1
|
Kozłowski S, Osička J, Ilcikova M, Galeziewska M, Mrlik M, Pietrasik J. From Brush to Dendritic Structure: Tool for Tunable Interfacial Compatibility between the Iron-Based Particles and Silicone Oil in Magnetorheological Fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5297-5305. [PMID: 38430189 PMCID: PMC10938888 DOI: 10.1021/acs.langmuir.3c03736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Comprehensive magnetic particle stability together with compatibility between them and liquid medium (silicone oil) is still a crucial issue in the case of magnetorheological (MR) suspensions to guarantee their overall stability and MR performance. Therefore, this study is aimed at improving the interfacial stability between the carbonyl iron (CI) particles and silicone oil. In this respect, the particles were modified with polymer brushes and dendritic structures of poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS), called CI-brushes or CI-dendrites, respectively, and their stability properties (corrosion, thermo-oxidation, and sedimentation) were compared to neat CI ones. Compatibility of the obtained particles and silicone oil was investigated using contact angle and off-state viscosity investigation. Finally, the magneto-responsive capabilities in terms of yield stress and reproducibility of the MR phenomenon were thoroughly investigated. It was found that MR suspensions based on CI-brushes had significantly improved compatibility properties than those of neat CI ones; however, the CI-dendrites-based suspension possessed the best capabilities, while the MR performance was negligibly suppressed.
Collapse
Affiliation(s)
- Szymon Kozłowski
- Department
of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Josef Osička
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, University Institute, Trida T. Bati 5678, 76001Zlin,Czech
Republic
| | - Marketa Ilcikova
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, University Institute, Trida T. Bati 5678, 76001Zlin,Czech
Republic
- Slovak
Academy of Sciences, Polymer Institute, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University, Vavreckova 5669, 76001Zlin,Czech
Republic
| | - Monika Galeziewska
- Department
of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Miroslav Mrlik
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, University Institute, Trida T. Bati 5678, 76001Zlin,Czech
Republic
| | - Joanna Pietrasik
- Department
of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| |
Collapse
|
2
|
Lee S, Noh J, Jekal S, Kim J, Oh WC, Sim HS, Choi HJ, Yi H, Yoon CM. Hollow TiO 2 Nanoparticles Capped with Polarizability-Tunable Conducting Polymers for Improved Electrorheological Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3521. [PMID: 36234648 PMCID: PMC9565313 DOI: 10.3390/nano12193521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Hollow TiO2 nanoparticles (HNPs) capped with conducting polymers, such as polythiophene (PT), polypyrrole (PPy), and polyaniline (PANI), have been studied to be used as polarizability-tunable electrorheological (ER) fluids. The hollow shape of TiO2 nanoparticles, achieved by the removal of the SiO2 template, offers colloidal dispersion stability in silicone oil owing to the high number density. Conducting polymer shells, introduced on the nanoparticle surface using vapor deposition polymerization method, improve the yield stress of the corresponding ER fluids in the order of PANI < PPy < PT. PT-HNPs exhibited the highest yield stress of ca. 94.2 Pa, which is 5.0-, 1.5-, and 9.6-times higher than that of PANI-, PPy-, and bare HNPs, respectively. The improved ER response upon tuning with polymer shells is attributed to the space charge contribution arising from the movement of the charge carriers trapped by the heterogeneous interface. The ER response of studied ER fluids is consistent with the corresponding polarizability results as indicated by the permittivity and electrophoretic mobility measurements. In conclusion, the synergistic effect of hollow nanostructures and conducting polymer capping effectively enhanced the ER performance.
