1
|
Greco A, Corbo C. Could selection of biomolecular corona constituents through nanoparticle design produce more effective localized therapies? Nanomedicine (Lond) 2025:1-4. [PMID: 40088006 DOI: 10.1080/17435889.2025.2480048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Affiliation(s)
- Antonietta Greco
- School of Medicine and Surgery, Nanomedicine Center Nanomib, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Claudia Corbo
- School of Medicine and Surgery, Nanomedicine Center Nanomib, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
2
|
Dhiman R, Bazad N, Mukherjee R, Himanshu, Gunjan, Leal E, Ahmad S, Kaur K, Raj VS, Chang CM, Pandey RP. Enhanced drug delivery with nanocarriers: a comprehensive review of recent advances in breast cancer detection and treatment. DISCOVER NANO 2024; 19:143. [PMID: 39243326 PMCID: PMC11380656 DOI: 10.1186/s11671-024-04086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer (BC) remains a leading cause of morbidity and mortality among women worldwide, with triple-negative breast cancer (TNBC) posing significant treatment challenges due to its aggressive phenotype and resistance to conventional therapies. Recent advancements in nanocarrier technology offer promising solutions for enhancing drug delivery, improving bioavailability, and increasing drug accumulation at tumor sites through targeted approaches. This review delves into the latest innovations in BC detection and treatment, highlighting the role of nanocarriers like polymeric micelles, liposomes, and magnetic nanoparticles in overcoming the limitations of traditional therapies. Additionally, the manuscript discusses the integration of cutting-edge diagnostic tools, such as multiplex PCR-Nested Next-Generation Sequencing (mPCR-NGS) and blood-based biomarkers, which are revolutionizing early detection and molecular profiling of BC. The convergence of these technologies not only enhances therapeutic outcomes but also paves the way for personalized medicine in BC management. This comprehensive review underscores the potential of nanocarriers in transforming BC treatment and emphasizes the critical importance of early detection in improving patient prognosis.
Collapse
Affiliation(s)
- Ruby Dhiman
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Nancy Bazad
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Riya Mukherjee
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Himanshu
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Gunjan
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belem, Pará, Brazil
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail City, Kingdom of Saudi Arabia
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Chung-Ming Chang
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC.
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan City, Taiwan, ROC.
- Laboratory Animal Center, Chang Gung University, Taoyuan City, Taiwan, ROC.
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
3
|
Liu J, Xie Y, Ma J, Chu H. New Ca 2+ based anticancer nanomaterials trigger multiple cell death targeting Ca 2+ homeostasis for cancer therapy. Chem Biol Interact 2024; 393:110948. [PMID: 38479714 DOI: 10.1016/j.cbi.2024.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Calcium ion (Ca2+) is a necessary element for human and Ca2+ homeostasis plays important roles in various cellular process and functions. Recent reaches have targeted on inducing Ca2+ overload (both intracellular and transcellular) for tumor therapy. With the development of nanotechnology, nanoplatform-mediated Ca2+ overload has been safe theranostic model for cancer therapy, and defined a special calcium overload-induced tumor cell death as "calcicoptosis". However, the underlying mechanism of calcicoptosis in cancer cells remains further identification. In this review, we summarized multiple cell death types due to Ca2+ overload that induced by novel anticancer nanomaterials in tumor cells, including apoptosis, autophagy, pyroptosis, and ferroptosis. We reviewed the roles of these anticancer nanomaterials on Ca2+ homeostasis, including transcellular Ca2+ influx and efflux, and intracellular Ca2+ change in the cytosolic and organelles, and connection of Ca2+ overload with other metal ions. This review provides the knowledge of these nano-anticancer materials-triggered calcicoptosis accompanied with multiple cell death by regulating Ca2+ homeostasis, which could not only enhance their efficiency and specificity, but also enlighten to design new cancer therapeutic strategies and biomedical applications.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China
| | - Yimin Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing Hospital, Yixing, Jiangsu, 214200, China
| | - Jun Ma
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China
| | - Hezhen Chu
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China.
