1
|
Yook H, Hwang J, Yeo W, Bang J, Kim J, Kim TY, Choi JS, Han JW. Design Strategies for Hydroxyapatite-Based Materials to Enhance Their Catalytic Performance and Applicability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204938. [PMID: 35917488 DOI: 10.1002/adma.202204938] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAP) is a green catalyst that has a wide range of applications in catalysis due to its high flexibility and multifunctionality. These properties allow HAP to accommodate a large number of catalyst modifications that can selectively improve the catalytic performance in target reactions. To date, many studies have been conducted to elucidate the effect of HAP modification on the catalytic activities for various reactions. However, systematic design strategies for HAP catalysts are not established yet due to an incomplete understanding of underlying structure-activity relationships. In this review, tuning methods of HAP for improving the catalytic performance are discussed: 1) ionic composition change, 2) morphology control, 3) incorporation of other metal species, and 4) catalytic support engineering. Detailed mechanisms and effects of structural modulations on the catalytic performances for attaining the design insights of HAP catalysts are investigated. In addition, computational studies to understand catalytic reactions on HAP materials are also introduced. Finally, important areas for future research are highlighted.
Collapse
Affiliation(s)
- Hyunwoo Yook
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jinwoo Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Woonsuk Yeo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jungup Bang
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Jaeyoung Kim
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Tae Yong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jae-Soon Choi
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Jeong Woo Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
2
|
Ammar M, Ashraf S, Baltrusaitis J. Nutrient-Doped Hydroxyapatite: Structure, Synthesis and Properties. CERAMICS 2023; 6:1799-1825. [DOI: 10.3390/ceramics6030110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Complex inorganic powders based on calcium phosphates have found a plethora of practical applications. Of particular interest are the CaO-P2O5 system-based multi-component material powders and granules as the source of major- and micronutrients for the plants. The emerging strategy is to use nano fertilizers based on hydroxyapatite (HAP) for phosphorus and other nutrient delivery. The doping of micronutrients into HAP structure presents an interesting challenge in obtaining specific phase compositions of these calcium phosphates. Various techniques, including mechanochemical synthesis, have been employed to fabricate doped HAP. Mechanochemical synthesis is of particular interest in this review since it presents a relatively simple, scalable, and cost-effective method of calcium phosphate powder processing. The method involves the use of mechanical force to promote chemical reactions and create nanometric powders. This technique has been successfully applied to produce HAP nanoparticles alone, and HAP doped with other elements, such as zinc and magnesium. Nanofertilizers developed through mechanochemical synthesis can offer several advantages over conventional fertilizers. Their nanoscale size allows for rapid absorption and controlled release of nutrients, which leads to improved nutrient uptake efficiency by plants. Furthermore, the tailored properties of HAP-based nano fertilizers, such as controlled porosity and degradation levels, contribute to their effectiveness in providing plant nutrition.
Collapse
Affiliation(s)
- Mohamed Ammar
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Sherif Ashraf
- Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
3
|
Głąb M, Kudłacik-Kramarczyk S, Drabczyk A, Kordyka A, Godzierz M, Wróbel PS, Tomala A, Tyliszczak B, Sobczak-Kupiec A. Evaluation of the impact of pH of the reaction mixture, type of the stirring, and the reagents' concentration in the wet precipitation method on physicochemical properties of hydroxyapatite so as to enhance its biomedical application potential. J Biomed Mater Res B Appl Biomater 2022; 110:2649-2666. [PMID: 35816273 DOI: 10.1002/jbm.b.35118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Hydroxyapatite (HAp) constitutes a significant inorganic compound which due to its osteoinductivity, osteoconductivity as well as the ability to promote bone growth and regeneration is widely applied in development of biomaterials designed for bone tissue engineering. In this work, various synthesis methodologies of HAp based on the wet precipitation technique were applied, and the impact of pH of the reaction mixture, the concentration of individual reagents as well as the type of stirring applied (mechanical/magnetic) on the properties of final powders was discussed. Spectroscopic methods (Fourier transform infrared, Raman) and X-ray diffraction allowed to verify the synthesis parameters leading to obtaining calcium phosphate with 96% HAp in phase which indicated higher homogeneity of obtained powder (93.4%) than commercial HAp. Powders' morphology was evaluated using microscopic techniques while specific surface area was determined via Brunauer-Emmett-Teller analysis. Particle size distribution, porosity of powders, and stability of HAp suspensions were also characterized. It was proved that synthesis at pH = 11.0 using mechanical stirring resulted in calcium phosphate with a high phase homogeneity and homogeneous pore size distribution (6-20 nm). Moreover, obtained HAp powder showed 71.8% more specific surface area than commercial material-that is, 110 m3 /g for synthetic HAp and 64 m3 /g in the case of commercial powder-which, in turn, is significant in terms of its potential application as carrier of active substances. Thus it was demonstrated that by applying appropriate conditions of HAp synthesis it is possible to obtain powder with properties enhancing its application potential for medical purposes.
