to the decrease of the crystallinity, the irregularity of the microscopic morphology, and the decrease of the specific surface area, resulting in the in-situ generation of mesopores within ZSM-5. Moreover, adsorption experiments demonstrate that ZSM-5-2M exhibits the best methylene blue adsorption performance at the pH of 9 with a removal rate of up to 82.07%, and it also has good adsorption performance in simulated real water samples. Furthermore, the adsorption performance of ZSM-5-2M on the malachite green, Rhodamine B, Congo red, and methyl orange has been investigated and it is found to be very effective for the adsorption of cationic dyes, and its adsorption performance for methylene blue and malachite green is reduced in the presence of anions.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Kaiqi Tan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Aijing Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Rui Guo
- School of Economics and Management, Qilu Normal University, Jinan, 250013, China
| |
Collapse
|
41
|
Nazri NAA, Azeman NH, Bakar MHA, Mobarak NN, Aziz THTA, Zain ARM, Arsad N, Luo Y, Bakar AAA. Chlorophyll Detection by Localized Surface Plasmon Resonance Using Functionalized Carbon Quantum Dots Triangle Ag Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2999. [PMID: 36080034 PMCID: PMC9457568 DOI: 10.3390/nano12172999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
An optical sensor-based localized surface plasmon resonance (LSPR) sensor was demonstrated for sensitive and selective chlorophyll detection through the integration of amino-functionalized carbon quantum dots (NCQD) and triangle silver nanoparticles (AgNPs). The additions of amino groups to the CQD enhance the detection of chlorophyll through electrostatic interactions. AgNPs-NCQD composite was fabricated on the surface of the silanized glass slide using the self-assembly technique. The experimental results showed that the AgNPs-NCQD film-based LSPR sensor detects better than AgNPs and AgNPs-CQD films with a good correlation coefficient (R2 = 0.9835). AgNPs-NCQD showed a high sensitivity response of 2.23 nm ppm-1. The detection and quantification limits of AgNPs-NCQD are 1.03 ppm and 3.40 ppm, respectively, in the range of 0.05 to 6 ppm. Throughout this study, no significant interference was observed among the other ionic species (NO2-, PO4-, NH4+, and Fe3+). This study demonstrates the applicability of the proposed sensor (AgNPs-NCQD) as a sensing material for chlorophyll detection in oceans.
Collapse
Affiliation(s)
- Nur Afifah Ahmad Nazri
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nur Hidayah Azeman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mohd Hafiz Abu Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nadhratun Naiim Mobarak
- Department of Chemical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Tg Hasnan Tg Abd Aziz
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fibre Sensing and Communications, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ahmad Ashrif A. Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Institut Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
42
|
Aerogel Assembled by Two Types of Carbon Nanoparticles for Efficient Removal of Heavy Metal Ions. Gels 2022; 8:gels8080459. [PMID: 35892718 PMCID: PMC9329938 DOI: 10.3390/gels8080459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
Both sodium alginate and polyethyleneimine (PEI) have a good ability to adsorb heavy metal ions. PEI and sodium alginate were used as important precursors to synthesize positively charged carbon nanoparticles (p-CNDs) with hydroxyl and carboxyl, and negatively charged carbon nanoparticles (n-CNDs) with amino, respectively. The carbon nanoparticles (CNDs) aerogel with a large specific surface area and rich functional groups were constructed by self-assembled p-CNDs and n-CNDs via electrostatic attraction for adsorption of heavy metal ions in water. The results show that CNDs aerogel has good adsorption properties for Pb2+ (96%), Cu2+ (91%), Co2+ (86%), Ni2+ (82%), and Cd2+ (78%). Furthermore, the fluorescence emission intensity of CNDs aerogel will gradually decrease with the increase in the adsorption rate, indicating that it can detect the adsorption process synchronously. In addition, the cytotoxicity test reveals that CNDs have good biocompatibility and will not cause secondary damage to biological cells.
Collapse
|
43
|
Direct and Sensitive Detection of Dopamine Using Carbon Quantum Dots Based Refractive Index Surface Plasmon Resonance Sensor. NANOMATERIALS 2022; 12:nano12111799. [PMID: 35683655 PMCID: PMC9182140 DOI: 10.3390/nano12111799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Abnormality of dopamine (DA), a vital neurotransmitter in the brain’s neuronal pathways, causes several neurological diseases. Rapid and sensitive sensors for DA detection are required for early diagnosis of such disorders. Herein, a carbon quantum dot (CQD)-based refractive index surface plasmon resonance (SPR) sensor was designed. The sensor performance was evaluated for various concentrations of DA. Increasing DA levels yielded blue-shifted SPR dips. The experimental findings revealed an excellent sensitivity response of 0.138°/pM in a linear range from 0.001 to 100 pM and a high binding affinity of 6.234 TM−1. The effects of varied concentrations of DA on the optical characteristics of CQD thin film were further proved theoretically. Increased DA levels decreased the thickness and real part of the refractive index of CQD film, according to fitting results. Furthermore, the observed reduction in surface roughness using AFM demonstrated that DA was bound to the sensor layer. This, in turn, explained the blue shift in SPR reflectance curves. This optical sensor offers great potential as a trustworthy solution for direct measurement due to its simple construction, high sensitivity, and other sensing features.