| |
Collapse
|
4
|
Nadeem F, Hanif MA, AlMasoud N, Alomar TS, Younis A. Efficient nanostructured materials to reduce nutrient leaching to overcome environmental contaminants. Sci Rep 2024; 14:4772. [PMID: 38413788 PMCID: PMC10899617 DOI: 10.1038/s41598-024-54049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Nutrient leaching is a major reason for fresh and ground water contamination. Menthol is the major bioactive ingredient of Mentha arvensis L. and one of the most traded products of global essential oil market. The indigenous production of menthol crystals in developing countries of the world can prove to be the backbone for local growers and poor farmers. Therefore, present research was designed to check the effects of nano-structured plant growth regulators (PGRs) (28-homobrassinolide and ethephon) with reduced leaching potentials on the essential oil and menthol (%) of Mentha arvensis L. The prepared nano-formulations were characterized by Fourier transform infrared (FTIR) spectroscopy, Laser induced breakdown spectroscopy (LIBS), Differential scanning colorimetry-thermal gravimetric analysis (DSC-TGA), Scanning electron microscopy (SEM), Atomic absorption spectrometry (AAS) and Zeta potential and Zeta size analysis. The menthol (%) was determined by modified spectrophotometric and gas chromatographic (GC) method. The highest essential oil (%) was obtained by the application of 28-homobrassinolide-Zn-NPs-L-II (0.92 ± 0.09%) and ethephon-Ca-NPs-L-III (0.91 ± 0.05%) as compared to the control (0.65 ± 0.03%) and blank (0.62 ± 0.09%). The highest menthol (%) was obtained by applying 28-homobrassinolide-Ca-NPs-L-I (80.06 ± 0.07%), 28-homobrassinolide-Ca-NPs-L-II (80.48 ± 0.09%) and 28-homobrassinolide-Ca-NPs-L-III (80.84 ± 0.11%) and ethephon-Ca-NPs-L-III (81.53 ± 0.17%) and ethephon-Zn-NPs-L-II (81.93 ± 0.26%) as compared to control (67.19 ± 0.14%) and blank (63.93 ± 0.17%).
Collapse
Affiliation(s)
- Farwa Nadeem
- Nano and Biomaterials Lab, Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Asif Hanif
- Nano and Biomaterials Lab, Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
5
|
Liu M, Pan X, Gan Y, Gao M, Li X, Liu Z, Ma X, Geng M, Meng X, Ma N, Li J. Titanium Carbide MXene Quantum Dots-Modified Hydroxyapatite Hollow Microspheres as pH/Near-Infrared Dual-Response Drug Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13325-13334. [PMID: 37612781 DOI: 10.1021/acs.langmuir.3c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Titanium carbide MXene quantum dots (MQDs) possess intrinsic regulatory properties and selective toxicity to cancer cells. Here, MDQs were selected for the modification of hydroxyapatite (HA) microspheres, and MXene quantum dots-modified hydroxyapatite (MQDs-HA) hollow microspheres with controllable shapes and sizes were prepared as bone drug carriers. The results show that the prepared MQDs-HA hollow microspheres had a large BET surface area (231.2 m2/g), good fluorescence, and low toxicity. In addition, MQDs-HA showed a mild storage-release behavior and good responsiveness of pH and near-infrared (NIR). Thus, the MQDs-HA hollow microspheres have broad application prospects in the field of drug delivery and photothermal therapy.