Collapse
Affiliation(s)
- Seungae Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
| | - Jungchul Noh
- McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Suk Jekal
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea
| | - Jiwon Kim
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea
| | - Won-Chun Oh
- Department of Advanced Materials Science and Engineering, Hanseo University, Seosan-si 31962, Korea
| | - Hyung-Sub Sim
- Department of Aerospace Engineering, Sejong University, Seoul 05006, Korea
| | - Hyoung-Jin Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
- Program of Environmental and Polymer Engineering, Inha University, Incheon 22212, Korea
| | - Hyeonseok Yi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan
| | - Chang-Min Yoon
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea
| |
Collapse
|
3
|
Gudkov MV, Stolyarova DY, Shiyanova KA, Mel’nikov VP. Polymer Composites with Graphene and Its Derivatives as Functional Materials of the Future. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Effect of Nano-Sized Poly(Butyl Acrylate) Layer Grafted from Graphene Oxide Sheets on the Compatibility and Beta-Phase Development of Poly(Vinylidene Fluoride) and Their Vibration Sensing Performance. Int J Mol Sci 2022; 23:ijms23105777. [PMID: 35628584 PMCID: PMC9146892 DOI: 10.3390/ijms23105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
In this work, graphene oxide (GO) particles were modified with a nano-sized poly(butyl acrylate) (PBA) layer to improve the hydrophobicity of the GO and improve compatibility with PVDF. The improved hydrophobicity was elucidated using contact angle investigations, and exhibit nearly 0° for neat GO and 102° for GO-PBA. Then, the neat GO and GO-PBA particles were mixed with PVDF using a twin screw laboratory extruder. It was clearly shown that nano-sized PBA layer acts as plasticizer and shifts glass transition temperature from −38.7 °C for neat PVDF to 45.2 °C for PVDF/GO-PBA. Finally, the sensitivity to the vibrations of various frequencies was performed and the piezoelectric constant in the thickness mode, d33, was calculated and its electrical load independency were confirmed. Received values of the d33 were for neat PVDF 14.7 pC/N, for PVDF/GO 20.6 pC/N and for PVDF/GO-PBA 26.2 pC/N showing significant improvement of the vibration sensing and thus providing very promising systems for structural health monitoring and data harvesting.
Collapse
|
5
|
Wang Y, Yuan J, Zhao X, Yin J. Electrorheological Fluids of GO/Graphene-Based Nanoplates. MATERIALS (BASEL, SWITZERLAND) 2022; 15:311. [PMID: 35009457 PMCID: PMC8746257 DOI: 10.3390/ma15010311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/10/2022]
Abstract
Due to their unique anisotropic morphology and properties, graphene-based materials have received extensive attention in the field of smart materials. Recent studies show that graphene-based materials have potential application as a dispersed phase to develop high-performance electrorheological (ER) fluids, a kind of smart suspension whose viscosity and viscoelastic properties can be adjusted by external electric fields. However, pure graphene is not suitable for use as the dispersed phase of ER fluids due to the electric short circuit caused by its high electrical conductivity under electric fields. However, graphene oxide (GO) and graphene-based composites are suitable for use as the dispersed phase of ER fluids and show significantly enhanced property. In this review, we look critically at the latest developments of ER fluids based on GO and graphene-based composites, including their preparation, electrically tunable ER property, and dispersed stability. The mechanism behind enhanced ER property is discussed according to dielectric spectrum analysis. Finally, we also propose the remaining challenges and possible developments for the future outlook in this field.
Collapse
Affiliation(s)
- Yudong Wang
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (Y.W.); (J.Y.); (X.Z.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Jinhua Yuan
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (Y.W.); (J.Y.); (X.Z.)
| | - Xiaopeng Zhao
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (Y.W.); (J.Y.); (X.Z.)
| | - Jianbo Yin
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (Y.W.); (J.Y.); (X.Z.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
6
|
Khine YY, Wen X, Jin X, Foller T, Joshi R. Functional groups in graphene oxide. Phys Chem Chem Phys 2022; 24:26337-26355. [DOI: 10.1039/d2cp04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Graphene oxide consists of diverse surface chemistry which allows tethering GO with additional functionalities and tuning its intrinsic properties. This review summarizes recently advanced methods to covalently modify GO for specific applications.
