1
|
Oliveira EM, Rodrigues A, Santos JS, Trivinho-Strixino F, Dalla Costa da Rocha R, Sikora MS. Effluent toxicity study using biomarkers for ciprofloxacin photoelectrocatalytic degradation by bismuth-doped titanium dioxide nanotubes. ENVIRONMENTAL TECHNOLOGY 2024; 45:5568-5580. [PMID: 38158753 DOI: 10.1080/09593330.2023.2298664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Ciprofloxacin hydrochloride (CIP) is a broad-spectrum synthetic antibiotic often found in domestic sewage and industrial waste due to the inefficiency of conventional treatments. Given the potential risk of drug accumulation, this study presents coatings of titanium dioxide nanotubes (TiO2) doped with different bismuth (Bi) concentrations to degrade CIP through photocatalytic and photoelectrochemical processes. Characterization studies revealed that bismuth (Bi) doping affected the morphology of the materials, with concentrations of 0.01 and 0.05 mol L-1, resulting in collapsed materials with a smaller active surface area. Photocatalysis tests for all the materials exhibited a similar degree of efficiency to photolysis, approximately 33%. Ecotoxicity tests using the biomarkers Lactuca sativa L., Lemna minor, and Artemia salina indicated that, although they were similar to photolysis in terms of efficiency, the effluents generated when employing the doped catalysts showed lower levels of toxicity, with the best results achieved for the material doped with 0.005 mol L-1 of Bi, with a toxicity level approximately 40% lower. Photoelectrocatalysis proved to be the most efficient CIP degradation technique. The highest degradation rate was observed for materials doped with 0.005 mol L-1 of Bi, with an efficiency of 46%, which is 1.4 times more efficient than photolysis. These results demonstrate that materials doped with low amounts of Bi can be effectively used as photoanodes for drug degradation, as their performance is superior, and the final product generated exhibits low toxicity to living organisms.
Collapse
Affiliation(s)
- E M Oliveira
- Department of Chemistry, Federal University of Technology - Paraná (UTFPR), Pato Branco, Brazil
- Midwestern Parana State University (UNICENTRO), Guarapuava, Brazil
| | - A Rodrigues
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - J S Santos
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - F Trivinho-Strixino
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - R Dalla Costa da Rocha
- Department of Chemistry, Federal University of Technology - Paraná (UTFPR), Pato Branco, Brazil
| | - M S Sikora
- Department of Chemistry, Federal University of Technology - Paraná (UTFPR), Pato Branco, Brazil
- Midwestern Parana State University (UNICENTRO), Guarapuava, Brazil
| |
Collapse
|
2
|
Wang F, Jiang L, Zhang G, Ye Z, He Q, Li J, Li P, Chen Y, Zhou X, Shang R. Novel Ag-Bridged Z-Scheme CdS/Ag/Bi 2WO 6 Heterojunction: Excellent Photocatalytic Performance and Insight into the Underlying Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:315. [PMID: 38334586 PMCID: PMC10857298 DOI: 10.3390/nano14030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
The construction of semiconductor heterojunction photocatalysts that improve the separation and transfer of photoinduced charge carriers is an effective and widely employed strategy to boost photocatalytic performance. Herein, we have successfully constructed a CdS/Ag/Bi2WO6 Z-scheme heterojunction with an Ag-bridge as an effective charge transfer channel by a facile process. The heterostructure consists of both CdS and Ag nanoparticles anchored on the surface of Bi2WO6 nanosheets. The photocatalytic efficiency of the CdS/Ag/Bi2WO6 system was studied by the decontamination of tetracycline (TC) and Rhodamine B (RhB) under visible light irradiation (λ ≥ 420). The results exhibited that CdS/Ag/Bi2WO6 shows markedly higher photocatalytic performance than that of CdS, Bi2WO6, Ag/Bi2WO6, and CdS/Bi2WO6. The trapping experiment results verified that the •O2- and h+ radicals are the key active species. The results of photoluminescence spectral analysis and photocurrent responses indicated that the CdS/Ag/Bi2WO6 heterojunctions exhibit exceptional efficiency in separating and transferring photoinduced electron-hole pairs. Based on a series of characterization results, the boosted photocatalytic activity of the CdS/Ag/Bi2WO6 system is mostly due to the successful formation of the Ag-bridged Z-scheme heterojunction; these can not only inhibit the recombination rate of photoinduced charge carriers but also possess a splendid redox capacity. The work provides a way for designing a Z-scheme photocatalytic system based on Ag-bridged for boosting photocatalytic performance.
