1
|
Wei S, Wan C, Huang Q, Chai H, Chai Y, Li X, Wu Y. 3D cellulose network confining MXene/MnO 2 enables flexible wet spinning microfibers for high-performance fiber-shaped Zn-ion capacitors. Int J Biol Macromol 2024; 276:134152. [PMID: 39098457 DOI: 10.1016/j.ijbiomac.2024.134152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Fiber-shaped Zn-ion capacitors (FSZICs) have shown great potential in wearable electronics due to their long cycle life, high energy density, and good flexibility. Nevertheless, it is still a critical challenge to develop a conductive fiber with long size and high mechanical properties as the FSZIC cathode using sustainable and low-cost materials. Herein, regenerated cellulose (RC) -based conductive microfibers are prepared by a simple, continuous, and scalable wet spinning process. The 3D nanoporous networks of RC caused by physical self-cross-linking allow MXene and MnO2 to be uniformly and firmly embedded. The rapid extrusion and limited drying result in the highly aligned structure of the fibers, endowing the hybrid fiber with an ultra-high tensile strength (145.83 Mpa) and Young's modulus (1672.11 Mpa). MXene/MnO2-RC-based FSZIC demonstrates a high specific capacitance of 110.01 mF cm-3, an energy density of 22.0 mWh cm-3 at 0.57 A cm-3 and excellent cycling stability with 90.5 % capacity retention after 5000 cycles. This work would lead to a great potential of cellulose for application in next-generation green and wearable electronics.
Collapse
Affiliation(s)
- Song Wei
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China; Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H0A, UK
| | - Caichao Wan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Qiongtao Huang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Huayun Chai
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yaling Chai
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Xuanze Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
2
|
Sharma R, Nath PC, Mohanta YK, Bhunia B, Mishra B, Sharma M, Suri S, Bhaswant M, Nayak PK, Sridhar K. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview. Int J Biol Macromol 2024; 256:128517. [PMID: 38040157 DOI: 10.1016/j.ijbiomac.2023.128517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Water pollution presents a significant challenge, impacting ecosystems and human health. The necessity for solutions to address water pollution arises from the critical need to preserve and protect the quality of water resources. Effective solutions are crucial to safeguarding ecosystems, human health, and ensuring sustainable access to clean water for current and future generations. Generally, cellulose and its derivatives are considered potential substrates for wastewater treatment. The various cellulose processing methods including acid, alkali, organic & inorganic components treatment, chemical treatment and spinning methods are highlighted. Additionally, we reviewed effective use of the cellulose derivatives (CD), including cellulose nanocrystals (CNCs), cellulose nano-fibrils (CNFs), CNPs, and bacterial nano-cellulose (BNC) on waste water (WW) treatment. The various cellulose processing methods, including spinning, mechanical, chemical, and biological approaches are also highlighted. Additionally, cellulose-based materials, including adsorbents, membranes and hydrogels are critically discussed. The review also highlighted the mechanism of adsorption, kinetics, thermodynamics, and sorption isotherm studies of adsorbents. The review concluded that the cellulose-derived materials are effective substrates for removing heavy metals, dyes, pathogenic microorganisms, and other pollutants from WW. Similarly, cellulose based materials are used for flocculants and water filtration membranes. Cellulose composites are widely used in the separation of oil and water emulsions as well as in removing dyes from wastewater. Cellulose's natural hydrophilicity makes it easier for it to interact with water molecules, making it appropriate for use in water treatment processes. Furthermore, the materials derived from cellulose have wider application in WW treatment due to their inexhaustible sources, low energy consumption, cost-effectiveness, sustainability, and renewable nature.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Minaxi Sharma
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Shweta Suri
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
3
|
Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydr Polym 2023; 305:120537. [PMID: 36737189 DOI: 10.1016/j.carbpol.2023.120537] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
Both inorganic and polymeric membranes have been widely applied for antimicrobial applications. However, these membranes exhibit low biocompatibility, weak biodegradability, and potential toxicity to human being and environment. Biomass materials serve as excellent candidates for fabricating functional membranes to address these problems due to their unique physical, chemical, and biological properties. Here we present recent progress in the fabrication, functional regulation, and antimicrobial applications of various biomass-based membranes. We first introduce the types of biomass membranes and their fabrication methods, including the phase inversion, vacuum filtration, electrospinning, layer-by-layer self-assembly, and coating. Then, the strategies on functional regulation of biomass membranes by adding 0D, 1D, and 2D nanomaterials are presented and analyzed. In addition, antibacterial, antifungal, and antiviral applications of biomass-based functional membranes are summarized. Finally, potential development aspects of biomass membranes are discussed and prospected. This comprehensive review is valuable for guiding the design, synthesis, structural/functional tailoring, and sustainable utilization of biomass membranes.
