1
|
Bajestani MS, Kiani F, Ebrahimi S, Malekzadeh E, Tatari A. Effect of bentonite/alginate/nanocellulose composites on soil and water loss: An response surface methodology (RSM)-based optimization approach. Int J Biol Macromol 2025; 304:140815. [PMID: 39929454 DOI: 10.1016/j.ijbiomac.2025.140815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/18/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Using hybrid composites is a sustainable and effective method of controlling soil erosion and improve soil conservation. There is an important research gap in optimizing hybrid composites for erosion control, especially in loess soils, considering factors such as composite percentage, incubation time, and slope degree. Addressing this gap is essential for application strategies and enhancing the utility of hybrid composites in soil management. This study investigates the optimization of bentonite/alginate/nanocellulose (BAN) composites using response surface methodology (RSM) to maximally reduce soil and water loss under a rainfall simulator from the loess soils of northern Iran. The morphological and chemical properties of the raw materials and composite were confirmed using instrumental methods such as FTIR, FESEM, and EDX analysis. The effects of different composite concentrations under different conditions on soil stability were evaluated by simulating rainfall and measuring runoff volume and sediment concentration. The results showed the optimal BAN composite significantly reduced runoff volume (75.3 %), soil loss (94.2 %), and sediment concentration (94.3 %) compared to the control. Optimal conditions were the percentage of composite (A): 2.98 % and the incubation time (B): 33.76 days, resulting in a soil loss of 5.10 t/ha, a sediment concentration of 43.18 g/L and a runoff volume of 3.84 L. These results underline the potential of using these composites in sustainable land management to improve soil health and agricultural productivity in erosion-prone regions.
Collapse
Affiliation(s)
- Mehran Salimi Bajestani
- Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Farshad Kiani
- Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Soheila Ebrahimi
- Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Malekzadeh
- Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Aliasghar Tatari
- Department of Paper Science and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
2
|
Sheraz M, Sun XF, Siddiqui A, Hu S, Song Z. Research Advances in Natural Polymers for Environmental Remediation. Polymers (Basel) 2025; 17:559. [PMID: 40076053 PMCID: PMC11902826 DOI: 10.3390/polym17050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The search for sustainable and efficient remediation techniques is required to control increasing environmental pollution caused by synthetic dyes, heavy metal ions, and other harmful pollutants. From this point of view, natural polymers like chitosan, cellulose, lignin, and pectin have been found highly promising due to their biodegradability, availability, and possibility of chemical functionalization. Natural polymers possess inherent adsorption properties that can be further enhanced by cross-linking and surface activation. This review discusses the main properties, adsorption mechanisms, and functional groups such as hydroxyl, carboxyl, and amino groups responsible for pollutant sequestration. The paper also emphasizes the effectiveness of natural polymers in removing heavy metals and dyes from wastewater and discusses recent advances in polymer modifications, including ionic crosslinking and grafting. This study underlines the ecological potential of natural polymer-based adsorbents in the treatment of wastewater and the protection of the environment as a sustainable solution to pollution challenges.
Collapse
Affiliation(s)
- Muhammad Sheraz
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
| | - Xiao-Feng Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China
| | - Adeena Siddiqui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.)