Collapse
Affiliation(s)
- Fangzhi Wang
- School of Resources and Environmental Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China; (L.J.); (G.Z.); (Z.Y.); (Q.H.); (J.L.); (P.L.); (Y.C.); (X.Z.); (R.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Koshevoy E, Gribov E, Polskikh D, Lyulyukin M, Solovyeva M, Cherepanova S, Kozlov D, Selishchev D. Photoelectrochemical Methods for the Determination of the Flat-Band Potential in Semiconducting Photocatalysts: A Comparison Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13466-13480. [PMID: 37696112 DOI: 10.1021/acs.langmuir.3c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
In addition to the band gap of a semiconducting photocatalyst, its band edges are important because they play a crucial role in the analysis of charge transfer and possible pathways of the photocatalytic reaction. The Mott-Schottky method using electrochemical impedance spectroscopy is the most common experimental technique for the determination of the electron potential in photocatalysts. This method is well suited for large crystals, but in the case of nanocatalysts, when the thickness of the charged layer is comparable with the size of the nanocrystals, the capacitance of the Helmholtz layer can substantially affect the measured potential. A contact between the electrolyte and the substrate, used for deposition of the photocatalyst, also affects the impedance. Application of other photoelectrochemical methods may help to avoid concerns in the interpretation of impedance data and improve the reliability of measurements. In this study, we have successfully prepared five visible-light active photocatalysts (i.e., N-doped TiO2, WO3, Bi2WO6, CoO, and g-C3N4) and measured their flat-band potentials using four (photo)electrochemical methods. The potentials are compared for all methods and discussed regarding the type of semiconducting material and its properties. The effect of methanol as a sacrificial agent for the enhanced transfer of charge carriers is studied and discussed for each method.
Collapse
Affiliation(s)
- Evgeny Koshevoy
- Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090, Russia
| | - Evgeny Gribov
- Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090, Russia
| | - Danil Polskikh
- Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090, Russia
| | - Mikhail Lyulyukin
- Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090, Russia
| | - Maria Solovyeva
- Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090, Russia
| | | | - Denis Kozlov
- Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090, Russia
| | - Dmitry Selishchev
- Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Lyulyukin M, Kovalevskiy N, Bukhtiyarov A, Kozlov D, Selishchev D. Kinetic Aspects of Benzene Degradation over TiO2-N and Composite Fe/Bi2WO6/TiO2-N Photocatalysts under Irradiation with Visible Light. Int J Mol Sci 2023; 24:ijms24065693. [PMID: 36982767 PMCID: PMC10051460 DOI: 10.3390/ijms24065693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In this study, composite materials based on nanocrystalline anatase TiO2 doped with nitrogen and bismuth tungstate are synthesized using a hydrothermal method. All samples are tested in the oxidation of volatile organic compounds under visible light to find the correlations between their physicochemical characteristics and photocatalytic activity. The kinetic aspects are studied both in batch and continuous-flow reactors, using ethanol and benzene as test compounds. The Bi2WO6/TiO2-N heterostructure enhanced with Fe species efficiently utilizes visible light in the blue region and exhibits much higher activity in the degradation of ethanol vapor than pristine TiO2-N. However, an increased activity of Fe/Bi2WO6/TiO2-N can have an adverse effect in the degradation of benzene vapor. A temporary deactivation of the photocatalyst can occur at a high concentration of benzene due to the fast accumulation of non-volatile intermediates on its surface. The formed intermediates suppress the adsorption of the initial benzene and substantially increase the time required for its complete removal from the gas phase. An increase in temperature up to 140 °C makes it possible to increase the rate of the overall oxidation process, and the use of the Fe/Bi2WO6/TiO2-N composite improves the selectivity of oxidation compared to pristine TiO2-N.
Collapse
Affiliation(s)
- Mikhail Lyulyukin
- Boreskov Institute of Catalysis, Novosibirsk 630090, Russia; (M.L.); (N.K.); (A.B.); (D.K.)
