1
|
Unimke AA, Okezie O, Mohammed SE, Mmuoegbulam AO, Abdullahi S, Ofon UA, Olim DM, Badamasi H, Galadima AI, Fatunla OK, Abdullahi A, Yahaya SM, Ibrahim MM, Muhammad AB, Iya NID, Ayanda OS. Microbe-plant-nanoparticle interactions: role in bioremediation of petroleum hydrocarbons. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:2870-2893. [PMID: 39612179 DOI: 10.2166/wst.2024.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024]
Abstract
Petroleum hydrocarbons (PHCs) are organic substances that occur naturally on earth. PHCs have emerged as one of the most prevalent and detrimental contaminants in regions comprising soil and water resources. The limitations of conventional physicochemical and biological remediation solutions could be solved by combining remediation techniques. An effective, affordable, and environmentally benign method of reducing petroleum toxins is provided by the advanced idea of bioremediation, which has evolved into nanobioremediation. Environments contaminated with PHCs have been restored through microbe-plant-nanoparticle (NP)-mediated remediation, this review emphasizes how various metallic NPs interact with microbes and plants changing both their activity and that of enzymes, therefore accelerating the remediation process. This work further examines the challenges and possible uses of nanobioremediation, as well as the application of novel technologies in the interactions between bacteria, plants, and NPs for the bioremediation of PHCs. Furthermore, it has been shown that the use of plant-based, microbe-based, microbe-plant-based, and microbe-plant-NP-based techniques to remediate contaminated soils or water bodies is economical and environmentally beneficial. Microbial consortia have been reported as the treasure houses for the cleaning and recovery of hydrocarbon-contaminated environments, and the development of technologies for bioremediation requires an understanding of hydrocarbon degradation mechanisms.
Collapse
Affiliation(s)
- Augustine A Unimke
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria E-mail:
| | - Onyemaechi Okezie
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria
| | - Sa'adatu E Mohammed
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Augusta O Mmuoegbulam
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria
| | - Saidu Abdullahi
- Department of Botany, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Utibe A Ofon
- Department of Microbiology, University of Uyo, Uyo, Nigeria
| | - Denis M Olim
- Department of Soil Science, University of Calabar, Calabar, Nigeria
| | - Hamza Badamasi
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Abdulsalam I Galadima
- Department of Physics, Faculty of Physical Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria
| | | | - Aminu Abdullahi
- Department of Biotechnology, Modibbo Adama University Yola, PMB 2076 Yola, Adamawa State, Nigeria
| | - Sharhabil M Yahaya
- Department of Soil Science, Faculty of Agriculture/Institute for Agricultural Research, Ahmadu Bello University Zaria, Zaria, Nigeria
| | | | - Abba B Muhammad
- Department of Mechanical Engineering, University of Maiduguri, Maiduguri, Nigeria
| | - Naseer I Durumin Iya
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Olushola S Ayanda
- Department of Industrial Chemistry, Federal University Oye-Ekiti, Ekiti, Nigeria
| |
Collapse
|
2
|
Ioannidis I, Pashalidis I, Arkas M. Actinide Ion (Americium-241 and Uranium-232) Interaction with Hybrid Silica-Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels. Gels 2023; 9:690. [PMID: 37754371 PMCID: PMC10530514 DOI: 10.3390/gels9090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
The binding of actinide ions (Am(III) and U(VI)) in aqueous solutions by hybrid silica-hyperbranched poly(ethylene imine) nanoparticles (NPs) and xerogels (XGs) has been studied by means of batch experiments at different pH values (4, 7, and 9) under ambient atmospheric conditions. Both materials present relatively high removal efficiency at pH 4 and pH 7 (>70%) for Am(III) and U(VI). The lower removal efficiency for the nanoparticles is basically associated with the compact structure of the nanoparticles and the lower permeability and access to active amine groups compared to xerogels, and the negative charge of the radionuclide species is formed under alkaline conditions (e.g., UO2(CO3)34- and Am(CO3)2-). Generally, the adsorption process is relatively slow due to the very low radionuclide concentrations used in the study and is basically governed by the actinide diffusion from the aqueous phase to the solid surface. On the other hand, adsorption is favored with increasing temperature, assuming that the reaction is endothermic and entropy-driven, which is associated with increasing randomness at the solid-liquid interphase upon actinide adsorption. To the best of our knowledge, this is the first study on hybrid silica-hyperbranched poly(ethylene imine) nanoparticle and xerogel materials used as adsorbents for americium and uranium at ultra-trace levels. Compared to other adsorbent materials used for binding americium and uranium ions, both materials show far higher binding efficiency. Xerogels could remove both actinides even from seawater by almost 90%, whereas nanoparticles could remove uranium by 80% and americium by 70%. The above, along with their simple derivatization to increase the selectivity towards a specific radionuclide and their easy processing to be included in separation technologies, could make these materials attractive candidates for the treatment of radionuclide/actinide-contaminated water.