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China
| | - Zhengcang Song
- Powerchina Northwest Engineering, Xi’an Port Navigation Shipbuilding Technology Corporation Limited, Xi’an 710065, China;
| |
Collapse
|
3
|
Kassie BB, Getahun MJ, Azanaw A, Ferede BT, Tassew DF. Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications. Int J Biol Macromol 2024; 282:136949. [PMID: 39490486 DOI: 10.1016/j.ijbiomac.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for sustainable and effective materials in biomedical and personal hygiene applications has driven the exploration of cellulose nanocrystals (CNCs) derived from biomass. These nanomaterials are highly valued for their exceptional mechanical properties, biocompatibility, and renewable nature. Researchers are exploring CNCs for advancing medical and hygiene products, but surface modification is often needed to maximize their benefits. Techniques such as chemical functionalization, physical coating, and hybridization can significantly enhance CNCs dispersibility, stability, and interaction with biological systems. This versatility makes CNCs suitable for a variety of applications, including drug delivery systems, wound dressings, and personal hygiene products. Despite their advantages, maintaining the inherent properties of CNCs while integrating new functionalities through modification poses a challenge. Understanding the impact of various modification techniques on CNC performance is crucial for optimizing their effectiveness. This review aimed to consolidate current knowledge on the surface modification of biomass-derived CNCs, offering insights into different methods and their implications for biomedical and personal hygiene applications. By highlighting advancements, challenges, and prospects, it served as a crucial resource for advancing the development and application of CNCs in these critical fields.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia; Medical Textile Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | | | - Aklilu Azanaw
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Bayu Teshome Ferede
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
4
|
Deghiedy NM, El-Gamal SMA, Ramadan M, Mohsen A, Hazem MM, Sayed MA, Helmy FM, Wetwet MM, Swilem AE. Towards the preparation of sustainable superplasticizers for geopolymeric pastes via radiation-induced grafting of sulfonic group-bearing monomers onto corn starch. Carbohydr Polym 2024; 341:122359. [PMID: 38876709 DOI: 10.1016/j.carbpol.2024.122359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
To address escalating environmental and sustainability concerns of petroleum-based superplasticizers (SPs), this work aims to develop sustainable and eco-friendly starch-based SPs using gamma radiation for maintaining the desired workability of geopolymeric pastes. Specifically, two green SPs were prepared from starch via radiation-induced grafting of two sulfonic group-bearing monomers, namely 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and 4-styrene sulfonic acid sodium salt (Na4SS). The grafting reaction was improved by initial modification of starch with glycidyl methacrylate to insert vinyl groups into the starch backbone. The modified starch samples were characterized by a variety of analytical techniques such as FTIR, 1H NMR, EDX, SLS, and viscometry. The prepared SPs exhibited high stability in aqueous 5 % NaOH. The effect of the prepared SPs on the fresh properties of GGBFS/MK geopolymer was studied using the mini slump test, zeta potential, adsorption capacity, and setting time. They significantly improved the paste flowability and dispersion compared to the control. Notably, the aromatic Na4SS-grafted starch displayed a comparable enhancement to the commercial PNS, while outperforming the aliphatic AMPS-grafted sample. This emphasizes the potential of these green SPs to address the challenges posed by the petroleum-based SPs and maximize the benefit of using starch as a green renewable resource.
Collapse
Affiliation(s)
- Noha M Deghiedy
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, 11787, Cairo, Egypt
| | - Safaa M A El-Gamal
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mohamed Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Alaa Mohsen
- Faculty of Engineering, Ain Shams University, Abbassia, 11517, Cairo, Egypt
| | - Mahmoud M Hazem
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mostafa A Sayed
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Fatma M Helmy
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mona M Wetwet
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Ahmed E Swilem
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt; Chemistry Department, Faculty of Science, Galala University, Galala City, 43511, Suez, Egypt.
| |
Collapse
|
5
|
Çevik TN, Kivilcimdan Moral Ç. Zinc oxide nanoparticles encapsulated in alginate beads: a promising and recyclable adsorbent for simultaneous uptake of toxic metals. NANOTECHNOLOGY 2024; 35:345701. [PMID: 38776881 DOI: 10.1088/1361-6528/ad4ee9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Heavy metal toxicity is a known problem and various methods are used for treatment. Adsorption has some advantages and it would be promising if environmentally friendly and cheap materials were utilized. Alginate and zinc oxide nanoparticles were selected and composite alginate beads were used for the removal of mixed metals from aqueous solutions. Batch and column experiments were conducted to determine some parameters' effects and the adsorbent's real application potential. According to the batch experiments, zinc oxide nanoparticles to alginate ratio of 0.5 g g-1, and pH levels nearby to the neutral range led to better metal removals. 0.5 ml min-1of flow rate supplied better metal removal efficiencies in columns, with the highest treatment as 86% of Pb2+. Acid treatment can be successfully applied for the regeneration of the adsorbent, at least three times only with a 4% reduction in the adsorption efficiency. Heavy metal uptake was compatible with the pseudo 2nd order model indicating chemisorption as a dominant mechanism. Also, the intraparticle diffusion model illustrated adsorption might govern more than one step. The Langmuir model had the best fit and suggested monolayer covering for Pb2+, 76.3 mg g-1. Alginate-based nanocomposite beads were useful for mixed metal removal and could be used.
