1
|
Chen R, Xu Z, Xu Y, Lei T, Liu D, Chen C, Wang W, Zhitomirsky I, Qu M, Zhang G. Binder-Less Molybdenum Doped CoO Based Integrated Electrodes Fabricated by Electric Discharge Corrosion for High-Efficiency Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2024; 18:80. [PMID: 39795725 PMCID: PMC11721405 DOI: 10.3390/ma18010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Due to its low cost, natural abundance, non-toxicity, and high theoretical capacitance, cobalt oxide (CoO) stands as a promising candidate electrode material for supercapacitors. In this study, binder-less molybdenum doped CoO (Mo@CoO) integrated electrodes were one-step fabricated using a simple electric discharge corrosion (EDC) method. This EDC method enables the direct synthesis of Mo@CoO active materials with oxygen vacancy on cobalt substrates, without any pre-made templates, conductive additives, or chemicals. Most importantly, the EDC method enables precise control over the discharge processing parameter of pulse width, which facilitates tailoring the surface morphologies of the as-prepared Mo@CoO active materials. It was found that the fabricated Mo@CoO based symmetric supercapacitor prepared by a pulse width of 24 μs (Mo@CoO-SCs24) achieved a maximum areal capacitance 36.0 mF cm-2 (0.15 mA cm-2), which is 1.83 and 1.97 times higher than that of Mo@CoO-SCs12 and Mo@CoO-SCs36. Moreover, the Mo@CoO-SCs24 devices could be worked at 10 V s-1, which demonstrates their fast charge/discharge characteristic. These results demonstrated the significant potential of the EDC strategy for efficiency fabricating various metal oxide binder-less integrated electrodes for various applications, like supercapacitors, batteries and sensors.
Collapse
Affiliation(s)
- Ri Chen
- Department of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (R.C.); (Z.X.); (T.L.); (C.C.)
| | - Zehan Xu
- Department of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (R.C.); (Z.X.); (T.L.); (C.C.)
| | - Yunying Xu
- School of Education, Guangdong Polytechnic Normal University, Guangzhou 510665, China;
| | - Tujun Lei
- Department of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (R.C.); (Z.X.); (T.L.); (C.C.)
| | - Dawei Liu
- Department of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (R.C.); (Z.X.); (T.L.); (C.C.)
| | - Chunlong Chen
- Department of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (R.C.); (Z.X.); (T.L.); (C.C.)
| | - Wenxia Wang
- Department of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
| | - Igor Zhitomirsky
- School of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada;
| | - Muchao Qu
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510450, China;
| | - Guoying Zhang
- Department of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (R.C.); (Z.X.); (T.L.); (C.C.)
| |
Collapse
|
2
|
Joseph A, Mathew A, Perikkathra S, Thomas T. Recent advances in and perspectives on binder materials for supercapacitors–A review. Eur Polym J 2024; 210:112941. [DOI: 10.1016/j.eurpolymj.2024.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Lee Y, Jung DY. Self-supporting electrodes of lithium aluminium oxide–carbon nanocomposites synthesized from dicarboxylate-intercalated layered double hydroxide for supercapacitors. JOURNAL OF MATERIALS CHEMISTRY A 2024; 12:29948-29956. [DOI: 10.1039/d4ta05640j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
A three-dimensional hybrid structure of Al/LiAl5O8/C electrodes with uniform graphite nanosheets, prepared by calcination of organic species intercalated LDH, exhibits high capacitance and excellent cycling stability for supercapacitors.