Collapse
|
4
|
Li Z, Lu Y, Guo N, Feng W, Fu S, Zhang P. Hygroscopic and cool boron nitride Nanosheets/Regenerated flax fiber material microstructure Dual-Cooling composite fabric. J Colloid Interface Sci 2023; 633:489-499. [PMID: 36463818 DOI: 10.1016/j.jcis.2022.11.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Developing cooling textiles with unidirectional water transport performances and high thermal conductivities is essential for personal thermal and wet comfort in human activities. We report a green, degradable, hygroscopic cooling material and dual-cooling composite fabric (d-CCF). A boron nitride nanosheet/regenerated flax fiber (BNNS/RFF) material with a high thermal conductivity was prepared by dissolving recovered flax fibers with a green, efficient 1-butyl-3-methylimidazole chloride/dimethyl sulfoxide system and adding BNNSs. The 60- wt% BNNS/RFF materials had excellent thermal conductivity and hydrophilicity, the breaking strength reached 120 MPa, and the elongation was 15.8 %. The d-CCF consisted of cool polyester (CPET) yarn (inner layer), CPET/bamboo composite yarn (middle layer), bamboo yarn, and 60- wt% BNNS/RFF (outer layer) with unobstructed heat dissipation and evaporation cooling for effective moisture and thermal management. This d-CCF had distinct advantages, including a high one-way water transport index (468 %), an extremely high evaporation rate (0.3818 g h-1), inner layer maximum heat flux (0.191 W cm-2), and outer layer maximum heat flux (0.249 W cm-2), providing a cooling sensation upon contact. Compared to cotton fabrics, the d-CCF could keep the skin cooler by 2.5 °C. This work provides a strategy to fabricate environmentally friendly BNNS/RFF materials and a facile pathway for cooling textile development for human health management.
Collapse
Affiliation(s)
- Zhijiang Li
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China; College of Mechanical and Electrical Engineering, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Yanping Lu
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China
| | - Ning Guo
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China
| | - Wei Feng
- College of Mechanical and Electrical Engineering, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Shaoju Fu
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China.
| | - Peihua Zhang
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China.
| |
Collapse
|
5
|
Xue Y, Li W, Yang G, Lin Z, Qi L, Zhu P, Yu J, Chen J. Strength Enhancement of Regenerated Cellulose Fibers by Adjustment of Hydrogen Bond Distribution in Ionic Liquid. Polymers (Basel) 2022; 14:polym14102030. [PMID: 35631912 PMCID: PMC9147360 DOI: 10.3390/polym14102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/07/2022] Open
Abstract
To improve the physical strength of regenerated cellulose fibers, cellulose dissolution was analyzed with a conductor-like screening model for real solvents in which 1-allyl-3-methylimidazolium chloride (AMIMCl) worked only as a hydrogen bond acceptor while dissolving the cellulose. This process could be promoted by the addition of urea, glycerol, and choline chloride. The dissolution and regeneration of cellulose was achieved through dry-jet and wet-spinning. The results demonstrated that the addition of hydrogen bond donors and acceptors either on their own or in combination can enhance the tensile strength, but their effects on the crystallinity of the regenerated fibers were quite limited. Compared with the regenerated fibers without any additives, the tensile strength was improved from 54.43 MPa to 139.62 MPa after introducing the choline chloride and glycerol, while related the crystallinity was only changed from 60.06% to 62.97%. By contrast, a more compact structure and fewer pores on the fiber surface were identified in samples with additives along with well-preserved cellulose frameworks. Besides, it should be noted that an optimization in the overall thermal stability was obtained in samples with additives. The significant effect of regenerated cellulose with the addition of glycerol was attributed to the reduction of cellulose damage by slowing down the dissolution and cross-linking in the cellulose viscose. The enhancement of the physical strength of regenerated cellulose fiber can be realized by the appropriate adjustment of the hydrogen bond distribution in the ionic liquid system with additives.
Collapse
Affiliation(s)
- Yu Xue
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (Y.X.); (P.Z.); (J.Y.)
| | - Weidong Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (W.L.); (Z.L.); (J.C.)
| | - Guihua Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (Y.X.); (P.Z.); (J.Y.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (W.L.); (Z.L.); (J.C.)
- Correspondence: (G.Y.); (L.Q.); Tel.: +86-531-8963-1884 (G.Y. & L.Q.)
| | - Zhaoyun Lin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (W.L.); (Z.L.); (J.C.)
| | - Letian Qi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (W.L.); (Z.L.); (J.C.)
- Correspondence: (G.Y.); (L.Q.); Tel.: +86-531-8963-1884 (G.Y. & L.Q.)
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (Y.X.); (P.Z.); (J.Y.)
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (Y.X.); (P.Z.); (J.Y.)
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (W.L.); (Z.L.); (J.C.)
| |
Collapse
|
6
|
Freire CSR, Vilela C. Advanced Nanocellulose-Based Materials: Production, Properties, and Applications. NANOMATERIALS 2022; 12:nano12030431. [PMID: 35159776 PMCID: PMC8840358 DOI: 10.3390/nano12030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022]
Abstract
Natural polymers, such as polysaccharides and proteins, are being extensively utilized as substrates to create advanced materials [...].
Collapse
|