Collapse
|
44
|
Chatterjee N, Kumar P, Kumar K, Misra SK. What makes carbon nanoparticle a potent material for biological application? WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1782. [PMID: 35194963 DOI: 10.1002/wnan.1782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022]
Abstract
Carbon materials are generally utilized in the form of carbon allotropes and their characteristics are exploited as such or for improving the thermal, electrical, optical, and mechanical properties of other biomaterials. This has now found a broader share in conventional biomaterial space with the generation of nanodiamond, carbon dot, carbon nanoparticles (CNPs), and so forth. With properties of better biocompatibility, intrinsic optical emission, aqueous suspendability, and easier surface conjugation possibilities made CNPs as one of the fore most choice for biological applications especially for use in intracellular spaces. There are various reports available presenting methods of preparing, characterizing, and using CNPs for various biological applications but a collection of information on what makes CNP a suitable biomaterial to achieve those biological activities is yet to be provided in a significant way. Herein, a series of correlations among synthesis, characterization, and mode of utilization of CNP have been incorporated along with the variations in its use as agent for sensing, imaging, and therapy of different diseases or conditions. It is ensembled that how simplified and optimized methods of synthesis is correlated with specific characteristics of CNPs which were found to be suitable in the specific biological applications. These comparisons and correlations among various CNPs, will surely provide a platform to generate new edition of this nanomaterial with improvised applications and newer methods of evaluating structural, physical, and functional properties. This may ensure the eventual use of CNPs for human being for specific need in near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Niranjan Chatterjee
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Piyush Kumar
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Krishan Kumar
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
45
|
Saengsrichan A, Saikate C, Silasana P, Khemthong P, Wanmolee W, Phanthasri J, Youngjan S, Posoknistakul P, Ratchahat S, Laosiripojana N, Wu KCW, Sakdaronnarong C. The Role of N and S Doping on Photoluminescent Characteristics of Carbon Dots from Palm Bunches for Fluorimetric Sensing of Fe3+ Ion. Int J Mol Sci 2022; 23:ijms23095001. [PMID: 35563393 PMCID: PMC9100793 DOI: 10.3390/ijms23095001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
This work aims to enhance the value of palm empty fruit bunches (EFBs), an abundant residue from the palm oil industry, as a precursor for the synthesis of luminescent carbon dots (CDs). The mechanism of fIuorimetric sensing using carbon dots for either enhancing or quenching photoluminescence properties when binding with analytes is useful for the detection of ultra-low amounts of analytes. This study revealed that EFB-derived CDs via hydrothermal synthesis exceptionally exhibited luminescence properties. In addition, surface modification for specific binding to a target molecule substantially augmented their PL characteristics. Among the different nitrogen and sulfur (N and S) doping agents used, including urea (U), sulfate (S), p-phenylenediamine (P), and sodium thiosulfate (TS), the results showed that PTS-CDs from the co-doping of p-phenylenediamine and sodium thiosulfate exhibited the highest PL properties. From this study on the fluorimetric sensing of several metal ions, PTS-CDs could effectively detect Fe3+ with the highest selectivity by fluorescence quenching to 79.1% at a limit of detection (LOD) of 0.1 µmol L−1. The PL quenching of PTS-CDs was linearly correlated with the wide range of Fe3+ concentration, ranging from 5 to 400 µmol L−1 (R2 = 0.9933).
Collapse
Affiliation(s)
- Aphinan Saengsrichan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Chaiwat Saikate
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Peeranut Silasana
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Jakkapop Phanthasri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Saran Youngjan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok 10140, Thailand;
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei 10617, Taiwan;
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
- Correspondence: ; Tel.: +66-28892138 (ext. 6101-2); Fax: +662-4419731
| |
Collapse
|
46
|
Ganjkhanlou Y, Maris JE, Koek J, Riemersma R, Weckhuysen BM, Meirer F. Dual Fluorescence in Glutathione-Derived Carbon Dots Revisited. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:2720-2727. [PMID: 35178139 PMCID: PMC8842246 DOI: 10.1021/acs.jpcc.1c10478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/17/2022] [Indexed: 05/28/2023]
Abstract
Dual-fluorescence carbon dots have great potential as nanosensors in life and materials sciences. Such carbon dots can be obtained via a solvothermal synthesis route with glutathione and formamide. In this work, we show that the dual-fluorescence emission of the synthesis products does not originate from a single carbon dot emitter, but rather from a mixture of physically separate compounds. We characterized the synthesis products with UV-vis, Raman, infrared, and fluorescence spectroscopy, and identified blue-emissive carbon dots and red-emissive porphyrin. We demonstrate an easy way to separate the two compounds without the need for time-consuming dialysis. Understanding the nature of the system, we can now steer the synthesis toward the desired product, which paves the way for a cheap and environmentally friendly synthesis route toward carbon dots, water-soluble porphyrin, and mixed systems.