Collapse
Affiliation(s)
- Ioannis Ioannidis
- Laboratory of Radioanalytical and Environmental Chemistry, Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678 Nicosia, Cyprus;
| | - Ioannis Pashalidis
- Laboratory of Radioanalytical and Environmental Chemistry, Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678 Nicosia, Cyprus;
| | - Michael Arkas
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| |
Collapse
|
3
|
Arkas M, Bompotis T, Giannakopoulos K, Favvas EP, Arvanitopoulou M, Arvanitopoulos K, Arvanitopoulos L, Kythreoti G, Vardavoulias M, Giannakoudakis DA, Castellsagués L, Soto González SM. Hybrid Silica Xerogel and Titania/Silica Xerogel Dispersions Reinforcing Hydrophilicity and Antimicrobial Resistance of Leathers. Gels 2023; 9:685. [PMID: 37754366 PMCID: PMC10530134 DOI: 10.3390/gels9090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Four leather substrates from different animals were treated by dispersions containing hydrophilic composite silica-hyperbranched poly(ethylene imine) xerogels. Antimicrobial activity was introduced by incorporating silver nanoparticles and/or benzalkonium chloride. The gel precursor solutions were also infused before gelation to titanium oxide powders typically employed for induction of self-cleaning properties. The dispersions from these biomimetically premade xerogels integrate environmentally friendly materials with short coating times. Scanning electron microscopy (SEM) provided information on the powder distribution onto the leathers. Substrate and coating composition were estimated by infrared spectroscopy (IR) and energy-dispersive X-ray spectroscopy (EDS). Surface hydrophilicity and water permeability were assessed by water-contact angle experiments. The diffusion of the leather's initial components and xerogel additives into the water were measured by Ultraviolet-Visible (UV-Vis) spectroscopy. Protection against GRAM- bacteria was tested for Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae against GRAM+ bacteria for Staphylococcus aureus and Enterococcus faecalis and against fungi for Candida albicans. Antibiofilm capacity experiments were performed against Staphylococcus aureus, Klebsiella pneumoniae, Enterococcus faecalis, and Candida albicans. The application of xerogel dispersions proved an adequate and economically feasible alternative to the direct gel formation into the substrate's pores for the preparation of leathers intended for medical uses.
Collapse
Affiliation(s)
- Michael Arkas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (T.B.); (K.G.); (E.P.F.); (M.A.)
| | - Theofanis Bompotis
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (T.B.); (K.G.); (E.P.F.); (M.A.)
| | - Konstantinos Giannakopoulos
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (T.B.); (K.G.); (E.P.F.); (M.A.)
| | - Evangelos P. Favvas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (T.B.); (K.G.); (E.P.F.); (M.A.)
| | - Marina Arvanitopoulou
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (T.B.); (K.G.); (E.P.F.); (M.A.)
| | | | | | - Georgia Kythreoti
- Institute of Bioscience and Applications, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece;
- Department of Science and Mathematics, School of Liberal Arts and Sciences, The American College of Greece, Deree, Gravias 6, 15342 Athens, Greece
| | | | | | - Laura Castellsagués
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, 08036 Barcelona, Spain; (L.C.); (S.M.S.G.)
| | - Sara Maria Soto González
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, 08036 Barcelona, Spain; (L.C.); (S.M.S.G.)
