1
|
Thangavelu RM, da Silva WL, Zuverza-Mena N, Dimkpa CO, White JC. Nano-sized metal oxide fertilizers for sustainable agriculture: balancing benefits, risks, and risk management strategies. NANOSCALE 2024; 16:19998-20026. [PMID: 39417765 DOI: 10.1039/d4nr01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This critical review comprehensively analyses nano-sized metal oxide fertilizers (NMOFs) and their transformative potential in sustainable agriculture. It examines the characteristics and benefits of different NMOFs, such as zinc, copper, iron, magnesium, manganese, nickel, calcium, titanium, cerium, and silicon oxide nanoparticles. NMOFs offer unique advantages such as increased reactivity, controlled-release mechanisms, and targeted nutrient delivery to address micronutrient deficiencies, enhance crop resilience, and improve nutrient efficiency. The review underscores the essential role of micronutrients in plant metabolism, crop growth, and ecosystem health, highlighting their importance alongside macronutrients. NMOFs present significant benefits over traditional fertilizers, including enhanced plant uptake, reduced nutrient losses, and decreased environmental impact. However, the review also critically examines potential risks associated with NMOFs, such as nanoparticle toxicity and environmental persistence. A comparative analysis of different metal types used in nanofertilizers is provided, detailing their primary advantages and potential drawbacks. The review emphasizes the need for cautious management of NMOFs to ensure their safe and effective use in agriculture. It calls for comprehensive research to understand the long-term effects of NMOFs on plant health, soil ecosystems, and human health. By integrating insights from material science, plant biology, and environmental science, this review offers a holistic perspective on the potential of NMOFs to address global food security challenges amid resource constraints and climate change. The study concludes by outlining future research directions and advocating for interdisciplinary collaboration to advance sustainable agricultural practices and optimize the benefits of NMOFs.
Collapse
Affiliation(s)
| | | | | | | | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
3
|
Penchev H, Zaharieva K, Dimova S, Grancharov G, Petrov PD, Shipochka M, Dimitrov O, Lazarkevich I, Engibarov S, Eneva R. Hybrid Cellulosic Substrates Impregnated with Meta-PBI-Stabilized Carbon Nanotubes/Plant Extract-Synthesized Zinc Oxide-Antibacterial and Photocatalytic Dye Degradation Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1346. [PMID: 39195384 DOI: 10.3390/nano14161346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Novel fibrous cellulosic substrates impregnated with meta-polybenzimidazole (PBI)-stabilized carbon nanotubes/zinc oxide with different weight content of ZnO and with the use of dimethylacetamide as dispersant media. The pristine ZnO nanoparticle powder was prepared by plant extract-mediated synthesis using Vaccinium vitis-idaea L. The green synthesized ZnO possesses an average crystallite size of 15 nm. The formation of agglomerates from ZnO NPs with size 250 nm-350 nm in the m-PBI@CNTs/ZnO was determined. The prepared materials were investigated by PXRD analysis, XPS, SEM, EDS, AFM, and TEM in order to establish the phase and surface composition, structure, and morphology of the hybrids. The potential of the synthesized hybrid composites to degrade methylene blue (MB) dye as a model contaminant in aqueous solutions under UV illumination was studied. The photocatalytic results show that in the course of the photocatalytic reaction, the m-PBI@CNTs/ZnO 1:3 photocatalyst leads to the highest degree of degradation of the methylene blue dye (67%) in comparison with the other two studied m-PBI@CNTs/ZnO 1:1 and 1:2 composites (48% and 41%). The antibacterial activity of ZnO nanoparticles and the hybrid CNT materials was evaluated by the RMDA and the dynamic contact method, respectively. The profound antibacterial effect of the m-PBI@CNTs/ZnO hybrids was monitored for 120 h of exposition in dark and UV illumination regimes. The photocatalytic property of ZnO nanoparticles significantly shortens the time for bactericidal action of the composites in both regimes. The m-PBI@CNTs/ZnO 1:2 combination achieved complete elimination of 5.105 CFU/mL E. coli cells after 10 min of UV irradiation.