Collapse
|
47
|
Hwang E, Lee B. Synthesis of a fluorescence sensor based on carbon quantum dots for detection of bisphenol A in aqueous solution. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0989-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
González-González RB, González LT, Madou M, Leyva-Porras C, Martinez-Chapa SO, Mendoza A. Synthesis, Purification, and Characterization of Carbon Dots from Non-Activated and Activated Pyrolytic Carbon Black. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:298. [PMID: 35159643 PMCID: PMC8838732 DOI: 10.3390/nano12030298] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
In this work, carbon dots were created from activated and non-activated pyrolytic carbon black obtained from waste tires, which were then chemically oxidized with HNO3. The effects caused to the carbon dot properties were analyzed in detail through characterization techniques such as ion chromatography; UV-visible, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy; ζ potential; transmission electron microscopy (TEM); and spectrofluorometry. The presence of functional groups on the surface of all carbon dots was revealed by UV-visible, FTIR, XPS, and Raman spectra. The higher oxidation degrees of carbon dots from activated precursors compared to those from nonactivated precursors resulted in differences in photoluminescence (PL) properties such as bathochromic shift, lower intensity, and excitation-dependent behavior. The results demonstrate that the use of an activating agent in the recovery of pyrolytic carbon black resulted in carbon dots with different PL properties. In addition, a dialysis methodology is proposed to overcome purification obstacles, finding that 360 h were required to obtain pure carbon dots synthesized by a chemical oxidation method.
Collapse
Affiliation(s)
- Reyna Berenice González-González
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (R.B.G.-G.); (L.T.G.); (S.O.M.-C.)
| | - Lucy Teresa González
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (R.B.G.-G.); (L.T.G.); (S.O.M.-C.)
| | - Marc Madou
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA 92697, USA;
| | - César Leyva-Porras
- Laboratorio Nacional de Nanotecnología (Nanotech), Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes No. 120, Chihuahua 31136, Mexico;
| | - Sergio Omar Martinez-Chapa
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (R.B.G.-G.); (L.T.G.); (S.O.M.-C.)
| | - Alberto Mendoza
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (R.B.G.-G.); (L.T.G.); (S.O.M.-C.)
| |
Collapse
|
49
|
Zaki AH, Adel S, Abd El-hafiez MM, Abdel-Khalek AA. Improved production of titanate nanotubes by hydrothermal method for adsorption of organic dyes. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00175-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Increasing the yield of nanomaterials using the same reactor size and fixing most of the reactants and conditions will greatly improve the production process by saving time, energy and efforts. Titanate nanotubes are mainly prepared by hydrothermal process, in which TiO2 powder reacts with NaOH at certain conditions to form the desired nanotubes. It was reported that it is a must to use high concentrations of NaOH (10 N) to enable the tubular form formation, and the amount of NaOH from the stoichiometry point of view is much higher than that of TiO2; this means excess amounts of NaOH are not used and washed off. This work was designed to improve the production yield by making use of this excess amount of NaOH.
Results
More than 60 g of sodium titanate nanotubes was prepared using simple hydrothermal method. The prepared nanotubes were characterized by X-ray powder diffraction, high-resolution transmission electron microscopy, Fourier-transform infrared spectroscopy and BET surface area analysis. The adsorption capacity of these nanotubes was tested against three commonly used dyes: methyl orange, crystal violet and thymol blue. The samples showed great affinity toward crystal violet and lower activity toward methyl orange and thymol blue, where they achieved more than 90% removal efficiency under different experimental conditions.
Conclusions
Sodium titanate nanotubes were prepared in large amounts using modified hydrothermal method. The obtained nanotubes efficiently removed crystal violet from water. This improved synthesis of titanate nanotubes will reduce the total cost of nanomaterials production, and subsequently the treatment process, since titanate nanotubes are used in adsorption and photocatalysis processes.
Collapse
|
50
|
Li M, Zhang S, Cui S, Qin K, Zhang Y, Li P, Cao Q, Xiao H, Zeng Q. Pre-grafting effect on improving adsorption efficiency of cellulose based biosorbent for Hg (II) removal from aqueous solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|