1
|
Zhang J, Chen Y, Xu Y, Zhao Z, Xu X. Salicylic Acid-Mediated Silver Nanoparticle Green Synthesis: Characterization, Enhanced Antimicrobial, and Antibiofilm Efficacy. Pharmaceutics 2025; 17:532. [PMID: 40284526 PMCID: PMC12030525 DOI: 10.3390/pharmaceutics17040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Objectives: Silver nanoparticles (AgNPs) were synthesized via an easy and rapid biogenic synthesis approach, utilizing the dual capabilities of salicylic acid as both a reducing and capping agent. Methods: The characterization of Salicylic Acid-Mediated Silver Nanoparticle (SA-AgNPs) was conducted using a variety of techniques, including ultraviolet-visible spectroscopy, dynamic light scattering, scanning electron microscopy combined with energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, as well as thermogravimetric analysis paired with differential scanning calorimetry. Results: SA-AgNPs demonstrated significant antibacterial properties against both Gram-positive (methicillin-resistant Staphylococcus epidermidis, Staphylococcus aureus, Cutibacterium acnes, methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli), with minimum inhibitory concentrations (MICs) of 8, 9, 8, 4, and 6 μg/mL, respectively. At a concentration of 32 μg/mL, SA-AgNPs exhibited 99.9% killing efficiency against Escherichia coli (E. coli), Cutibacterium acnes (C. acnes), and methicillin-resistant Staphylococcus aureus (MRSA), within 4, 16, and 12 h, respectively. At the same concentration, SA-AgNPs effectively inhibited 95.61% of MRSA biofilm formation. SA-AgNPs induced the leakage of intracellular macromolecular substances by increasing the membrane permeability, which ultimately caused bacterial apoptosis. Conclusions: Overall, this study presents a fast and environmentally friendly approach for synthesizing SA-AgNPs, with potential applications as nano antibiotics antibacterial coatings for implantable medical devices and wound dressings.
Collapse
Affiliation(s)
| | | | | | | | - Xinjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Xu Z, Zhang T, Xu Z, Ma Y, Niu Z, Chen J, Zhang M, Shi F. Research Progress and Prospects of Nanozymes in Alleviating Abiotic Stress of Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8694-8714. [PMID: 39936319 DOI: 10.1021/acs.jafc.4c10799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The continuous destruction of the global ecological environment has led to increased natural disasters and adverse weather, severely affecting crop yields and quality, particularly due to abiotic stress. Nanase, a novel artificial enzyme, simulates various enzyme activities, is renewable, and shows significant potential in promoting crop growth and mitigating abiotic stress. This study reviews the classification of nanoenzymes into carbon-based, metal-based, metal oxide-based, and others based on synthesis materials. The catalytic mechanisms of these nanoenzymes are discussed, encompassing activities, such as oxidases, peroxidases, catalases, and superoxide dismutases. The catalytic mechanisms of nanoenzymes in alleviating salt, drought, high-temperature, low-temperature, heavy metal, and other abiotic stresses in crops are also highlighted. Furthermore, the challenges faced by nanoenzymes are discussed, especially in sustainable agricultural development. This review provides insights into applying nanoenzymes in sustainable agriculture and offers theoretical guidance for mitigating abiotic stress in crops.
Collapse
Affiliation(s)
- Zhenghong Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Tongtong Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhihan Niu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jiaqi Chen
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Min Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
3
|
Ganapathy K, Rastogi V, Lora CP, Suriyaprakash J, Alarfaj AA, Hirad AH, Indumathi T. Biogenic synthesis of dopamine/carboxymethyl cellulose/TiO 2 nanoparticles using Psidium guajava leaf extract with enhanced antimicrobial and anticancer activities. Bioprocess Biosyst Eng 2024; 47:131-143. [PMID: 38103080 DOI: 10.1007/s00449-023-02954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
The green synthesis of metal oxide nanoparticles (NPs) has garnered considerable attention from researchers due to its utilization of eco-friendly solvents during synthesis and cost-effective approaches. This study focuses on the synthesis of titanium oxide (TiO2) and dopamine (DA) carboxymethyl cellulose (CMC)-doped TiO2 (DA/CMC/TiO2) NP using Psidium guajava leaf extract, while also investigating the structural, optical, and morphological and biocidal potential of the prepared NPs. Significantly larger zones of inhibition were observed for DA/CMC/TiO2 NPs compared to TiO2 against various pathogens. Moreover, the MTT assay was carried out to evaluate the anticancer activity of the prepared samples against MG-63 cells, and the results revealed that DA/CMC/TiO2 NPs exhibited significantly higher level of anticancer activity compared to TiO2. The experimental results demonstrated that DA/CMC/TiO2 NPs exhibited enhanced anticancer activity in a dose-dependent manner when compared to TiO2 NPs.
