1
|
Michałowska A, Kudelski A. Plasmonic substrates for biochemical applications of surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123786. [PMID: 38128327 DOI: 10.1016/j.saa.2023.123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Due to its great practical importance, the detection and determination of many biomolecules in body fluids and other samples is carried out in a large number of laboratories around the world. One of the most promising analytical techniques now being widely introduced into medical analysis is surface-enhanced Raman scattering (SERS) spectroscopy. SERS is one of the most sensitive analytical methods, and in some cases, a good quality SERS spectrum dominated by the contribution of even a single molecule can be obtained. Highly sensitive SERS measurements can only be carried out on substrates generating a very high SERS enhancement factor and a low Raman spectral background, and so using of right nanomaterials is a key element in the success of SERS biochemical analysis. In this review article, we present progress that has been made in the preparation of nanomaterials used in SERS spectroscopy for detecting various kinds of biomolecules. We describe four groups of nanomaterials used in such measurements: nanoparticles of plasmonic metals and deposits of plasmonic nanoparticles on macroscopic substrates, nanocomposites containing plasmonic and non-plasmonic parts, nanostructured macroscopic plasmonic metals, and nanostructured macroscopic non-plasmonic materials covered by plasmonic films. We also describe selected SERS biochemical analyses that utilize the nanomaterials presented. We hope that this review will be useful for researchers starting work in this fascinating field of science and technology.
Collapse
Affiliation(s)
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland.
| |
Collapse
|
2
|
Jiang Y, Wang X, Zhao G, Shi Y, Wu Y. In-situ SERS detection of quinolone antibiotic residues in aquaculture water by multifunctional Fe 3O 4@mTiO 2@Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123056. [PMID: 37385202 DOI: 10.1016/j.saa.2023.123056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Antibiotic residues in aquaculture environments disrupt the ecosystem balance and pose a potential hazard to human health when entering the food chain. Therefore, ultra-sensitive detection of antibiotics is necessary. In this study, a multifunctional Fe3O4@mTiO2@Ag core-shell nanoparticle (NP), synthesized using a layer-by-layer method, was demonstrated to be useful as an enhanced substrate for in-situ surface-enhanced Raman spectroscopy (SERS) detection of various quinolone antibiotics in aqueous environments. The results showed that the minimum detectable concentrations of the six investigated antibiotics were 1 × 10-9 mol/L (ciprofloxacin, danofloxacin, enoxacin, enrofloxacin, and norfloxacin) and 1 × 10-8 mol/L (difloxacin hydrochloride) under the enrichment and enhancement of Fe3O4@mTiO2@Ag NPs. Additionally, there was a good quantitative relationship between the antibiotics concentrations and SERS peak intensities within a certain detection range. The results of the spiked assay of actual aquaculture water samples showed that the recoveries of the six antibiotics ranged from 82.9% to 113.5%, with relative standard deviations ranging from 1.71% to 7.24%. In addition, Fe3O4@mTiO2@Ag NPs achieved satisfactory results in assisting the photocatalytic degradation of antibiotics in aqueous environments. This provides a multifunctional solution for low concentration detection and efficient degradation of antibiotics in aquaculture water.
Collapse
Affiliation(s)
- Ye Jiang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Yinyan Shi
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Yao Wu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| |
Collapse
|
3
|
Lie J, Huang J, You R, Lu Y. Preparation and Application of Magnetic Molecularly Imprinted Plasmonic SERS Composite Nanoparticles. Crit Rev Anal Chem 2023; 54:2940-2959. [PMID: 37289486 DOI: 10.1080/10408347.2023.2219322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Magnetic molecularly imprinted polymers (MMIPs) are used as artificial antibody materials. MMIPs have attracted a great deal of interest because of their low cost, wide practicality, predetermination, stability and their ability to achieve rapid separation from complex sample environments by the action of external magnetic field. MMIPs can simulate the natural recognition of entities. They are widely used because of their great advantages in terms of high selectivity. In this review article, the preparation methods of Fe3O4 NPs and a detailed summary of the commonly used methods for amination modification of Fe3O4 NPs are introduced, preparation of Ag NPs of different sizes and Au NPs of various shapes and preparation methods of magnetic molecularly imprinted plasmonic SERS composite nanoparticles such as Fe3O4@Ag NPs, Fe3O4/Ag NPs, Fe3O4@Au NPs, Fe3O4/Au NPs, Fe3O4@Au/Ag NPs and Fe3O4@Ag@Au NPs are main summarized. In addition, preparation process and the current application of MMIPs prepared from magnetic molecularly imprinted plasmonic SERS composite nanoparticles incorporating different functional monomers in a nuclear-satellite structure are also presented. Finally, the existing challenges and future prospects of MMIPs in applications are discussed.