Collapse
Affiliation(s)
- Miaomiao Liu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuanjing Gan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meng Gao
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinran Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhen Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengru Geng
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiangqi Meng
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China
| | - Ning Ma
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China
| | - Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
6
|
Das CGA, Kumar VG, Dhas TS, Karthick V, Kumar CMV. Nanomaterials in anticancer applications and their mechanism of action - A review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102613. [PMID: 36252911 DOI: 10.1016/j.nano.2022.102613] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The current challenges in cancer treatment using conventional therapies have made the emergence of nanotechnology with more advancements. The exponential growth of nanoscience has drawn to develop nanomaterials (NMs) with therapeutic activities. NMs have enormous potential in cancer treatment by altering the drug toxicity profile. Nanoparticles (NPs) with enhanced surface characteristics can diffuse more easily inside tumor cells, thus delivering an optimal concentration of drugs at tumor site while reducing the toxicity. Cancer cells can be targeted with greater affinity by utilizing NMs with tumor specific constituents. Furthermore, it bypasses the bottlenecks of indiscriminate biodistribution of the antitumor agent and high administration dosage. Here, we focus on the recent advances on the use of various nanomaterials for cancer treatment, including targeting cancer cell surfaces, tumor microenvironment (TME), organelles, and their mechanism of action. The paradigm shift in cancer management is achieved through the implementation of anticancer drug delivery using nano routes.
Collapse
Affiliation(s)
- C G Anjali Das
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - V Ganesh Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - T Stalin Dhas
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - V Karthick
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - C M Vineeth Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| |
Collapse
|
7
|
Kim W, Ly NK, He Y, Li Y, Yuan Z, Yeo Y. Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery. Adv Drug Deliv Rev 2023; 192:114635. [PMID: 36503885 PMCID: PMC9812987 DOI: 10.1016/j.addr.2022.114635] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
For systemically delivered nanoparticles to reach target tissues, they must first circulate long enough to reach the target and extravasate there. A challenge is that the particles end up engaging with serum proteins and undergo immune cell recognition and premature clearance. The serum protein binding, also known as protein corona formation, is difficult to prevent, even with artificial protection via "stealth" coating. Protein corona may be problematic as it can interfere with the interaction of targeting ligands with tissue-specific receptors and abrogate the so-called active targeting process, hence, the efficiency of drug delivery. However, recent studies show that serum protein binding to circulating nanoparticles may be actively exploited to enhance their downstream delivery. This review summarizes known issues of protein corona and traditional strategies to control the corona, such as avoiding or overriding its formation, as well as emerging efforts to enhance drug delivery to target organs via nanoparticles. It concludes with a discussion of prevailing challenges in exploiting protein corona for nanoparticle development.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nhu Ky Ly
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Université Paris Cité, Faculté de Santé, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Yanying He
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yongzhe Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Zhongyue Yuan
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Dragos-Pinzaru OG, Buema G, Herea DD, Chiriac H, Lupu N, Minuti AE, Stoian G, Shore D, Pierre VC, Tabakovic I, Stadler BJH. Synthesis and Characterization of Gold-Shell Magnetic Nanowires for Theranostic Applications. COATINGS 2022; 12:1755. [DOI: 10.3390/coatings12111755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Increasing interest has been given in recent years to alternative physical therapies for cancer, with a special focus on magneto-mechanical actuation of magnetic nanoparticles. The reported findings underline the need for highly biocompatible nanostructures, along with suitable mechanical and magnetic properties for different configurations of alternating magnetic fields. Here, we show how the biocompatibility of magnetic nanowires (MNWs), especially CoFe, can be increased by gold coating, which can be used both in cancer therapy and magnetic resonance imaging (MRI). This study provides a new approach in the field of theranostic applications, demonstrating the capabilities of core–shell nanowires to be used both to increase the cancer detection limit (as T2 contrast agents) and for its treatment (through magneto-mechanical actuation). The MNWs were electrodeposited in alumina templates, whereas the gold layer was electroless-plated by galvanic replacement. The gold-coated CoFe nanowires were biocompatible until they induced high cellular death to human osteosarcoma cells via magneto-mechanical actuation. These same MNWs displayed increased relaxivities (r1, r2). Our results show that the gold-coated CoFe nanowires turned out to be highly efficient in tumor cell destruction, and, at the same time, suitable for MRI applications.