Collapse
Affiliation(s)
- Kavina Ganapathy
- Department of Biotechnology, School of Sciences, Jain (Deemed-to-be University), Bangalore, 560027, India
| | - Vaibhav Rastogi
- College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, 244001, India
| | - Chandra Prakash Lora
- Department of Chemistry, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Jagadeesh Suriyaprakash
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, 11451, Riyadh, Saudi Arabia
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, 11451, Riyadh, Saudi Arabia
| | - T Indumathi
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India.
| |
Collapse
|
4
|
Sharma R, Basist P, Alhalmi A, Khan R, Noman OM, Alahdab A. Synthesis of Quercetin-Loaded Silver Nanoparticles and Assessing Their Anti-Bacterial Potential. MICROMACHINES 2023; 14:2154. [PMID: 38138323 PMCID: PMC10745049 DOI: 10.3390/mi14122154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023]
Abstract
The study delves into the multifaceted potential of quercetin (Qu), a phytoconstituent found in various fruits, vegetables, and medicinal plants, in combination with silver nanoparticles (AgNPs). The research explores the synthesis and characterization of AgNPs loaded with Qu and investigates their pharmaceutical applications, particularly focusing on antibacterial properties. The study meticulously evaluates Qu's identity, and physicochemical properties, reaffirming its suitability for pharmaceutical use. The development of Qu-loaded AgNPs demonstrates their high drug entrapment efficiency, ideal particle characteristics, and controlled drug release kinetics, suggesting enhanced therapeutic efficacy and reduced side effects. Furthermore, the research examines the antibacterial activity of Qu in different solvents, revealing distinct outcomes. Qu, both in methanol and water formulations, exhibits antibacterial activity against Escherichia coli, with the methanol formulation displaying a slightly stronger efficacy. In conclusion, this study successfully synthesizes AgNPs loaded with Qu and highlights their potential as a potent antibacterial formulation. The findings underscore the influence of solvent choice on Qu's antibacterial properties and pave the way for further research and development in drug delivery systems and antimicrobial agents. This innovative approach holds promise for addressing microbial resistance and advancing pharmaceutical formulations for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Ritu Sharma
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Parakh Basist
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India;
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.A.); (R.K.)
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.A.); (R.K.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad Alahdab
- Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| |
Collapse
|
5
|
Moldovan M, Păpurică AM, Muntean M, Bungărdean RM, Gheban D, Moldovan B, Katona G, David L, Filip GA. Effects of Gold Nanoparticles Phytoreduced with Rutin in an Early Rat Model of Diabetic Retinopathy and Cataracts. Metabolites 2023; 13:955. [PMID: 37623898 PMCID: PMC10456405 DOI: 10.3390/metabo13080955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Diabetic retinopathy (DR) and cataracts (CA) have an early onset in diabetes mellitus (DM) due to the redox imbalance and inflammation triggered by hyperglycaemia. Plant-based therapies are characterised by low tissue bioavailability. The study aimed to investigate the effect of gold nanoparticles phytoreduced with Rutin (AuNPsR), as a possible solution. Insulin, Rutin, and AuNPsR were administered to an early, six-week rat model of DR and CA. Oxidative stress (MDA, CAT, SOD) was assessed in serum and eye homogenates, and inflammatory cytokines (IL-1 beta, IL-6, TNF alpha) were quantified in ocular tissues. Eye fundus of retinal arterioles, transmission electron microscopy (TEM) of lenses, and histopathology of retinas were also performed. DM was linked to constricted retinal arterioles, reduced endogen antioxidants, and eye inflammation. Histologically, retinal wall thickness decreased. TEM showed increased lens opacity and fibre disorganisation. Rutin improved retinal arteriolar diameter, while reducing oxidative stress and inflammation. Retinas were moderately oedematous. Lens structure was preserved on TEM. Insulin restored retinal arteriolar diameter, while increasing MDA, and amplifying TEM lens opacity. The best outcomes were obtained for AuNPsR, as it improved fundus appearance of retinal arterioles, decreased MDA and increased antioxidant capacity. Retinal edema and disorganisation in lens fibres were still present.