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Hortolomeu A, Mirila DC, Georgescu AM, Rosu AM, Scutaru Y, Nedeff FM, Sturza R, Nistor ID. Retention of Phthalates in Wine Using Nanomaterials as Chemically Modified Clays with H 20, H 30, H 40 Boltron Dendrimers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2301. [PMID: 37630885 PMCID: PMC10459569 DOI: 10.3390/nano13162301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The presence of phthalic acid esters in wines presents a major risk to human health due to their very toxic metabolism. In this paper, aluminosilicate materials were used, with the aim of retaining various pollutants and unwanted compounds in wine. The pollutants tested were di-butyl and di-ethyl hexyl phthalates. They were tested and detected using the gas chromatography-mass spectrometry (CG-MS) analytical technique. Nanomaterials were prepared using sodium bentonite, and were chemically modified via impregnation using three types of Boltron dendrimers of second, third and fourth generations (NBtH20, NBtH30 and NBtH40). The synthesized nanomaterials were characterized using the Brunauer-Emmett-Teller (BET) method, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. In this paper, two aspects were addressed: the first related to the retention of phthalate-type pollutants (phthalic acid esters-PAEs) and the second related to the protein and polyphenol levels in the white wine of the Aligoté grape variety. The results obtained in this study have a major impact on PAEs in wine, especially after treatment with NBtH30 and NBtH40 (volumes of 250-500 μL/10 mL wine), with the retention of the pollutants being up to 85%.
Collapse
Affiliation(s)
- Andreea Hortolomeu
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania; (A.H.); (D.-C.M.); (A.-M.G.); (A.-M.R.)
| | - Diana-Carmen Mirila
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania; (A.H.); (D.-C.M.); (A.-M.G.); (A.-M.R.)
| | - Ana-Maria Georgescu
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania; (A.H.); (D.-C.M.); (A.-M.G.); (A.-M.R.)
| | - Ana-Maria Rosu
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania; (A.H.); (D.-C.M.); (A.-M.G.); (A.-M.R.)
| | - Yuri Scutaru
- Department of Oenology and Chemistry, Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor Street, MD-2045 Chisinau, Moldova; (Y.S.); (R.S.)
| | - Florin-Marian Nedeff
- Department of Environmental Engineering and Mechanical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania;
| | - Rodica Sturza
- Department of Oenology and Chemistry, Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor Street, MD-2045 Chisinau, Moldova; (Y.S.); (R.S.)
| | - Ileana Denisa Nistor
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania; (A.H.); (D.-C.M.); (A.-M.G.); (A.-M.R.)
| |
Collapse
|
5
|
Arkas M, Giannakopoulos K, Favvas EP, Papageorgiou S, Theodorakopoulos GV, Giannoulatou A, Vardavoulias M, Giannakoudakis DA, Triantafyllidis KS, Georgiou E, Pashalidis I. Comparative Study of the U(VI) Adsorption by Hybrid Silica-Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111794. [PMID: 37299697 DOI: 10.3390/nano13111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Two different silica conformations (xerogels and nanoparticles), both formed by the mediation of dendritic poly (ethylene imine), were tested at low pHs for problematic uranyl cation sorption. The effect of crucial factors, i.e., temperature, electrostatic forces, adsorbent composition, accessibility of the pollutant to the dendritic cavities, and MW of the organic matrix, was investigated to determine the optimum formulation for water purification under these conditions. This was attained with the aid of UV-visible and FTIR spectroscopy, dynamic light scattering (DLS), ζ-potential, liquid nitrogen (LN2) porosimetry, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results highlighted that both adsorbents have extraordinary sorption capacities. Xerogels are cost-effective since they approximate the performance of nanoparticles with much less organic content. Both adsorbents could be used in the form of dispersions. The xerogels, though, are more practicable materials since they may penetrate the pores of a metal or ceramic solid substrate in the form of a precursor gel-forming solution, producing composite purification devices.