- Ecology and Nature Management Department, Aircraft Engineering Faculty, Novosibirsk State Technical University, Novosibirsk 630073, Russia
| | - Nikita Kovalevskiy
- Boreskov Institute of Catalysis, Novosibirsk 630090, Russia; (M.L.); (N.K.); (A.B.); (D.K.)
| | - Andrey Bukhtiyarov
- Boreskov Institute of Catalysis, Novosibirsk 630090, Russia; (M.L.); (N.K.); (A.B.); (D.K.)
| | - Denis Kozlov
- Boreskov Institute of Catalysis, Novosibirsk 630090, Russia; (M.L.); (N.K.); (A.B.); (D.K.)
| | - Dmitry Selishchev
- Boreskov Institute of Catalysis, Novosibirsk 630090, Russia; (M.L.); (N.K.); (A.B.); (D.K.)
- Correspondence: ; Tel.: +7-383-326-9429
| |
Collapse
|
5
|
Adsorption performance and mechanism of U(VI) in aqueous solution by hollow microspheres Bi2WO6. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Synergistic Effect of Amorphous Ti(IV)-Hole and Ni(II)-Electron Cocatalysts for Enhanced Photocatalytic Performance of Bi2WO6. Catalysts 2022. [DOI: 10.3390/catal12121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bi2WO6 has become a common photocatalyst due to its advantages of simple synthesis and high activity. However, the defects of pure Bi2WO6 such as low light reception hinder its application in photocatalysis. In this study, based on the modification of Bi2WO6 with Ti(IV) as a cavity co-catalyst, new Ni- and Ti-doped nanosheets of Bi2WO6 (Ni/Ti-Bi2WO6) were prepared by a one-step wet thermal impregnation method and used for the photocatalytic degradation of tetracycline. The experimental results showed that the photocatalytic activity of Ni/Ti-Bi2WO6 modified by the two-component catalyst was significantly better than those of pure Bi2WO6 and Ti-Bi2WO6 modified with Ti(IV) only. The photocatalytic effect of Ni/Ti-Bi2WO6 with different Ni/Ti molar ratios was investigated by the degradation of TC. The results showed that 0.4Ni/Ti-Bi2WO6 possessed the best photocatalytic performance, with a degradation rate of 92.9% at 140 min TC. The results of cycling experiments showed that the catalyst exhibited high stability after five cycles. The scavenger experiment demonstrated that the h+ and O2− were the main reactive species. The enhanced photocatalytic activity of Bi2WO6 could be attributed to the synergistic effect between the Ti(IV) as a hole cocatalyst and Ni(II) as an electron cocatalyst, which effectively promoted the separation of photogenerated carriers.
Collapse
|
7
|
Kovalevskiy N, Svintsitskiy D, Cherepanova S, Yakushkin S, Martyanov O, Selishcheva S, Gribov E, Kozlov D, Selishchev D. Visible-Light-Active N-Doped TiO 2 Photocatalysts: Synthesis from TiOSO 4, Characterization, and Enhancement of Stability Via Surface Modification. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234146. [PMID: 36500767 PMCID: PMC9739126 DOI: 10.3390/nano12234146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 05/13/2023]
Abstract
This paper describes the chemical engineering aspects for the preparation of highly active and stable nanocomposite photocatalysts based on N-doped TiO2. The synthesis is performed using titanium oxysulfate as a low-cost inorganic precursor and ammonia as a precipitating agent, as well as a source of nitrogen. Mixing the reagents under a control of pH leads to an amorphous titanium oxide hydrate, which can be further successfully converted to nanocrystalline anatase TiO2 through calcination in air at an increased temperature. The as-prepared N-doped TiO2 provides the complete oxidation of volatile organic compounds both under UV and visible light, and the action spectrum of N-doped TiO2 correlates to its absorption spectrum. The key role of paramagnetic nitrogen species in the absorption of visible light and in the visible-light-activity of N-doped TiO2 is shown using the EPR technique. Surface modification of N-doped TiO2 with copper species prevents its intense deactivation under highly powerful radiation and results in a nanocomposite photocatalyst with enhanced activity and stability. The photocatalysts prepared under different conditions are discussed regarding the effects of their characteristics on photocatalytic activity under UV and visible light.