Collapse
Affiliation(s)
- Mădălina Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 1, 400006 Cluj-Napoca, Romania; (A.-M.P.); (G.A.F.)
| | - Ana-Maria Păpurică
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 1, 400006 Cluj-Napoca, Romania; (A.-M.P.); (G.A.F.)
| | - Mara Muntean
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania;
| | - Raluca Maria Bungărdean
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 3-5, 400340 Cluj-Napoca, Romania; (R.M.B.); (D.G.)
| | - Dan Gheban
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 3-5, 400340 Cluj-Napoca, Romania; (R.M.B.); (D.G.)
- Department of Pathology, Emergency Clinical Hospital for Children, Motilor Street, No. 41T-42T, 400370 Cluj-Napoca, Romania
| | - Bianca Moldovan
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street, No. 11, 400028 Cluj-Napoca, Romania; (B.M.); (G.K.); (L.D.)
| | - Gabriel Katona
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street, No. 11, 400028 Cluj-Napoca, Romania; (B.M.); (G.K.); (L.D.)
| | - Luminița David
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street, No. 11, 400028 Cluj-Napoca, Romania; (B.M.); (G.K.); (L.D.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 1, 400006 Cluj-Napoca, Romania; (A.-M.P.); (G.A.F.)
| |
Collapse
|
6
|
Khodeer DM, Nasr AM, Swidan SA, Shabayek S, Khinkar RM, Aldurdunji MM, Ramadan MA, Badr JM. Characterization, antibacterial, antioxidant, antidiabetic, and anti-inflammatory activities of green synthesized silver nanoparticles using Phragmanthera austroarabica A. G. Mill and J. A. Nyberg extract. Front Microbiol 2023; 13:1078061. [PMID: 36687608 PMCID: PMC9849905 DOI: 10.3389/fmicb.2022.1078061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Diabetes mellitus is a chronic metabolic disorder that exhibited great expansion all over the world. It is becoming an epidemic disease adding a major burden to the health care system, particularly in developing countries. Methods The plant under investigation in the current study Phragmanthera austroarabica A. G. Mill and J. A. Nyberg is traditionally used in Saudi Arabia for the treatment of diabetes mellitus. The methanolic extract (200 mg/kg) of the plant and pure gallic acid (40 mg/kg), a major metabolite of the plant, as well as their silver nanoparticle formulae (AgNPs) were evaluated for their antidiabetic activity. Results and Discussion The results showed a decrease in body fat, obesity, an improvement in lipid profiles, normalization of hyperglycemia, insulin resistance, and hyperinsulinemia, and an improvement in liver tissue structure and function. However, the results obtained from AgNPs for both extract and the pure gallic acid were better in most measured parameters. Additionally, the activity of both the crude extract of the plant and its AgNPs were evaluated against a number of gram-positive, gram-negative bacteria and fungi. Although the activity of the crude extract ranged from moderate to weak or even non-active, the AgNPs of the plant extract clearly enhanced the antimicrobial activity. AgNPs of the extract demonstrated remarkable activity, especially against the Gram-negative pathogens Proteus vulgaris (MIC 2.5 μg/ml) and Pseudomonas aeruginosa (MIC 5 μg/ml). Furthermore, a promising antimicrobial activity was shown against the Gram-positive pathogen Streptococcus mutants (MIC 1.25 μg/ml).