Collapse
Affiliation(s)
- Michael Arkas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Konstantinos Giannakopoulos
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Evangelos P Favvas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Sergios Papageorgiou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - George V Theodorakopoulos
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Artemis Giannoulatou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | | | | | | | - Efthalia Georgiou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
6
|
Singh AK, Giannakoudakis DA, Arkas M, Triantafyllidis KS, Nair V. Composites of Lignin-Based Biochar with BiOCl for Photocatalytic Water Treatment: RSM Studies for Process Optimization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:735. [PMID: 36839103 PMCID: PMC9959841 DOI: 10.3390/nano13040735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Textile effluents pose a massive threat to the aquatic environment, so, sustainable approaches for environmentally friendly multifunctional remediation methods degradation are still a challenge. In this study, composites consisting of bismuth oxyhalide nanoparticles, specifically bismuth oxychloride (BiOCl) nanoplatelets, and lignin-based biochar were synthesized following a one-step hydrolysis synthesis. The simultaneous photocatalytic and adsorptive remediation efficiency of the Biochar-BiOCl composites were studied for the removal of a benchmark azo anionic dye, methyl orange dye (MO). The influence of various parameters (such as catalyst dosage, initial dye concentration, and pH) on the photo-assisted removal was carried out and optimized using the Box-Behnken Design of RSM. The physicochemical properties of the nanomaterials were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, nitrogen sorption, and UV-Vis diffuse reflectance spectroscopy (DRS). The maximum dye removal was observed at a catalyst dosage of 1.39 g/L, an initial dye concentration of 41.8 mg/L, and a pH of 3.15. The experiment performed under optimized conditions resulted in 100% degradation of the MO after 60 min of light exposure. The incorporation of activated biochar had a positive impact on the photocatalytic performance of the BiOCl photocatalyst for removing the MO due to favorable changes in the surface morphology, optical absorption, and specific surface area and hence the dispersion of the photo-active nanoparticles leading to more photocatalytic active sites. This study is within the frames of the design and development of green-oriented nanomaterials of low cost for advanced (waste)water treatment applications.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore 575025, India
| | - Dimitrios A. Giannakoudakis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michael Arkas
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Konstantinos S. Triantafyllidis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vaishakh Nair
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore 575025, India
| |
Collapse
|
7
|
Căta A, Ienașcu IMC, Ştefănuț MN, Roșu D, Pop OR. Properties and Bioapplications of Amphiphilic Janus Dendrimers: A Review. Pharmaceutics 2023; 15:589. [PMID: 36839911 PMCID: PMC9958631 DOI: 10.3390/pharmaceutics15020589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Amphiphilic Janus dendrimers are arrangements containing both hydrophilic and hydrophobic units, capable of forming ordered aggregates by intermolecular noncovalent interactions between the dendrimer units. Compared to conventional dendrimers, these molecular self-assemblies possess particular and effective attributes i.e., the presence of different terminal groups, essential to design new elaborated materials. The present review will focus on the pharmaceutical and biomedical application of amphiphilic Janus dendrimers. Important information for the development of novel optimized pharmaceutical formulations, such as structural classification, synthetic pathways, properties and applications, will offer the complete characterization of this type of Janus dendrimers. This work will constitute an up-to-date background for dendrimer specialists involved in designing amphiphilic Janus dendrimer-based nanomaterials for future innovations in this promising field.
Collapse
Affiliation(s)
- Adina Căta
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Ioana Maria Carmen Ienașcu
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, “Vasile Goldiș” Western University of Arad, 86 Liviu Rebreanu, 310045 Arad, Romania
| | - Mariana Nela Ştefănuț
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Dan Roșu
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Oana-Raluca Pop
- Faculty of Pharmacy, University of Medicine and Pharmacy “Victor Babeș” Timișoara, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
| |
Collapse
|
8
|
Arkas M, Vardavoulias M, Kythreoti G, Giannakoudakis DA. Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharmaceutics 2023; 15:524. [PMID: 36839847 PMCID: PMC9966633 DOI: 10.3390/pharmaceutics15020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The capability of radially polymerized bio-dendrimers and hyperbranched polymers for medical applications is well established. Perhaps the most important implementations are those that involve interactions with the regenerative mechanisms of cells. In general, they are non-toxic or exhibit very low toxicity. Thus, they allow unhindered and, in many cases, faster cell proliferation, a property that renders them ideal materials for tissue engineering scaffolds. Their resemblance to proteins permits the synthesis of derivatives that mimic collagen and elastin or are capable of biomimetic hydroxy apatite production. Due to their distinctive architecture (core, internal branches, terminal groups), dendritic polymers may play many roles. The internal cavities may host cell differentiation genes and antimicrobial protection drugs. Suitable terminal groups may modify the surface chemistry of cells and modulate the external membrane charge promoting cell adhesion and tissue assembly. They may also induce polymer cross-linking for healing implementation in the eyes, skin, and internal organ wounds. The review highlights all the different categories of hard and soft tissues that may be remediated with their contribution. The reader will also be exposed to the incorporation of methods for establishment of biomaterials, functionalization strategies, and the synthetic paths for organizing assemblies from biocompatible building blocks and natural metabolites.