Collapse
Affiliation(s)
| | - Gabriela Buema
- National Institute of R&D for Technical Physics, 700050 Iasi, Romania
| | | | - Horia Chiriac
- National Institute of R&D for Technical Physics, 700050 Iasi, Romania
| | - Nicoleta Lupu
- National Institute of R&D for Technical Physics, 700050 Iasi, Romania
| | | | - George Stoian
- National Institute of R&D for Technical Physics, 700050 Iasi, Romania
| | - Daniel Shore
- ECE Department, University of Minnesota, Minneapolis, MN 55455, USA
| | - Valerie C. Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ibro Tabakovic
- ECE Department, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
9
|
Ge X, Cao Z, Chu L. The Antioxidant Effect of the Metal and Metal-Oxide Nanoparticles. Antioxidants (Basel) 2022; 11:antiox11040791. [PMID: 35453476 PMCID: PMC9030860 DOI: 10.3390/antiox11040791] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Inorganic nanoparticles, such as CeO3, TiO2 and Fe3O4 could be served as a platform for their excellent performance in antioxidant effect. They may offer the feasibility to be further developed for their smaller and controllable sizes, flexibility to be modified, relative low toxicity as well as ease of preparation. In this work, the recent progress of these nanoparticles were illustrated, and the antioxidant mechanism of the inorganic nanoparticles were introduced, which mainly included antioxidant enzyme-mimetic activity and antioxidant ROS/RNS scavenging activity. The antioxidant effects and the applications of several nanoparticles, such as CeO3, Fe3O4, TiO2 and Se, are summarized in this paper. The potential toxicity of these nanoparticles both in vitro and in vivo was well studied for the further applications. Future directions of how to utilize these inorganic nanoparticles to be further applied in some fields, such as medicine, cosmetic and functional food additives were also investigated in this paper.
Collapse
|
10
|
Mitigating off-target distribution and enhancing cytotoxicity in breast cancer cells with alpha-ketoglutaric acid-modified Fe/Mg-CA nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00571-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Purpose
In this work, pH-sensitive alpha-ketoglutaric acid-modified Fe/Mg-carbonate apatite (α-KAM-Fe/Mg-CA) NPs were introduced and found to be capable of promoting the selective delivery of cancer-killing drug doxorubicin (DOX) in breast cancer cells, while simultaneously mitigating DOX toxicity on normal cells.
Methods
As part of the characterization and evaluation of α-KAM-Fe/Mg-CA NPs to target breast cancer cells, a series of assessments were performed, which included size measurements, morphological analysis, FTIR, cytotoxicity assessment, hemolysis, drug binding, cellular uptake, and pH-responsive drug release tests. Liquid chromatography-mass spectrometry was used to conduct the protein corona analysis of α-KAM-Fe/Mg-CA using 10% FBS (fetal bovine serum) and mice plasma. Furthermore, to investigate the distribution of DOX-loaded α-KAM-Fe/Mg-CA NPs in major tissues and the tumor, a biodistribution investigation was conducted in mammary tumor-induced Balb/c mouse models 24 h after the intravenous administration of DOX-loaded α-KAM-Fe/Mg-CA NPs.
Results
The in vitro pH-dependent release of DOX over time demonstrated that α-KAM-Fe/Mg-CA NPs were pH-responsive and degraded rapidly at acidic pH levels. When compared to free DOX, the DOX-loaded α-KAM-Fe/Mg-CA NPs demonstrated a potent antiproliferative effect on breast cancer cells. Confocal microscopy confirmed the effective internalization of DOX-loaded α-KAM-Fe/Mg-CA NPs in breast cancer cells. The protein corona analysis revealed an affinity for dysopsonins (serum albumin, apolipoproteins) and transport proteins that may assist in extending their blood circulation period. Furthermore, biodistribution data of DOX-loaded α-KAM-Fe/Mg-CA NPs in the mammary tumor-induced Balb/c mouse model indicated extended circulation in the bloodstream, reduced non-target distribution in major tissues, and increased drug accumulation in the tumor.