Collapse
Affiliation(s)
- Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt,*Correspondence: Dina M. Khodeer, ✉
| | - Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Shady A. Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt,The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Roaa M. Khinkar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam A. Ramadan
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt,Jihan M. Badr, ✉
| |
Collapse
|
7
|
New Green Approaches in Nanoparticles Synthesis: An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196472. [PMID: 36235008 PMCID: PMC9573382 DOI: 10.3390/molecules27196472] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Nanotechnology is constantly expanding, with nanomaterials being more and more used in common commercial products that define our modern life. Among all types of nanomaterials, nanoparticles (NPs) occupy an important place, considering the great amount that is produced nowadays and the diversity of their applications. Conventional techniques applied to synthesize NPs have some issues that impede them from being appreciated as safe for the environment and health. The alternative to these might be the use of living organisms or biological extracts that can be involved in the green approach synthesis of NPs, a process that is free of harmful chemicals, cost-effective and a low energy consumer. Several factors, including biological reducing agent concentration, initial precursor salt concentration, agitation, reaction time, pH, temperature and light, can influence the characteristics of biologically synthesized NPs. The interdependence between these reaction parameters was not explored, being the main impediment in the implementation of the biological method on an industrial scale. Our aim is to present a brief review that focuses on the current knowledge regarding how the aforementioned factors can control the size and shape of green-synthesized NPs. We also provide an overview of the biomolecules that were found to be suitable for NP synthesis. This work is meant to be a support for researchers who intend to develop new green approaches for the synthesis of NPs.
Collapse
|
8
|
Sampath G, Chen YY, Rameshkumar N, Krishnan M, Nagarajan K, Shyu DJH. Biologically Synthesized Silver Nanoparticles and Their Diverse Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3126. [PMID: 36144915 PMCID: PMC9500900 DOI: 10.3390/nano12183126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 05/14/2023]
Abstract
Nanotechnology has become the most effective and rapidly developing field in the area of material science, and silver nanoparticles (AgNPs) are of leading interest because of their smaller size, larger surface area, and multiple applications. The use of plant sources as reducing agents in the fabrication of silver nanoparticles is most attractive due to the cheaper and less time-consuming process for synthesis. Furthermore, the tremendous attention of AgNPs in scientific fields is due to their multiple biomedical applications such as antibacterial, anticancer, and anti-inflammatory activities, and they could be used for clean environment applications. In this review, we briefly describe the types of nanoparticle syntheses and various applications of AgNPs, including antibacterial, anticancer, and larvicidal applications and photocatalytic dye degradation. It will be helpful to the extent of a better understanding of the studies of biological synthesis of AgNPs and their multiple uses.
Collapse
Affiliation(s)
- Gattu Sampath
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 600355, Taiwan
| | | | | | - Kayalvizhi Nagarajan
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India
| | - Douglas J. H. Shyu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
9
|
Biosynthesis and antibacterial activity of silver nanoparticles using Flos Sophorae Immaturus extract. Heliyon 2022; 8:e10010. [PMID: 35958264 PMCID: PMC9358468 DOI: 10.1016/j.heliyon.2022.e10010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
The current study proposes a green synthesis method for silver nanoparticles (Ag NPs) using various concentrations of Flos Sophorae Immaturus extract as reducing and capping agents. The UV-Visible (UV-Vis) spectroscopy, X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) were used to characterize resulting brown nanopowder. The as-prepared Ag NPs had a high negative zeta potential value of ∼ -38 mv, indicating the existence of electrostatic stabilization. The average sizes of ∼27.8 nm, 28.5 nm, 34.3 nm and 36.5 nm were measured by TEM. Moreover, FTIR and XPS analyses validated the production and chemical composition of Ag NPs from silver nitrate. The antibacterial activity of Ag NPs was examined against E. coli, P. aeruginosa, and S. aureus using agar well diffusion and the minimum inhibitory concentration (MIC) method. The antibacterial activity of the as-prepared Ag NPs from 4 mL extract was excellent against E. coli, P. aeruginosa, and S. aureus and the MIC values were 31.250, 15.625, and 31.250 mg/L, respectively. Based on these results, this study proposes a practical approach for the synthesis of Ag NPs in the industry and medical fields.
