1
|
Santoveña-Uribe A, Maya-Cornejo J, Estevez M, Santamaria-Holek I. Thermodynamic Analysis of Size-Dependent Surface Energy in Pd Nanoparticles for Enhanced Alkaline Ethanol Electro-Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1966. [PMID: 39683354 DOI: 10.3390/nano14231966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
This work investigates the relationship between the mean diameter of palladium (Pd) nanoparticles and their surface energy, specifically in the context of alkaline ethanol electro-oxidation for fuel cell applications. Employing a recent generalization of the classical Laviron equation, we derive crucial parameters such as surface energy (σ), adsorption-desorption equilibrium constant (Keq), and electron transfer coefficient (α) from linear voltammograms obtained from Pd-based nanoparticles supported on Vulcan carbon. Synthesized using two distinct methods, these nanocatalysts exhibit mean diameters ranging from 10 to 41 nm. Our results indicate that the surface energy of the Pd/C nanocatalysts spans σ ~ 0.5-2.5 J/m2, showing a linear correlation with particle size while remaining independent of ethanol bulk concentration. The adsorption-desorption equilibrium constant varies with nanoparticle size (~0.1-6 × 10-6 mol-1) but is unaffected by ethanol concentration. Significantly, we identify an optimal mean diameter of approximately 28 nm for enhanced electrocatalytic activity, revealing critical size-dependent effects on catalytic efficiency. This research contributes to the ongoing development of cost-effective and durable fuel cell components by optimizing nanoparticle characteristics, thus advancing the performance of Pd-based catalysts in practical applications. Our findings are essential for the continued evolution of nanomaterials in fuel cell technologies, particularly in improving efficiency and reducing reliance on critical raw materials.
Collapse
Affiliation(s)
- A Santoveña-Uribe
- Unidad Multidisciplinaria de Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro 76230, Mexico
| | - J Maya-Cornejo
- Unidad Multidisciplinaria de Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro 76230, Mexico
| | - M Estevez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro 76230, Mexico
| | - I Santamaria-Holek
- Unidad Multidisciplinaria de Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro 76230, Mexico
| |
Collapse
|
2
|
Lawaniya SD, Kumar S, Yu Y, Awasthi K. Nitrogen-doped carbon nano-onions/polypyrrole nanocomposite based low-cost flexible sensor for room temperature ammonia detection. Sci Rep 2024; 14:7904. [PMID: 38570517 PMCID: PMC10991286 DOI: 10.1038/s41598-024-57153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
One of the frontier research areas in the field of gas sensing is high-performance room temperature-based novel sensing materials, and new family of low-cost and eco-friendly carbon nanomaterials with a unique structure has attracted significant attention. In this work, we propose a novel low-cost flexible room temperature ammonia gas sensor based on nitrogen-doped carbon nano-onions/polypyrrole (NCNO-PPy) composite material mounted low-cost membrane substrate was synthesized by combining hydrothermal and in-situ chemical polymerization methods. The proposed flexible sensor revealed high sensing performance when employed as the sensing material for ammonia detection at room temperature. The NCNO-PPy ammonia sensor exhibited 17.32% response for 100 ppm ammonia concentration with a low response time of 26 s. The NCNO-PPy based flexible sensor displays high selectivity, good repeatability, and long-term durability with 1 ppm as the lower detection limit. The proposed flexible sensor also demonstrated remarkable mechanical robustness under extreme bending conditions, i.e., up to 90° bending angle and 500 bending cycles. This enhanced sensing performance can be related to the potential bonding and synergistic interaction between nitrogen-doped CNOs and PPy, the formation of defects from nitrogen doping, and the presence of high reactive sites on the surface of NCNO-PPy composites. Additionally, the computational study was performed on optimized NCNO-PPy nanocomposite for both with and without NH3 interaction. A deeper understanding of the sensing phenomena was proposed by the computation of several electronic characteristics, such as band gap, electron affinity, and ionization potential, for the optimized composite.
Collapse
Affiliation(s)
- Shiv Dutta Lawaniya
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Sanjay Kumar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Yeontae Yu
- Division of Advanced Materials Engineering, Jeonbuk National University, 567, Baekje-Daero, Deokjin-Gu, Jeonju, 54896, South Korea
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
3
|
Dardun V, Pinto T, Benaillon L, Veyre L, Galipaud J, Camp C, Meille V, Thieuleux C. Easy preparation of small crystalline Pd 2Sn nanoparticles in solution at room temperature. Dalton Trans 2023; 52:2157-2163. [PMID: 36723026 DOI: 10.1039/d2dt03476j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe here a simple protocol yielding small (<2 nm) crystalline Pd2Sn nanoparticles (NPs) along with Pd homologues for sake of comparison. These NPs were obtained via an organometallic approach using Pd2(dba)3·dba (dba = dibenzylideneacetone) in THF with 2 equivalents of tributyltin hydride under 4 bars of H2 at room temperature. The Pd NP homologues were prepared similarly, using Pd2(dba)3·dba with 2 equivalents of n-octylsilane. These NPs were found to be crystalline and very small with a similar mean size (ca. 1.5 nm). These NPs were finally used as nanocatalysts in solution for a benchmark Suzuki-Miyaura cross-coupling reaction. The Pd2Sn NPs were found to be more active than Pd NPs analogues, exhibiting remarkable performances with Pd loading as low as 13 ppb. This result demonstrates a beneficial effect of tin on palladium in catalysis.