Collapse
Affiliation(s)
- Hristo Penchev
- Institute of Polymers, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Block 103A, 1113 Sofia, Bulgaria
| | - Katerina Zaharieva
- Institute of Mineralogy and Crystallography, "Acad. I. Kostov", Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 107, 1113 Sofia, Bulgaria
| | - Silvia Dimova
- Institute of Polymers, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Block 103A, 1113 Sofia, Bulgaria
| | - Georgy Grancharov
- Institute of Polymers, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Block 103A, 1113 Sofia, Bulgaria
| | - Petar D Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Block 103A, 1113 Sofia, Bulgaria
| | - Maria Shipochka
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, "Acad. G. Bonchev" St., Bl. 11, 1113 Sofia, Bulgaria
| | - Ognian Dimitrov
- Institute of Electrochemistry and Energy Systems, "Acad. Evgeni Budevski", Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 10, 1113 Sofia, Bulgaria
| | - Irina Lazarkevich
- The Stephan Angeloff Institute of Microbiology, "Acad. G. Bonchev" St., Block 26, 1113 Sofia, Bulgaria
| | - Stephan Engibarov
- The Stephan Angeloff Institute of Microbiology, "Acad. G. Bonchev" St., Block 26, 1113 Sofia, Bulgaria
| | - Rumyana Eneva
- The Stephan Angeloff Institute of Microbiology, "Acad. G. Bonchev" St., Block 26, 1113 Sofia, Bulgaria
| |
Collapse
|
4
|
Assadi AA, Baaloudj O, Khezami L, Ben Hamadi N, Mouni L, Assadi AA, Ghorbal A. An Overview of Recent Developments in Improving the Photocatalytic Activity of TiO 2-Based Materials for the Treatment of Indoor Air and Bacterial Inactivation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2246. [PMID: 36984127 PMCID: PMC10056653 DOI: 10.3390/ma16062246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Indoor air quality has become a significant public health concern. The low cost and high efficiency of photocatalytic technology make it a natural choice for achieving deep air purification. Photocatalysis procedures have been widely investigated for environmental remediation, particularly for air treatment. Several semiconductors, such as TiO2, have been used for photocatalytic purposes as catalysts, and they have earned a lot of interest in the last few years owing to their outstanding features. In this context, this review has collected and discussed recent studies on advances in improving the photocatalytic activity of TiO2-based materials for indoor air treatment and bacterial inactivation. In addition, it has elucidated the properties of some widely used TiO2-based catalysts and their advantages in the photocatalytic process as well as improved photocatalytic activity using doping and heterojunction techniques. Current publications about various combined catalysts have been summarized and reviewed to emphasize the significance of combining catalysts to increase air treatment efficiency. Besides, this paper summarized works that used these catalysts to remove volatile organic compounds (VOCs) and microorganisms. Moreover, the reaction mechanism has been described and summarized based on literature to comprehend further pollutant elimination and microorganism inactivation using photocatalysis. This review concludes with a general opinion and an outlook on potential future research topics, including viral disinfection and other hazardous gases.