Conclusion
The results obtained suggest that α-KAM-Fe/Mg-CA NPs may emerge as a prospective candidate for delivering therapeutic cargos to treat malignant mammary tumors.
Collapse
|
11
|
Cerqueira M, Belmonte-Reche E, Gallo J, Baltazar F, Bañobre-López M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022; 14:pharmaceutics14030506. [PMID: 35335882 PMCID: PMC8950239 DOI: 10.3390/pharmaceutics14030506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is currently a leading cause of death worldwide. The World Health Organization estimates an increase of 60% in the global cancer incidence in the next two decades. The inefficiency of the currently available therapies has prompted an urgent effort to develop new strategies that enable early diagnosis and improve response to treatment. Nanomedicine formulations can improve the pharmacokinetics and pharmacodynamics of conventional therapies and result in optimized cancer treatments. In particular, theranostic formulations aim at addressing the high heterogeneity of tumors and metastases by integrating imaging properties that enable a non-invasive and quantitative assessment of tumor targeting efficiency, drug delivery, and eventually the monitoring of the response to treatment. However, in order to exploit their full potential, the promising results observed in preclinical stages need to achieve clinical translation. Despite the significant number of available functionalization strategies, targeting efficiency is currently one of the major limitations of advanced nanomedicines in the oncology area, highlighting the need for more efficient nanoformulation designs that provide them with selectivity for precise cancer types and tumoral tissue. Under this current need, this review provides an overview of the strategies currently applied in the cancer theranostics field using magnetic nanoparticles (MNPs) and solid lipid nanoparticles (SLNs), where both nanocarriers have recently entered the clinical trials stage. The integration of these formulations into magnetic solid lipid nanoparticles—with different composition and phenotypic activity—constitutes a new generation of theranostic nanomedicines with great potential for the selective, controlled, and safe delivery of chemotherapy.
Collapse
Affiliation(s)
- Mónica Cerqueira
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Efres Belmonte-Reche
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: (F.B.); (M.B.-L.)
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
- Correspondence: (F.B.); (M.B.-L.)
| |
Collapse
|
12
|
Haque ST, Saha SK, Haque ME, Biswas N. Nanotechnology-based therapeutic applications: in vitro and in vivo clinical studies for diabetic wound healing. Biomater Sci 2021; 9:7705-7747. [PMID: 34709244 DOI: 10.1039/d1bm01211h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic wounds often indicate chronic complications that are difficult to treat. Unfortunately, existing conventional treatment modalities often cause unpremeditated side effects, given the need to develop alternative therapeutic phenotypes that are safe or have minimal side effects and risks. Nanotechnology-based platforms, including nanotherapeutics, nanoparticles (NPs), nanofibers, nanohydrogels, and nanoscaffolds, have garnered attention for their groundbreaking potential to decipher the biological environment and offer personalized treatment methods for wound healing. These nanotechnology-based platforms can successfully overcome the impediments posed by drug toxicity, existing treatment modalities, and the physiology and complexity of the wound sites. Furthermore, studies have shown that they play an essential role in influencing angiogenesis, collagen production, and extracellular matrix (ECM) synthesis, which are integral in skin repair mechanisms. In this review, we emphasized the importance of various nanotechnology-based platforms for healing diabetic wounds and report on the innovative preclinical and clinical outcomes of different nanotechnology-based platforms. This review also outlined the limitations of existing conventional treatment modalities and summarized the physiology of acute and chronic diabetic wounds.