Collapse
|
10
|
Franzolin MR, Courrol DDS, de Souza Barreto S, Courrol LC. Eugenia uniflora L. Silver and Gold Nanoparticle Synthesis, Characterization, and Evaluation of the Photoreduction Process in Antimicrobial Activities. Microorganisms 2022; 10:microorganisms10050999. [PMID: 35630442 PMCID: PMC9147378 DOI: 10.3390/microorganisms10050999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Eugenia uniflora linnaeus, known as Brazilian cherry, is widely distributed in Brazil, Argentina, Uruguay, and Paraguay. E. uniflora L. extracts contain phenolic compounds, such as flavonoids, tannins, triterpenes, and sesquiterpenes. The antimicrobial action of essential oils has been attributed to their compositions of bioactive compounds, such as sesquiterpenes. In this paper, the fruit extract of E. uniflora was used to synthesize silver and gold nanoparticles. The nanoparticles were characterized by UV–Vis, transmission electron microscopy, elemental analysis, FTIR, and Zeta potential measurement. The silver and gold nanoparticles prepared with fruit extracts presented sizes of ~32 nm and 11 nm (diameter), respectively, and Zeta potentials of −22 mV and −14 mV. The antimicrobial tests were performed with Gram-negative and Gram-positive bacteria and Candida albicans. The growth inhibition of EuAgNPs prepared with and without photoreduction showed the important functional groups in the antimicrobial activity.
Collapse
Affiliation(s)
- Marcia Regina Franzolin
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (M.R.F.); (D.d.S.C.); (S.d.S.B.)
| | - Daniella dos Santos Courrol
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (M.R.F.); (D.d.S.C.); (S.d.S.B.)
| | - Susana de Souza Barreto
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (M.R.F.); (D.d.S.C.); (S.d.S.B.)
| | - Lilia Coronato Courrol
- Departamento de Física, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
- Correspondence:
| |
Collapse
|
11
|
Sharma D, Chaudhary A. Synthesis of Quercetin Functionalized Silver Nanoparticles and Their Application for the Colorimetric Detection of L‐Cysteine in Biologically Complex Fluids. ChemistrySelect 2022. [DOI: 10.1002/slct.202104147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Deepak Sharma
- Department of Biotechnology and Bioinformatics Jaypee University of Information Technology Waknaghat Solan India
| | - Abhishek Chaudhary
- Department of Biotechnology and Bioinformatics Jaypee University of Information Technology Waknaghat Solan India
| |
Collapse
|
12
|
Chandrasekharan S, Chinnasamy G, Bhatnagar S. Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity. Sci Rep 2022; 12:156. [PMID: 34997051 PMCID: PMC8742086 DOI: 10.1038/s41598-021-04025-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Increase in bacterial resistance to commonly used antibiotics is a major public health concern generating interest in novel antibacterial treatments. Aim of this scientific endeavor was to find an alternative efficient antibacterial agent from non-conventional plant source for human health applications. We used an eco-friendly approach for phyto-fabrication of silver nanoparticles (AgNPs) by utilizing logging residue from timber trees Gmelina arborea (GA). GC-MS analysis of leaves, barks, flowers, fruits, and roots was conducted to determine the bioactive compounds. Biosynthesis, morphological and structural characterization of GA-AgNPs were undertaken by UV-Vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD). GA-AgNPs were evaluated for antibacterial, antibiofilm, antioxidant, wound healing properties and their toxicity studies were carried out. Results identified the presence of terpenoids, sterols, aliphatic alcohols, aldehydes, and flavonoids in leaves, making leaf extract the ideal choice for phyto-fabrication of silver nanoparticles. The synthesis of GA-AgNPs was confirmed by dark brown colored colloidal solution and spectral absorption peak at 420 nm. Spherical, uniformly dispersed, crystalline GA-AgNPs were 34-40 nm in diameter and stable in solutions at room temperature. Functional groups attributed to the presence of flavonoids, terpenoids, and phenols that acted as reducing and capping agents. Antibacterial potency was confirmed against pathogenic bacteria Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by disc diffusion assay, MIC and MBC assay, biofilm inhibition assay, electron-microscopy, cell staining and colony counting techniques. The results from zone of inhibition, number of ruptured cells and dead-cell-count analysis confirmed that GA-AgNPs were more effective than GA-extract and their bacteria inhibition activity level increased further when loaded on hydrogel as GA-AgNPs-PF127, making it a novel distinguishing feature. Antioxidant activity was confirmed by the free radical scavenging assays (DPPH and ABTS). Wound healing potential was confirmed by cell scratch assay in human dermal fibroblast cell lines. Cell-proliferation study in human chang liver cell lines and optical microscopic observations confirmed non-toxicity of GA-AgNPs at low doses. Our study concluded that biosynthesized GA-AgNPs had enhanced antibacterial, antibiofilm, antioxidant, and wound healing properties.