Collapse
Affiliation(s)
- Nikita Kovalevskiy
- Department of Unconventional Catalytic Processes, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Dmitry Svintsitskiy
- Department of Heterogeneous Catalysis, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Svetlana Cherepanova
- Department of Heterogeneous Catalysis, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Stanislav Yakushkin
- Department of Physicochemical Methods of Research, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Oleg Martyanov
- Department of Physicochemical Methods of Research, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | | | - Evgeny Gribov
- Department of Unconventional Catalytic Processes, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Denis Kozlov
- Department of Unconventional Catalytic Processes, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Dmitry Selishchev
- Department of Unconventional Catalytic Processes, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +73-8-3326-9429
| |
Collapse
|
8
|
Haruna A, Chong FK, Ho YC, Merican ZMA. Preparation and modification methods of defective titanium dioxide-based nanoparticles for photocatalytic wastewater treatment-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70706-70745. [PMID: 36044146 DOI: 10.1007/s11356-022-22749-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The rapid population growth and industrial expansion worldwide have created serious water contamination concerns. To curb the pollution issue, it has become imperative to use a versatile material for the treatment. Titanium dioxide (TiO2) has been recognized as the most-studied nanoparticle in various fields of science and engineering due to its availability, low cost, efficiency, and other fascinating properties with a wide range of applications in modern technology. Recent studies revealed the photocatalytic activity of the material for the treatment of industrial effluents to promote environmental sustainability. With the wide band gap energy of 3.2 eV, TiO2 can be activated under UV light; thus, many strategies have been proposed to extend its photoabsorption to the visible light region. In what follows, this has generated increasing attention to study its characteristics and structural modifications in different forms for photocatalytic applications. The present review provides an insight into the understanding of the synthesis methods of TiO2, the current progress in the treatment techniques for the degradation of wide environmental pollutants employing modified TiO2 nanoparticles, and the factors affecting its photocatalytic activities. Further, recent developments in using titania for practical applications, the approach for designing novel nanomaterials, and the prospects and opportunities in this exciting area have been discussed.
Collapse
Affiliation(s)
- Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria.
- Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Fai-Kait Chong
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre for Urban Resource Sustainability, Institute for Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Institute of Contaminant Management for Oil & Gas, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
9
|
Tang D, Xu D, Luo Z, Ke J, Zhou Y, Li L, Sun J. Highly Dispersion Cu2O QDs Decorated Bi2WO6 S-Scheme Heterojunction for Enhanced Photocatalytic Water Oxidation. NANOMATERIALS 2022; 12:nano12142455. [PMID: 35889679 PMCID: PMC9322928 DOI: 10.3390/nano12142455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022]
Abstract
Developing suitable photocatalysts for the oxygen evolution reaction (OER) is still a challenging issue for efficient water splitting due to the high requirements to create a significant impact on water splitting reaction kinetics. Herein, n-type Bi2WO6 with flower-like hierarchical structure and p-type Cu2O quantum dots (QDs) are coupled together to construct an efficient S-scheme heterojunction, which could enhance the migration efficiency of photogenerated charge carriers. The electrochemical properties are investigated to explore the transportation features and donor density of charge carriers in the S-scheme heterojunction system. Meanwhile, the as-prepared S-scheme heterojunction presents improved photocatalytic activity towards water oxidation in comparison with the sole Bi2WO6 and Cu2O QDs systems under simulated solar light irradiation. Moreover, the initial O2 evolution rate of the Cu2O QDs/Bi2WO6 heterojunction system is 2.3 and 9.7 fold that of sole Bi2WO6 and Cu2O QDs systems, respectively.
Collapse
Affiliation(s)
- Diyong Tang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China; (Z.L.); (L.L.); (J.S.)
- Correspondence:
| | - Desheng Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (D.X.); (J.K.); (Y.Z.)
| | - Zhipeng Luo
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China; (Z.L.); (L.L.); (J.S.)
| | - Jun Ke
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (D.X.); (J.K.); (Y.Z.)
| | - Yuan Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (D.X.); (J.K.); (Y.Z.)
| | - Lizhong Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China; (Z.L.); (L.L.); (J.S.)
| | - Jie Sun
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China; (Z.L.); (L.L.); (J.S.)
| |
Collapse
|