Collapse
Affiliation(s)
- Jiansen Lie
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Jiali Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Wang T, Hu X, Yang Y, Wu Q, He C, He X, Wang Z, Mao X. New Insight into Assembled Fe3O4@PEI@Ag Structure as Acceptable Agent with Enzymatic and Photothermal Properties. Int J Mol Sci 2022; 23:ijms231810743. [PMID: 36142657 PMCID: PMC9501236 DOI: 10.3390/ijms231810743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Metal-based enzyme mimics are considered to be acceptable agents in terms of their biomedical and biological properties; among them, iron oxides (Fe3O4) are treated as basement in fabricating heterogeneous composites through variable valency integrations. In this work, we have established a facile approach for constructing Fe3O4@Ag composite through assembling Fe3O4 and Ag together via polyethyleneimine ethylenediamine (PEI) linkages. The obtained Fe3O4@PEI@Ag structure conveys several hundred nanometers (~150 nm). The absorption peak at 652 nm is utilized for confirming the peroxidase-like activity of Fe3O4@PEI@Ag structure by catalyzing 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. The Michaelis–Menten parameters (Km) of 1.192 mM and 0.302 mM show the higher catalytic activity and strong affinity toward H2O2 and TMB, respectively. The maximum velocity (Vmax) value of 1.299 × 10−7 M∙s−1 and 1.163 × 10−7 M∙s−1 confirm the efficiency of Fe3O4@PEI@Ag structure. The biocompatibility illustrates almost 100% cell viability. Being treated as one simple colorimetric sensor, it shows relative selectivity and sensitivity toward the detection of glucose based on glucose oxidase. By using indocyanine green (ICG) molecule as an additional factor, a remarkable temperature elevation is observed in Fe3O4@PEI@Ag@ICG with increments of 21.6 °C, and the absorption peak is nearby 870 nm. This implies that the multifunctional Fe3O4@PEI@Ag structure could be an alternative substrate for formatting acceptable agents in biomedicine and biotechnology with enzymatic and photothermal properties.
Collapse
Affiliation(s)
- Teng Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xi Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Qing Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Chengdian He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xiong He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zhenyu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (Z.W.); (X.M.)
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (Z.W.); (X.M.)
| |
Collapse
|
5
|
Mikoliunaite L, Talaikis M, Michalowska A, Dobilas J, Stankevic V, Kudelski A, Niaura G. Thermally Stable Magneto-Plasmonic Nanoparticles for SERS with Tunable Plasmon Resonance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2860. [PMID: 36014725 PMCID: PMC9416134 DOI: 10.3390/nano12162860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 05/04/2023]
Abstract
Bifunctional magneto-plasmonic nanoparticles that exhibit synergistically magnetic and plasmonic properties are advanced substrates for surface-enhanced Raman spectroscopy (SERS) because of their excellent controllability and improved detection potentiality. In this study, composite magneto-plasmonic nanoparticles (Fe3O4@AgNPs) were formed by mixing colloid solutions of 50 nm-sized magnetite nanoparticles with 13 nm-sized silver nanoparticles. After drying of the layer of composite Fe3O4@AgNPs under a strong magnetic field, they outperformed the conventional silver nanoparticles during SERS measurements in terms of signal intensity, spot-to-spot, and sample-to-sample reproducibility. The SERS enhancement factor of Fe3O4@AgNP-adsorbed 4-mercaptobenzoic acid (4-MBA) was estimated to be 3.1 × 107 for a 633 nm excitation. In addition, we show that simply by changing the initial volumes of the colloid solutions, it is possible to control the average density of the silver nanoparticles, which are attached to a single magnetite nanoparticle. UV-Vis and SERS data revealed a possibility to tune the plasmonic resonance frequency of Fe3O4@AgNPs. In this research, the plasmon resonance maximum varied from 470 to 800 nm, suggesting the possibility to choose the most suitable nanoparticle composition for the particular SERS experiment design. We emphasize the increased thermal stability of composite nanoparticles under 532 and 442 nm laser light irradiation compared to that of bare Fe3O4 nanoparticles. The Fe3O4@AgNPs were further characterized by XRD, TEM, and magnetization measurements.
Collapse
Affiliation(s)
- Lina Mikoliunaite
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Martynas Talaikis
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
| | | | - Jorunas Dobilas
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology (FTMC), Sauletekio al. 3, LT-10257 Vilnius, Lithuania
| | - Voitech Stankevic
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology (FTMC), Sauletekio al. 3, LT-10257 Vilnius, Lithuania
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura St. 1, 02-093 Warsaw, Poland
| | - Gediminas Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|