Collapse
Affiliation(s)
- Sheikh Tanzina Haque
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Subbroto Kumar Saha
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA.,Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neugdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Md Enamul Haque
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Nirupam Biswas
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN-46202, USA.,Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY-12208, USA.
| |
Collapse
|
13
|
Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. J Mater Chem B 2021; 9:1208-1237. [PMID: 33393582 DOI: 10.1039/d0tb02168g] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanocarrier delivery systems have been widely studied to carry unique or dual chemical drugs. The major challenge of chemotherapies is to overcome the multidrug-resistance (MDR) of cells to antineoplastic medicines. In this context, nano-scale technology has allowed researchers to develop biocompatible nano-delivery systems to overcome the limitation of chemical agents. The development of nano-vehicles may also be directed to co-deliver different agents such as drugs and genetic materials. The delivery of nucleic acids targeting specific cells is based on gene therapy principles to replace the defective gene, correct genome errors or knock-down a particular gene. Co-delivery systems are attractive strategies due to the possibility of achieving synergistic therapeutic effects, which are more effective in overcoming the MDR of cancer cells. These combined therapies can provide better outcomes than separate delivery approaches carrying either siRNA, miRNA, pDNA, or drugs. This article reviews the main design features that need to be associated with nano-vehicles to co-deliver drugs, genes, and gene-drug combinations with efficacy. The advantages and disadvantages of co-administration approaches are also overviewed and compared with individual nanocarrier systems. Herein, future trends and perspectives in designing novel nano-scale platforms to co-deliver therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| | - Franciele F Vit
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Sang W Han
- Department of Biophysics, Federal University of São Paulo, Center for Cell and Molecular Therapy, São Paulo, Brazil
| | - Lucimara G de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
14
|
Jahan S, Karim ME, Chowdhury EH. Nanoparticles Targeting Receptors on Breast Cancer for Efficient Delivery of Chemotherapeutics. Biomedicines 2021; 9:114. [PMID: 33530291 PMCID: PMC7910939 DOI: 10.3390/biomedicines9020114] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
The journey of chemotherapeutic drugs from the site of administration to the site of action is confronted by several factors including low bioavailability, uneven distribution in major organs, limited accessibility of drug molecules to the distant tumor tissues, and lower therapeutic indexes. These unavoidable features of classical chemotherapeutics necessitate an additional high, repetitive dose of drugs to obtain maximum therapeutic responses with the result of unintended adverse side effects. An erratic tumor microenvironment, notable drawbacks of conventional chemotherapy, and multidrug-resistant mechanisms of breast cancer cells warrant precisely designed therapeutics for the treatment of cancers. In recent decades, nanoparticles have been deployed for the delivery of standard anticancer drugs to maximize the therapeutic potency while minimizing the adverse effects to increase the quality and span of life. Several organic and inorganic nanoplatforms that have been designed exploiting the distinctive features of the tumor microenvironment and tumor cells offer favorable physicochemical properties and pharmacokinetic profiles of a parent drug, with delivery of higher amounts of the drug to the pathological site and its controlled release, thereby improving the balance between its efficacy and toxicity. Advances to this front have included design and construction of targeted nanoparticles by conjugating homing devices like peptide, ligand, and Fab on the surface of nanomaterials to navigate nanoparticledrug complexes towards the target tumor cell with minimal destruction of healthy cells. Furthermore, actively targeting nanoparticles can facilitate the delivery and cellular uptake of nanoparticle-loaded drug constructs via binding with specific receptors expressed aberrantly on the surface of a tumor cell. Herein, we present an overview of the principle of targeted delivery approaches, exploiting drug-nanoparticle conjugates with multiple targeting moieties to target specific receptors of breast cancer cells and highlighting therapeutic evaluation in preclinical studies. We conclude that an understanding of the translational gap and challenges would show the possible future directions to foster the development of novel targeted nanotherapeutics.