Collapse
Affiliation(s)
- Achraf Amir Assadi
- Center for Research on Microelectronics and Nanotechnology, CRMN Sousse Techno Park, Sahloul BP 334, Sousse 4054, Tunisia
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, Higher Institute of Applied Sciences and Technology of Gabes (ISSAT), University of Gabes, Gabes 6029, Tunisia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, Université des Sciences et de la Technologie Houari Boumediene, BP 32, Algiers 16111, Algeria
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - Lotfi Khezami
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Lotfi Mouni
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité, Faculté SNVST, Université Bouira, Bouira 10000, Algeria
| | - Aymen Amine Assadi
- École Nationale Supérieure de Chimie de Rennes (ENSCR), Université de Rennes, UMR CNRS 6226, 11 Allée de Beaulieu, 35700 Rennes, France
| | - Achraf Ghorbal
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, Higher Institute of Applied Sciences and Technology of Gabes (ISSAT), University of Gabes, Gabes 6029, Tunisia
| |
Collapse
|
5
|
Influence of Calcination Temperature on Photocatalyst Performances of Floral Bi2O3/TiO2 Composite. Catalysts 2022. [DOI: 10.3390/catal12121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heterojunction photocatalytic materials show excellent performance in degrading toxic pollutants. This study investigates the influence of calcination temperature on the performances of floral Bi2O3/TiO2 composite photocatalyst crystal, which was prepared with glycerol, bismuth nitrate, and titanium tetrachloride as the major raw materials via the solvothermal method. XRD, SEM/TEM, BET, Uv-vis, and XPS were employed to analyze the crystal structure, morphology, specific surface area, band gap, and surface chemical structure of the calcined temperature catalysts. The calcination temperature influence on the catalytic performance of composite photocatalysis was tested with rhodamine B (RhB) as the degradation object. The results revealed the high catalytic activity and higher photocatalytic performance of the Bi2O3/TiO2 catalyst. The degradation efficiency of the Bi2O3/TiO2 catalyst to RhB was 97%, 100%, and 91% at 400 °C, 450 °C, and 500 °C calcination temperatures, respectively, in which the peak degradation activity appeared at 450 °C. The characterization results show that the appropriate calcination temperature promoted the crystallization of the Bi2O3/TiO2 catalyst, increased its specific surface area and the active sites of catalytic reaction, and improved the separation efficiency of electrons and holes.
Collapse
|
6
|
Nurdin M, Watoni AH, Arham Z, Yanti NA, Marlini S, Maulidiyah M, Salim LOA, Irwan I. Strong Inhibition of Silver-doped TiO2 Nanoparticles Against P. palmivora in Visible Light. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Liu Z, Li W, Li X, Li X. Quality maintenance of 1‐Methylcyclopropene combined with titanium dioxide photocatalytic reaction on postharvest cherry tomatoes. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ziyun Liu
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Wenhan Li
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Xuejin Li
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
8
|
Phase-Selective Synthesis of Anatase and Rutile TiO2 Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense. NANOMATERIALS 2022; 12:nano12030483. [PMID: 35159827 PMCID: PMC8838626 DOI: 10.3390/nano12030483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023]
Abstract
Titanium dioxide nanocrystals (TiO2 NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O2 and H2O. This special feature makes TiO2 an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO2 NCs may be also exploited in the agricultural sector. However, the effects of TiO2 NCs on plants are not fully understood and/or phase-pure TiO2 NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO2 NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, Vitis vinifera cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO2 NCs at concentrations of 0.001, 0.01, 0.1, and 1 w/v%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO2 NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms.
Collapse
|
9
|
A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms. Catalysts 2021. [DOI: 10.3390/catal11121498] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obtaining clean and high-quality water free of pathogenic microorganisms is a worldwide challenge. Various techniques have been investigated for achieving an effective removal or inactivation of these pathogenic microorganisms. One of those promising techniques is photocatalysis. In recent years, photocatalytic processes used semiconductors as photocatalysts. They were widely studied as a green and safe technology for water disinfection due to their high efficiency, being non-toxic and inexpensive, and their ability to disinfect a wide range of microorganisms under UV or visible light. In this review, we summarized the inactivation mechanisms of different waterborne pathogenic microorganisms by semiconductor photocatalysts. However, the photocatalytic efficiency of semiconductors photocatalysts, especially titanium dioxide, under visible light is limited and hence needs further improvements. Several strategies have been studied to improve their efficiencies which are briefly discussed in this review. With the developing of nanotechnology, doping with nanomaterials can increase and promote the semiconductor’s photocatalytic efficiency, which can enhance the deactivation or damage of a large number of waterborne pathogenic microorganisms. Here, we present an overview of antimicrobial effects for a wide range of nano-photocatalysts, including titanium dioxide-based, other metal-containing, and metal-free photocatalysts. Promising future directions and challenges for materials research in photocatalytic water disinfection are also concluded in this review.
Collapse
|