Collapse
Affiliation(s)
- Smitha Chandrasekharan
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gandhimathi Chinnasamy
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Somika Bhatnagar
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
13
|
Pawłowska A, Stepczyńska M. Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:1683-1708. [PMID: 34720776 PMCID: PMC8541817 DOI: 10.1007/s10924-021-02315-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 05/07/2023]
Abstract
The article presents a literature review of the plant origin natural compounds with biocidal properties. These compounds could be used as modifiers of biodegradable materials. Modification of polymer material is one of the basic steps in its manufacturing process. Biodegradable materials play a key role in the current development of materials engineering. Natural modifiers are non-toxic, environmentally friendly, and renewable. The substances contained in natural modifiers exhibit biocidal properties against bacteria and/or fungi. The article discusses polyphenols, selected phenols, naphthoquinones, triterpenoids, and phytoncides that are natural antibiotics. Due to the increasing demand for biodegradable materials and the protection of the natural environment against the negative effects of toxic substances, it is crucial to replace synthetic modifiers with plant ones. This work mentions industries where materials containing natural modifying additives could find potential applications. Moreover, the probable examples of the final products are presented. Additionally, the article points out the current world's pandemic state and the use of materials with biocidal properties considering the epidemiological conditions.
Collapse
Affiliation(s)
- Alona Pawłowska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| | - Magdalena Stepczyńska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| |
Collapse
|
14
|
Chandan G, Pal S, Kashyap S, Siwal SS, Dhiman SK, Saini AK, Saini RV. Synthesis, characterization and anticancer activities of silver nanoparticles from the leaves of Datura stramonium L. NANOFABRICATION 2021. [DOI: 10.1515/nanofab-2020-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
In recent years, a wide range of studies has pointed out the role of nanoparticles as reservoirs of therapeutics for several diseases, including cancer. Nowadays, cancer research is focused on the development of novel treatment approaches to fight this dreadful disorder. Based on the evidential research and applications of nanoparticles, it is expected that green synthesized nanoparticles may show a prominent role, especially in the biomedical field. The present work is centered on the preparation and characterization of silver nanoparticles (Ag-NPs) from the aqueous (AQ) extract and non-alkaloidal (NA) fraction of Datura stramonium leaves and to evaluate their anticancer potential against mammalian cell lines. The biogenic Ag-NPs are characterized by UV-vis spectra, FTIR DLS, UV-Vis, SEM, and TEM. SEM and TEM analysis reveals the spherical morphology of NPs. The Ag-NPs exhibit cytotoxicity against various mammalian cell lines (A549, HCT-116, PANC-1, SHSY5Y, and U87), which indicate that the AQ and NA based NPs are highly potent to cause cancer cell death. To the best of our knowledge, the present report, for the first time, describes the green synthesis of Ag-NPs from the NA fraction of the D. stramonium and provides pieces of evidence for its anticancer potential.