Collapse
Affiliation(s)
| | | | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya 47500, Malaysia; (S.J.); (M.E.K.)
| |
Collapse
|
15
|
Haque ST, Islam RA, Gan SH, Chowdhury EH. Characterization and Evaluation of Bone-Derived Nanoparticles as a Novel pH-Responsive Carrier for Delivery of Doxorubicin into Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21186721. [PMID: 32937817 PMCID: PMC7555837 DOI: 10.3390/ijms21186721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The limitations of conventional treatment modalities in cancer, especially in breast cancer, facilitated the necessity for developing a safer drug delivery system (DDS). Inorganic nano-carriers based on calcium phosphates such as hydroxyapatite (HA) and carbonate apatite (CA) have gained attention due to their biocompatibility, reduced toxicity, and improved therapeutic efficacy. Methods: In this study, the potential of goose bone ash (GBA), a natural derivative of HA or CA, was exploited as a pH-responsive carrier to successfully deliver doxorubicin (DOX), an anthracycline drug into breast cancer cells (e.g., MCF-7 and MDA-MB-231 cells). GBA in either pristine form or in suspension was characterized in terms of size, morphology, functional groups, cellular internalization, cytotoxicity, pH-responsive drug (DOX) release, and protein corona analysis. Results: The pH-responsive drug release study demonstrated the prompt release of DOX from GBA through its disintegration in acidic pH (5.5–6.5), which mimics the pH of the endosomal and lysosomal compartments as well as the stability of GBA in physiological pH (pH 7.5). The result of DOX binding with GBA indicated an increment in binding affinity with increasing concentrations of DOX. Cell viability and cytotoxicity analysis showed no innate toxicity of GBA particles. Both qualitative and quantitative cellular uptake analysis in both cell lines displayed an enhanced cellular internalization of DOX-loaded GBA compared to free DOX molecules. The protein corona spontaneously formed on the surface of GBA particles exhibited its affinity toward transport proteins, structural proteins, and a few other selective proteins. The adsorption of transport proteins could extend the circulation half-life in biological environment and increase the accumulation of the drug-loaded NPs through the enhanced permeability and retention (EPR) effect at the tumor site. Conclusion: These findings highlight the potential of GBA as a DDS to successfully deliver therapeutics into breast cancer cells.
Collapse
Affiliation(s)
- Sheikh Tanzina Haque
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia; (S.T.H.); (R.A.I.)
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia; (S.T.H.); (R.A.I.)
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia; (S.T.H.); (R.A.I.)
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-5514-4978; Fax: +60-3-5514-6323
| |
Collapse
|
16
|
Barani M, Sabir F, Rahdar A, Arshad R, Kyzas GZ. Nanotreatment and Nanodiagnosis of Prostate Cancer: Recent Updates. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1696. [PMID: 32872181 PMCID: PMC7559844 DOI: 10.3390/nano10091696] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The fabrication and development of nanomaterials for the treatment of prostate cancer have gained significant appraisal in recent years. Advancements in synthesis of organic and inorganic nanomaterials with charge, particle size, specified geometry, ligand attachment etc have resulted in greater biocompatibility and active targeting at cancer site. Despite all of the advances made over the years in discovering drugs, methods, and new biomarkers for cancer of the prostate (PCa), PCa remains one of the most troubling cancers among people. Early on, effective diagnosis is an essential part of treating prostate cancer. Prostate-specific antigen (PSA) or serum prostate-specific antigen is the best serum marker widely accessible for diagnosis of PCa. Numerous efforts have been made over the past decade to design new biosensor-based strategies for biomolecules detection and PSA miniaturization biomarkers. The growing nanotechnology is expected to have a significant effect in the immediate future on scientific research and healthcare. Nanotechnology is thus predicted to find a way to solve one of the most and long-standing problem, "early cancer detection". For early diagnosis of PCa biomarkers, different nanoparticles with different approaches have been used. In this review, we provide a brief description of the latest achievements and advances in the use of nanoparticles for PCa biomarker diagnosis.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran;
| | - Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|