Collapse
Affiliation(s)
- Vincent Dardun
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Tania Pinto
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Loïc Benaillon
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Laurent Veyre
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Jules Galipaud
- Université de Lyon, Ecole Centrale de Lyon, Laboratory of Tribology and System Dynamics, LTDS UMR CNRS 5513, 36 avenue Guy de Collongues, 69134 Ecully Cedex, France.,Université de Lyon, INSA-Lyon, UCBL, MATEIS UMR CNRS 5510, Villeurbanne, France
| | - Clément Camp
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Valérie Meille
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France.
| | - Chloé Thieuleux
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| |
Collapse
|
4
|
Yang P, Zhang L, Wei X, Dong S, Ouyang Y. Pd 3Co 1 Alloy Nanocluster on the MWCNT Catalyst for Efficient Formic Acid Electro-Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4182. [PMID: 36500805 PMCID: PMC9740167 DOI: 10.3390/nano12234182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this study, the Pd3Co1 alloy nanocluster from a multiwalled carbon nanotube (MWCTN) catalyst was fabricated in deep eutectic solvents (DESs) (referred to Pd3Co1/CNTs). The catalyst shows a better mass activity towards the formic acid oxidation reaction (FAOR) (2410.1 mA mgPd-1), a better anti-CO toxicity (0.36 V) than Pd/CNTs and commercial Pd/C. The improved performance of Pd3Co1/CNTs is attributed to appropriate Co doping, which changed the electronic state around the Pd atom, lowered the d-band of Pd, formed a new Pd-Co bond act at the active sites, affected the adsorption of the toxic intermediates and weakened the dissolution of Pd; moreover, with the assistance of DES, the obtained ultrafine Pd3Co1 nanoalloy exposes more active sites to enhance the dehydrogenation process of the FAOR. The study shows a new way to construct a high-performance Pd-alloy catalyst for the direct formic acid fuel cell.
Collapse
|
5
|
Electro-Catalytic Properties of Palladium and Palladium Alloy Electro-Catalysts Supported on Carbon Nanofibers for Electro-Oxidation of Methanol and Ethanol in Alkaline Medium. Catalysts 2022. [DOI: 10.3390/catal12060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbon nanofibers (CNFs) supported by Pd and Pd-Sn electro-catalysts were prepared by the chemical reduction method using ethylene glycol as the reducing agent. Their physicochemical characteristics were studied using high resolution-transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Bruanaer-Emmett-Teller (BET) analysis. FTIR revealed that oxygen, hydroxyl, carboxylic and carbonyl functional groups facilitated the dispersion of Pd and Sn nanoparticles. The doping of Pd with Sn to generate PdSn alloy was also confirmed by XPS data. The amorphous nature of CNFs was confirmed by XRD patterns which exhibited the Pd diffraction peaks. When Sn was added to Pd/CNFs, the diffraction peaks moved to lower angles. HRTEM images revealed that the CNFs with cylindrical shape-like morphology and also Pd-Sn nanoparticles dispersed on carbon support. The catalytic activity and stability towards alcohol electro-oxidation in alkaline medium at room temperature was evaluated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The obtained Pd-Sn/CNFs electro-catalyst exhibited a better electro-catalytic activity than Pd/CNFs and Pd/C electro-catalysts for both methanol and ethanol oxidation. The improvement of the electrochemical performance was associated with the synergistic effect via the addition of Sn which modified the Pd atom arrangement, thereby promoting oxidation through a dehydrogenation pathway. Furthermore, SnO2 generates abundant OH species which helps with increasing the rate of the oxidative removal of carbon monoxide (CO) intermediates from Pd sites.
Collapse
|
6
|
Proposal of a Facile Method to Fabricate a Multi-Dope Multiwall Carbon Nanotube as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. SUSTAINABILITY 2022. [DOI: 10.3390/su14020965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, a one-pot, low-temperature synthesis method is considered for the fabrication of heteroatom dope multiwall carbon nanotubes (MWCNT). Doped MWCNT is utilized as an effective electrocatalyst for oxygen reduction reaction (ORR). Single, double, and triple doping of boron, nitrogen and sulfur elements are utilized as the dopants. A reflux system with temperature of 180 °C is implemented in the doping procedure. Actually, unlike the previous studies in which doping on the carbon structures was performed using a furnace at temperatures above 700 °C, in this green and sustainable method, the triple doping on MWCNT is conducted at atmospheric pressure and low temperature. The morphology and structure of the fabricated catalysts were evaluated by Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Raman spectroscopy. According to the results, the nanoparticles were encapsulated in the carbon nanotubes. Aggregated clusters of the sulfur in the case of S-MWCNT are considerable. Cyclic voltammetry (CV), rotating disk electrode, linear sweep voltammetry (LSV), and chronoamperometry electrochemical tests are employed for assessing the oxygen reduction activity of the catalysts. The results illustrate that by using this doping method, the onset potential shifts to positive values towards the oxidized MWCNT. It can be deduced that by doping the N, B, and S atoms on MWCNTs, the defects in the CNT structure, which serve as active sites for ORR application, increase. The N/S/B-doped graphitic layers have a more rapid electron transfer rate at the electrode/electrolyte interface. Thus, this can improve the electrochemistry performance and electron transfer of the MWCNTs. The best performance and electrochemical activity belonged to the NB-MWCNT catalyst (−0.122 V vs. Ag/AgCl). Also, based on the results gained from the Koutecky–Levich (KL) plot, it can be said that the ORR takes place through the 4 e− pathway.
Collapse
|