Collapse
Affiliation(s)
- Gourav Chandan
- Central Research Cell, MM Institute of Medical Sciences and Research , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Soumya Pal
- Central Research Cell, MM Institute of Medical Sciences and Research , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana 133207 , India ; Department of Biotechnology, Maharishi Markandeshwar Engineering College , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Sheetal Kashyap
- Department of Biotechnology, Maharishi Markandeshwar Engineering College , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Samarjeet Singh Siwal
- Department of Chemistry, Maharishi Markandeshwar Engineering College , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Shakti K. Dhiman
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine , Jammu , Jammu and Kashmir , India
| | - Adesh K. Saini
- Central Research Cell, MM Institute of Medical Sciences and Research , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana 133207 , India ; Department of Biotechnology, Maharishi Markandeshwar Engineering College , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Reena V. Saini
- Central Research Cell, MM Institute of Medical Sciences and Research , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India ; Department of Biotechnology, Maharishi Markandeshwar Engineering College , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| |
Collapse
|
15
|
Al-Zahrani S, Astudillo-Calderón S, Pintos B, Pérez-Urria E, Manzanera JA, Martín L, Gomez-Garay A. Role of Synthetic Plant Extracts on the Production of Silver-Derived Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2021; 10:1671. [PMID: 34451715 PMCID: PMC8400420 DOI: 10.3390/plants10081671] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/04/2023]
Abstract
The main antioxidants present in plant extracts-quercetin, β-carotene, gallic acid, ascorbic acid, hydroxybenzoic acid, caffeic acid, catechin and scopoletin-are able to synthesize silver nanoparticles when reacting with a Ag NO3 solution. The UV-visible absorption spectrum recorded with most of the antioxidants shows the characteristic surface plasmon resonance band of silver nanoparticles. Nanoparticles synthesised with ascorbic, hydroxybenzoic, caffeic, and gallic acids and scopoletin are spherical. Nanoparticles synthesised with quercetin are grouped together to form micellar structures. Nanoparticles synthesised by β-carotene, were triangular and polyhedral forms with truncated corners. Pentagonal nanoparticles were synthesized with catechin. We used Fourier-transform infrared spectroscopy to check that the biomolecules coat the synthesised silver nanoparticles. X-ray powder diffractograms showed the presence of silver, AgO, Ag2O, Ag3O4 and Ag2O3. Rod-like structures were obtained with quercetin and gallic acid and cookie-like structures in the nanoparticles obtained with scopoletin, as a consequence of their reactivity with cyanide. This analysis explained the role played by the various agents responsible for the bio-reduction triggered by nanoparticle synthesis in their shape, size and activity. This will facilitate targeted synthesis and the application of biotechnological techniques to optimise the green synthesis of nanoparticles.
Collapse
Affiliation(s)
- Sabah Al-Zahrani
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| | - Sergio Astudillo-Calderón
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| | - Beatriz Pintos
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| | - Elena Pérez-Urria
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| | - José Antonio Manzanera
- Research Group FiVe-A, College of Forestry and Natural Environment, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Luisa Martín
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| | - Arancha Gomez-Garay
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| |
Collapse
|
16
|
Mba IE, Nweze EI. The use of nanoparticles as alternative therapeutic agents against Candida infections: an up-to-date overview and future perspectives. World J Microbiol Biotechnol 2020; 36:163. [PMID: 32990838 DOI: 10.1007/s11274-020-02940-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Candida spp. are opportunistic fungi that can cause severe infections especially in immunocompromised patients. Candidiasis is currently the most frequent fungal disease affecting humans globally. This rise is attributed to the vast increase in resistance to antifungal agents. In recent years, the epidemiological and clinical relevance of fungal infections caused by Candida species have attracted a lot of interest with increasing reports of intrinsic and acquired resistance among Candida species. Thus, the formulation of novel, and efficient therapy for Candida infection persists as a critical challenge in modern medicine. The use of nanoparticle as a potential biomaterial to achieve this feat has gained global attention. Nanoparticles have shown promising antifungal activity, and thus, could be seen as the next generation antifungal agents. This review concisely discussed Candida infection with emphasis on anti-candida resistance mechanisms and the use of nanoparticles as potential therapeutic agents against Candida species. Moreover, the mechanisms of activity of nanoparticles against Candida species, recent findings on the anti-candida potentials of nanoparticles and future perspectives are also presented.
Collapse
|