Collapse
Affiliation(s)
- Yongju Lee
- Department of Chemistry, Sungkyunkwan Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Duk-Young Jung
- Department of Chemistry, Sungkyunkwan Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
4
|
Zheng J, Yan B, Feng L, Zhang Q, Han J, Zhang C, Yang W, Jiang S, He S. Al Foil-Supported Carbon Nanosheets as Self-Supporting Electrodes for High Areal Capacitance Supercapacitors. Molecules 2023; 28:1831. [PMID: 36838820 PMCID: PMC9966967 DOI: 10.3390/molecules28041831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Self-supporting electrode materials with the advantages of a simple operation process and the avoidance of the use any binders are promising candidates for supercapacitors. In this work, carbon-based self-supporting electrode materials with nanosheets grown on Al foil were prepared by combining hydrothermal reaction and the one-step chemical vapor deposition method. The effect of the concentration of the reaction solution on the structures as well as the electrochemical performance of the prepared samples were studied. With the increase in concentration, the nanosheets of the samples became dense and compact. The CNS-120 obtained from a 120 mmol zinc nitrate aqueous solution exhibited excellent electrochemical performance. The CNS-120 displayed the highest areal capacitance of 6.82 mF cm-2 at the current density of 0.01 mA cm-2. Moreover, the CNS-120 exhibited outstanding rate performance with an areal capacitance of 3.07 mF cm-2 at 2 mA cm-2 and good cyclic stability with a capacitance retention of 96.35% after 5000 cycles. Besides, the CNS-120 possessed an energy density of 5.9 μWh cm-2 at a power density of 25 μW cm-2 and still achieved 0.3 μWh cm-2 at 4204 μW cm-2. This work provides simple methods to prepared carbon-based self-supporting materials with low-cost Al foil and demonstrates their potential for realistic application of supercapacitors.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Jingquan Han
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Weisen Yang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Boukhoubza I, Matei E, Jorio A, Enculescu M, Enculescu I. Electrochemical Deposition of ZnO Nanowires on CVD-Graphene/Copper Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2858. [PMID: 36014723 PMCID: PMC9415633 DOI: 10.3390/nano12162858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ZnO nanostructures were electrochemically synthesized on Cu and on chemical vapor deposited (CVD)-graphene/Cu electrodes. The deposition was performed at different electrode potentials ranging from -0.8 to -1.2 V, employing a zinc nitrate bath, and using voltametric and chronoamperometric techniques. The effects of the electrode nature and of the working electrode potential on the structural, morphological, and optical properties of the ZnO structures were investigated. It was found that all the samples crystallize in hexagonal wurtzite structure with a preferential orientation along the c-axis. Scanning electron microscopy (SEM) images confirm that the presence of a graphene covered electrode led to the formation of ZnO nanowires with a smaller diameter compared with the deposition directly on copper surface. The photoluminescence (PL) measurements revealed that the ZnO nanowires grown on graphene/Cu exhibit stronger emission compared to the nanowires grown on Cu. The obtained results add another possibility of tailoring the properties of such nanostructured films according to the specific functionality required.
Collapse
Affiliation(s)
- Issam Boukhoubza
- Group of Nanomaterials and Renewable Energies, Laboratory of Solid State Physics, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, P.O. Box 1796, Atlas Fez 30000, Morocco
| | - Elena Matei
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Anouar Jorio
- Group of Nanomaterials and Renewable Energies, Laboratory of Solid State Physics, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, P.O. Box 1796, Atlas Fez 30000, Morocco
| | - Monica Enculescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Ionut Enculescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| |
Collapse
|
6
|
Al Fatease A, Haque M, Umar A, Ansari SG, Mahnashi MH, Alhamhoom Y, Ansari ZA. Fabrication and Characterization of Acute Myocardial Infarction Myoglobin Biomarker Based on Chromium-Doped Zinc Oxide Nanoparticles. BIOSENSORS 2022; 12:bios12080585. [PMID: 36004981 PMCID: PMC9406182 DOI: 10.3390/bios12080585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
In this article, we describe the fabrication and characterization of a sensor for acute myocardial infarction that detects myoglobin biomarkers using chromium (Cr)-doped zinc oxide (ZnO) nanoparticles (NPs). Pure and Cr-doped ZnO NPs (13 × 1017, 20 × 1017, and 32 × 1017 atoms/cm3 in the solid phase) were synthesized by a facile low-temperature sol-gel method. Synthesized NPs were examined for structure and morphological analysis using various techniques to confirm the successful formation of ZnO NPs. Zeta potential was measured in LB media at a negative value and increased with doping. XPS spectra confirmed the presence of oxygen deficiency in the synthesized material. To fabricate the sensor, synthesized NPs were screen-printed over a pre-fabricated gold-coated working electrode for electrochemical detection of myoglobin (Mb). Cr-doped ZnO NPs doped with 13 × 1017 Cr atomic/cm3 revealed the highest sensitivity of ~37.97 μA.cm−2nM−1 and limit of detection (LOD) of 0.15 nM for Mb with a response time of ≤10 ms. The interference study was carried out with cytochrome c (Cyt-c) due to its resemblance with Mb and human serum albumin (HSA) abundance in the blood and displayed distinct oxidation potential and current values for Mb. Cr-doped ZnO NP-based Mb biosensors showed 3 times higher sensitivity as compared to pure ZnO NP-based sensors.
Collapse
Affiliation(s)
- Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.F.); (Y.A.)
| | - Mazharul Haque
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.H.); (S.G.A.); (Z.A.A.)