Collapse
Affiliation(s)
- Magdalena Głąb
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Aleksandra Kordyka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Paweł S Wróbel
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Agnieszka Tomala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| |
Collapse
|
4
|
Qi H, Liu Y, Wu L, Liu C, Ni S, Liu Q, Ni X, Sun Q. Mg-HA-C/C Composites Promote Osteogenic Differentiation and Repair Bone Defects Through Inhibiting miR-16. Front Bioeng Biotechnol 2022; 10:838842. [PMID: 35186909 PMCID: PMC8854763 DOI: 10.3389/fbioe.2022.838842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The hydroxyapatite (HA) coating on carbon/carbon (C/C) is reasonable and feasible to obtain bone graft materials with appropriate mechanical and biological properties. However, improvement of the physical and chemical properties of HA-C/C composites to promote bone regeneration and healing remains a challenge. In our present study, the HA coatings on C/C with magnesium (Mg) (Mg-HA-C/C) composites were synthesized that Ca (NO3)2, Mg (NO3)2, and NH4H2PO4 were mixed and coatings were made by electromagnetic induction deposition’s heating. As determined with in vitro experiments, Mg-HA-C/C composites containing 10 and 20% Mg decreased miR-16 levels, increased cell viability, elevated the levels of osteogenesis-related genes, and promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) seeded on their surfaces. In a rat model of skull defects, compared to the control group, at 4 and 12 weeks after the operation, the bone volume fraction (BV/TV) of Mg-HA-C/C composite group was increased by 8.439 ± 2.681% and 23.837 ± 7.845%, as well as the trabecular thickness (Tb.Th) was 56.247 ± 24.238 μm and 114.911 ± 34.015 μm more. These composites also increased the levels of ALP and RUNX2 in skull. The Mg-HA-C/C composite-enhanced bone regeneration and healing were blocked by in situ injection of an miR-16 mimic lentivirus vector. Thus, Mg-HA-C/C composites promote osteogenic differentiation and repair bone defects through inhibiting miR-16.
Collapse
Affiliation(s)
- Hong Qi
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chun Liu
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou, China
| | - Su Ni
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou, China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinye Ni
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou, China
- *Correspondence: Xinye Ni, ; Qiang Sun,
| | - Qiang Sun
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Xinye Ni, ; Qiang Sun,
| |
Collapse
|
5
|
Abdul Halim NA, Hussein MZ, Kandar MK. Nanomaterials-Upconverted Hydroxyapatite for Bone Tissue Engineering and a Platform for Drug Delivery. Int J Nanomedicine 2021; 16:6477-6496. [PMID: 34584412 PMCID: PMC8464594 DOI: 10.2147/ijn.s298936] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
Hydroxyapatite is a basic mineral that is very important to the human body framework. Recently, synthetic hydroxyapatite (SHA) and its nanocomposites (HANs) are the subject of intense research for bone tissue engineering and drug loading system applications, due to their unique, tailor-made characteristics, as well as their similarities with the bone mineral component in the human body. Although hydroxyapatite has good biocompatibility and osteoconductive characteristics, the poor mechanical strength restricts its use in non-load-bearing applications. Consequently, a rapid increase in reinforcing of other nanomaterials into hydroxyapatite for the formation of HANs could improve the mechanical properties. Most of the research reported on the success of other nanomaterials such as metals, ceramics and natural/synthetic polymers as additions into hydroxyapatite is reviewed. In addition, this review also focuses on the addition of various substances into hydroxyapatite for the formation of various HANs and at the same time to try to minimize the limitations so that various bone tissue engineering and drug loading system applications can be exploited.
Collapse
Affiliation(s)
- Nur Akma Abdul Halim
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Seri Kembangan, Selangor Darul Ehsan, 43400, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Seri Kembangan, Selangor Darul Ehsan, 43400, Malaysia
| | - Mohd Khairuddin Kandar
- Department of Orthopedics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor Darul Ehsan, 43400, Malaysia
| |
Collapse
|
6
|
Esmaeili E, Rounaghi SA, Eckert J. Mechanochemical Synthesis of Rosin-Modified Montmorillonite: A Breakthrough Approach to the Next Generation of OMMT/Rubber Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1974. [PMID: 34443805 PMCID: PMC8401612 DOI: 10.3390/nano11081974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
The current investigation presents a green mechanochemical procedure for the synthesis of a special kind of rubber-compatible organo-montmorillonite (OMMT) for use in the inner liner compound of tires. The compatibility character of the OMMT arises from the mechanochemical reaction of the raw bentonite mineral and gum rosin as some of the organic constituents of the inner liner composition. The monitoring of OMMT synthesis by various characterization techniques reveals that gum rosin gradually intercalates into the montmorillonite (MMT) galleries during milling and increases the interlayer spacing to 41.1 ± 0.5 Å. The findings confirm the simultaneous formation of single- or few-layered OMMT platelets with average sizes from the sub-micron range up to several micrometers during the milling process. The mechanical properties of the OMMT/rubber nanocomposite, such as tensile strength, tear resistance and elongation, present a good enhancement in comparison to the un-modified material. Moreover, the organo-modification of the inner liner composition also leads to a property improvement of about 50%.
Collapse
Affiliation(s)
- Elaheh Esmaeili
- Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran
| | - Seyyed Amin Rounaghi
- Research and Development Laboratory, Nano Parmin Khavaran Company, Birjand, Iran;
| | - Jürgen Eckert
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700 Leoben, Austria
- Department of Materials Science, Chair of Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben, Austria
| |
Collapse
|