Collapse
Affiliation(s)
- Michael Arkas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | | - Georgia Kythreoti
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | |
Collapse
|
9
|
Georgiou E, Raptopoulos G, Anastopoulos I, Giannakoudakis DA, Arkas M, Paraskevopoulou P, Pashalidis I. Uranium Removal from Aqueous Solutions by Aerogel-Based Adsorbents-A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020363. [PMID: 36678117 PMCID: PMC9866664 DOI: 10.3390/nano13020363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/12/2023]
Abstract
Aerogels are a class of lightweight, nanoporous, and nanostructured materials with diverse chemical compositions and a huge potential for applications in a broad spectrum of fields. This has led the IUPAC to include them in the top ten emerging technologies in chemistry for 2022. This review provides an overview of aerogel-based adsorbents that have been used for the removal and recovery of uranium from aqueous environments, as well as an insight into the physicochemical parameters affecting the adsorption efficiency and mechanism. Uranium removal is of particular interest regarding uranium analysis and recovery, to cover the present and future uranium needs for nuclear power energy production. Among the methods used, such as ion exchange, precipitation, and solvent extraction, adsorption-based technologies are very attractive due to their easy and low-cost implementation, as well as the wide spectrum of adsorbents available. Aerogel-based adsorbents present an extraordinary sorption capacity for hexavalent uranium that can be as high as 8.8 mol kg−1 (2088 g kg−1). The adsorption data generally follow the Langmuir isotherm model, and the kinetic data are in most cases better described by the pseudo-second-order kinetic model. An evaluation of the thermodynamic data reveals that the adsorption is generally an endothermic, entropy-driven process (ΔH0, ΔS0 > 0). Spectroscopic studies (e.g., FTIR and XPS) indicate that the adsorption is based on the formation of inner-sphere complexes between surface active moieties and the uranyl cation. Regeneration and uranium recovery by acidification and complexation using carbonate or chelating ligands (e.g., EDTA) have been found to be successful. The application of aerogel-based adsorbents to uranium removal from industrial processes and uranium-contaminated waste waters was also successful, assuming that these materials could be very attractive as adsorbents in water treatment and uranium recovery technologies. However, the selectivity of the studied materials towards hexavalent uranium is limited, suggesting further developments of aerogel materials that could be modified by surface derivatization with chelating agents (e.g., salophen and iminodiacetate) presenting high selectivity for uranyl moieties.
Collapse
Affiliation(s)
- Efthalia Georgiou
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47100 Arta, Greece
| | | | - Michael Arkas
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15771 Athens, Greece
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis Pashalidis
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| |
Collapse
|
10
|
Advanced Polymeric Nanocomposites for Water Treatment Applications: A Holistic Perspective. Polymers (Basel) 2022; 14:polym14122462. [PMID: 35746038 PMCID: PMC9231113 DOI: 10.3390/polym14122462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022] Open
Abstract
Water pollution remains one of the greatest challenges in the modern era, and water treatment strategies have continually been improved to meet the increasing demand for safe water. In the last few decades, tremendous research has been carried out toward developing selective and efficient polymeric adsorbents and membranes. However, developing non-toxic, biocompatible, cost-effective, and efficient polymeric nanocomposites is still being explored. In polymer nanocomposites, nanofillers and/or nanoparticles are dispersed in polymeric matrices such as dendrimer, cellulose, resins, etc., to improve their mechanical, thermophysical, and physicochemical properties. Several techniques can be used to develop polymer nanocomposites, and the most prevalent methods include mixing, melt-mixing, in-situ polymerization, electrospinning, and selective laser sintering techniques. Emerging technologies for polymer nanocomposite development include selective laser sintering and microwave-assisted techniques, proffering solutions to aggregation challenges and other morphological defects. Available and emerging techniques aim to produce efficient, durable, and cost-effective polymer nanocomposites with uniform dispersion and minimal defects. Polymer nanocomposites are utilized as filtering membranes and adsorbents to remove chemical contaminants from aqueous media. This study covers the synthesis and usage of various polymeric nanocomposites in water treatment, as well as the major criteria that influence their performance, and highlights challenges and considerations for future research.
Collapse
|
11
|
Arkas M, Douloudi M, Nikoli E, Karountzou G, Kitsou I, Kavetsou E, Korres D, Vouyiouka S, Tsetsekou A, Giannakopoulos K, Papageorgiou M. Investigation of two bioinspired reaction mechanisms for the optimization of nano catalysts generated from hyperbranched polymer matrices. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|