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| | - Shafeeque G. Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.H.); (S.G.A.); (Z.A.A.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia;
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.F.); (Y.A.)
| | - Zubaida A. Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.H.); (S.G.A.); (Z.A.A.)
| |
Collapse
|
7
|
Marinaro M, Dsoke S. Advances in Nanomaterials for Lithium-Ion/Post-Lithium-Ion Batteries and Supercapacitors. NANOMATERIALS 2022; 12:nano12152512. [PMID: 35893480 PMCID: PMC9331878 DOI: 10.3390/nano12152512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 01/02/2023]
Affiliation(s)
- Mario Marinaro
- ZSW-Zentrum für Sonnenenergie und Wasserstoff-Forschung, Helmholtzstrasse 8, 89081 Ulm, Germany
- Correspondence: (M.M.); (S.D.)
| | - Sonia Dsoke
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (M.M.); (S.D.)
| |
Collapse
|
8
|
Kumar S, Ahmed F, Ahmad N, Shaalan NM, Kumar R, Alshoaibi A, Arshi N, Dalela S, Alvi PA, Kumari K. Influence of Fe and Cu Co-Doping on Structural, Magnetic and Electrochemical Properties of CeO 2 Nanoparticles. MATERIALS 2022; 15:ma15124119. [PMID: 35744178 PMCID: PMC9228788 DOI: 10.3390/ma15124119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023]
Abstract
The nanoparticles of CeO2, Ce0.98Fe0.02O2, and Ce0.78Fe0.02Cu0.20O2 were synthesized using the co-precipitation-synthesis technique. The effect of co-doping of Fe and Cu on structural, optical, and magnetic properties as well as specific capacitance have been studied using X-ray diffraction (XRD), scanning-electron microscopy (SEM), UV-visible spectroscopy, Raman spectroscopy, dc magnetization, and electrochemical measurements at room temperature. The results of the XRD analysis infer that all the samples have a single-phase nature and exclude the formation of any extra phase. Particle size has been found to reduce as a result of doping and co-doping. The smallest particle size was obtained to be 5.59 nm for Ce0.78Fe0.02Cu0.20O2. The particles show a spherical-shape morphology. Raman active modes, corresponding to CeO2, were observed in the Raman spectra, with noticeable shifting with doping and co-doping indicating the presence of defect states. The bandgap, calculated using UV-Vis spectroscopy, showed relatively low bandgap energy (1.7 eV). The dc magnetization results indicate the enhancement of the magnetic moment in the samples, with doping and co-doping. The highest value of saturation magnetization (1.3 × 10-2 emu/g) has been found for Ce0.78Fe0.02Cu0.20O2 nanoparticles. The electrochemical behavior studied using cyclic-voltammetry (CV) measurements showed that the Ce0.98Fe0.02O2 electrode exhibits superior-specific capacitance (~532 F g-1) along with capacitance retention of ~94% for 1000 cycles.
Collapse
Affiliation(s)
- Shalendra Kumar
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (F.A.); (N.M.S.); (A.A.)
- Department of Physics, University of Petroleum & Energy Studies, Dehradun 248007, India
- Correspondence:
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (F.A.); (N.M.S.); (A.A.)
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Nagih M. Shaalan
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (F.A.); (N.M.S.); (A.A.)
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Rajesh Kumar
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078, India;
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (F.A.); (N.M.S.); (A.A.)
| | - Nishat Arshi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
| | - Saurabh Dalela
- Department of Pure & Applied Physics, University of Kota, Kota 324005, India;
| | - Parvez Ahmad Alvi
- Department of Physics, Banasthali Vidyapith, Banasthali 304022, India;
| | - Kavita Kumari
- School of Materials Science and Engineering, Changwon National University, Changwon 51140, Gyeongnam, Korea;
| |
Collapse
|
9
|
Kumar S, Ahmed F, Ahmad N, Shaalan NM, Kumar R, Alshoaibi A, Arshi N, Dalela S, Albossed M, Chae KH, Alvi PA, Kumari K. Role of Cr Doping on the Structure, Electronic Structure, and Electrochemical Properties of BiFeO 3 Nanoparticles. MATERIALS 2022; 15:ma15124118. [PMID: 35744177 PMCID: PMC9227576 DOI: 10.3390/ma15124118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022]
Abstract
BiFe1−xCrxO3, (0 ≤ x ≤ 10) nanoparticles were prepared through the sol−gel technique. The synthesized nanoparticles were characterized using various techniques, viz., X-ray diffraction, high-resolution field emission scanning electron microscopy (HRFESEM), energy dispersive spectroscopy (EDS), UV−Vis absorption spectroscopy, photoluminescence (PL), dc magnetization, near-edge X-ray absorption spectroscopy (NEXAFS) and cyclic voltammetry (CV) measurements, to investigate the structural, morphological, optical, magnetic and electrochemical properties. The structural analysis showed the formation of BiFeO3 with rhombohedral (R3c) as the primary phase and Bi25FeO39 as the secondary phase. The secondary phase percentage was found to reduce with increasing Cr content, along with reductions in crystallite sizes, lattice parameters and enhancement in strain. Nearly spherical shape morphology was observed via HRFESEM with Bi, Fe, Cr and O as the major contributing elements. The bandgap reduced from 1.91 to 1.74 eV with the increase in Cr concentration, and PL spectra revealed emissions in violet, blue and green regions. The investigation of magnetic field (H)-dependent magnetization (M) indicated a significant effect of Cr substitution on the magnetic properties of the nanoparticles. The ferromagnetic character of the samples was found to increase with the increase in the Cr concentration and the increase in the saturation magnetization. The Fe (+3/+4) was dissolved in mixed-valence states, as found through NEXAFS analysis. Electrochemical studies showed that 5%-Cr-doped BFO electrode demonstrated outstanding performance for supercapacitors through a specific capacitance of 421 F g−1 measured with a scan rate of 10 mV s−1. It also demonstrated remarkable cyclic stability through capacitance retention of >78% for 2000 cycles.