Collapse
Affiliation(s)
- Yee Yee Khine
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xinyue Wen
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaoheng Jin
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Tobias Foller
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rakesh Joshi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Structure/Properties Relationship of Anionically Synthesized Diblock Copolymers " Grafted to" Chemically Modified Graphene. Polymers (Basel) 2021; 13:polym13142308. [PMID: 34301065 PMCID: PMC8309249 DOI: 10.3390/polym13142308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
A novel approach to obtaining nanocomposite materials using anionic sequential polymerization and post-synthetic esterification reactions with chemically modified graphene sheets (CMGs) is reported. The anionically synthesized diblock copolymer precursors of the PS-b-PI-OH type were grafted to the chemically modified –COOH groups of the CMGs, giving rise to the final composite materials, namely polystyrene-b-poly(isoprene)-g-CMGs, which exhibited enhanced physicochemical properties. The successful synthesis was determined through multiple molecular characterization techniques together with thermogravimetric analysis for the verification of increased thermal stability, and the structure/properties relationship was justified through transmission electron microscopy. Furthermore, the arrangement of CMGs utilizing lamellar and cylindrical morphologies was studied in order to determine the effect of the loaded CMGs in the adopted topologies.
Collapse
|
8
|
Effect of a temperature threshold on the electrorheological performance of ionic liquid crystal polyanilines. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Enhanced Thermal Conductivity of Polyamide-Based Nanocomposites Containing Graphene Oxide Sheets Decorated with Compatible Polymer Brushes. MATERIALS 2021; 14:ma14040751. [PMID: 33562671 PMCID: PMC7914667 DOI: 10.3390/ma14040751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 11/29/2022]
Abstract
Polyamide-based nanocomposites containing graphene platelets decorated with poly(acrylamide) brushes were prepared and characterized. The brushes were grafted from the surface of graphene oxide (GO), a thermally conductive additive, using atom transfer radical polymerization, which led to the formation of the platelets coated with covalently tethered polymer layers (GO_PAAM), accounting for ca. 31% of the total mass. Polyamide-6 (PA6) nanocomposites containing 1% of GO_PAAM were formed by extrusion followed by injection molding. The thermal conductivity of the nanocomposite was 54% higher than that of PA6 even for such a low content of GO. The result was assigned to strong interfacial interactions between the brushes and PA6 matrix related to hydrogen bonding. Control nanocomposites containing similarly prepared GO decorated with other polymer brushes that are not able to form hydrogen bonds with PA6 revealed no enhancement of the conductivity. Importantly, the nanocomposite containing GO_PAAM also demonstrated larger tensile strength without deteriorating the elongation at break value, which was significantly decreased for the other coated platelets. The proposed approach enhances the interfacial interactions thanks to the covalent tethering of dense polymer brushes on 2D fillers and may be used to improve thermal properties of other polymer-based nanocomposites with simultaneous enhancement of their mechanical properties.
Collapse
|
10
|
Mudusu D, Nandanapalli KR, Lee S, Hahn YB. Recent advances in graphene monolayers growth and their biological applications: A review. Adv Colloid Interface Sci 2020; 283:102225. [PMID: 32777519 DOI: 10.1016/j.cis.2020.102225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
Development of two-dimensional high-quality graphene monolayers has recently received great concern owing to their enormous applications in diverging fields including electronics, photonics, composite materials, paints and coatings, energy harvesting and storage, sensors and metrology, and biotechnology. As a result, various groups have successfully developed graphene layers on different substrates by using the chemical vapor deposition method and explored their physical properties. In this direction, we have focused on the state-of-the-art developments in the growth of graphene layers, and their functional applications in biotechnology. The review starts with the introduction, which contains outlines about the graphene and their basic characteristics. A brief history and inherent applications of graphene layers followed by recent developments in growth and properties are described. Then, the application of graphene layers in biodevices is reviewed. Finally, the review is summarized with perspectives and future challenges along with the scope for future technological applications.
Collapse
Affiliation(s)
- Devika Mudusu
- Department of Robotic Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu 711873, South Korea
| | - Koteeswara Reddy Nandanapalli
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu 711873, South Korea.
| | - Sungwon Lee
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu 711873, South Korea
| | - Yoon-Bong Hahn
- School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, South Korea.
| |
Collapse
|