Collapse
Affiliation(s)
- Shalendra Kumar
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (F.A.); (N.M.S.); (A.A.); (M.A.)
- Department of Physics, University of Petroleum & Energy Studies, Dehradun 248007, India
- Correspondence:
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (F.A.); (N.M.S.); (A.A.); (M.A.)
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Nagih M. Shaalan
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (F.A.); (N.M.S.); (A.A.); (M.A.)
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Rajesh Kumar
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078, India;
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (F.A.); (N.M.S.); (A.A.); (M.A.)
| | - Nishat Arshi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box 400, Hofuf Al-Ahsa 31982, Saudi Arabia;
| | - Saurabh Dalela
- Department of Pure & Applied Physics, University of Kota, Kota 324005, India;
| | - Mohammed Albossed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (F.A.); (N.M.S.); (A.A.); (M.A.)
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791, Korea;
| | - Parvez Ahmad Alvi
- Department of Physics, Banasthali Vidyapith, Banasthali 304022, India;
| | - Kavita Kumari
- School of Materials Science and Engineering, Changwon National University, Changwon 51140, Korea;
| |
Collapse
|
10
|
Nethaji P, Senthil Kumar P. V-Ag doped ZnO nanorod as high-performance electrode material for supercapacitors with enhanced specific capacitance and cycling stability. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Synergistic Effect of Hexagonal Boron Nitride-Coated Separators and Multi-Walled Carbon Nanotube Anodes for Thermally Stable Lithium-Ion Batteries. CRYSTALS 2022. [DOI: 10.3390/cryst12020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this work, we report the development of separators coated with hexagonal boron nitride (hBN) to improve the thermal stability of Li-ion batteries (LIBs). Aiming to achieve a synergistic effect of separators and anodes on thermal stability and electrochemical performance, multiwalled carbon nanotubes (MWCNTs) were prepared via plasma-enhanced chemical vapor deposition (PECVD) method and used as potential anode materials for LIBs. The grown MWCNTs were well characterized by using various techniques which confirmed the formation of MWCNTs. The prepared MWCNTs showed a crystalline structure and smooth surface with a diameter of ~9–12 nm and a length of ~10 μm, respectively. Raman spectra showed the characteristic peaks of MWCNTs and BN, and the sharpness of the peaks showed the highly crystalline nature of the grown MWCNTs. The electrochemical studies were performed on the fabricated coin cell with a MWCNT anode using a pristine andBN-coated separators. The results show that the cell with the BN-coated separator in a conventional organic carbonate-based electrolyte and MWCNTs as the anode resulted in a discharge capacity (at 65 °C) of ~567 mAhg−1 at a current density of 100 mAg−1 for the first cycle, and delivered a capacity of ~471 mAhg−1 for 200 cycles. The columbic efficiency was found to be higher (~84%), which showed excellent reversible charge–discharge behavior as compared with the pristine separator (69%) after 200 cycles. The improved thermal performance of the LIBs with the BN-coated separator and MWCNT anode might be due to the greater homogeneous thermal distribution resulting from the BN coating, and the additional electron pathway provided by the MWCNTs. Thus, the fabricated cell showed promising results in achieving the stable operation of the LIBs even at higher temperatures, which will open a pathway to solve the practical concerns over the use of LIBs at higher temperatures without compromising the performance.
Collapse
|