Collapse
Affiliation(s)
- Tuğba Nur Çevik
- Department of Environmental Engineering, Akdeniz University, 07058 Antalya, Turkey
| | | |
Collapse
|
6
|
Khane Y, Albukhaty S, Sulaiman GM, Fennich F, Bensalah B, Hafsi Z, Aouf M, Amar ZH, Aouf D, Al-kuraishy HM, Saadoun H, Mohammed HA, Mohsin MH, Al-aqbi ZT. Fabrication, characterization and application of biocompatible nanocomposites: A review. Eur Polym J 2024; 214:113187. [DOI: 10.1016/j.eurpolymj.2024.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Nicosia A, Mineo P. Nanomaterials for Potential Uses in Extraterrestrial Environments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:893. [PMID: 38786850 PMCID: PMC11124367 DOI: 10.3390/nano14100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Over the past decades, the development of nanomaterials has played an important role in the most intriguing aspects of new technologies in several scientific fields, such as nanoelectronics, nanomedicine [...].
Collapse
Affiliation(s)
- Angelo Nicosia
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy;
| | - Placido Mineo
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy;
- Institute for Chemical and Physical Processes, National Research Council (IPCF-CNR), Viale F. Stagno d’Alcontres 37, I-98158 Messina, Italy
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Via P. Gaifami 18, I-95126 Catania, Italy
| |
Collapse
|
8
|
Bekchanov D, Mukhamediev M, Yarmanov S, Lieberzeit P, Mujahid A. Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. Carbohydr Polym 2024; 323:121397. [PMID: 37940289 DOI: 10.1016/j.carbpol.2023.121397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
The present study provides an overview of scientific developments made in the last decade in the field of green adsorbents focusing on the modifications in natural polymers and their applications such as, wastewater treatment, and ion exchange. For this purpose, an introduction to the various methods of modifying natural polymers is first given, and then the properties, application, and future priorities of green adsorbents are also discussed. Methods of modification of natural polymers under homogeneous and heterogeneous conditions using modifiers with different properties are also described. Various methods for modifying natural polymers and the use of the obtained green adsorbents are reviewed. A comparison of the sorption properties of green adsorbents based on natural polymers and other adsorbents used in industry has also been carried out. With the participation of green adsorbents based on natural polymers, the properties of treated wastewaters having toxic metal ions, organic dyes, petroleum products, and other harmful compounds was analyzed. Future perspectives on green adsorbents based on natural polymers are as also highlighted.
Collapse
Affiliation(s)
- Davronbek Bekchanov
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Mukhtar Mukhamediev
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | | | - Peter Lieberzeit
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Adnan Mujahid
- School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
9
|
Radoor S, Karayil J, Jayakumar A, Kandel DR, Kim JT, Siengchin S, Lee J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr Polym 2024; 323:121339. [PMID: 37940239 DOI: 10.1016/j.carbpol.2023.121339] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 11/10/2023]
Abstract
From the environmental perspective, it is essential to develop cheap, eco-friendly, and highly efficient materials for water and wastewater treatment. In this regard, hydrogels and hydrogel-based composites have been widely employed to mitigate global water pollution as this methodology is simple and free from harmful by-products. Notably, alginate and cellulose, which are natural carbohydrate polymers, have gained great attention for their availability, price competitiveness, excellent biodegradability, biocompatibility, hydrophilicity, and superior physicochemical performance in water treatment. This review outlined the recent progress in developing and applying alginate- and cellulose-based hydrogels to remove various pollutants such as dyes, heavy metals, oils, pharmaceutical contaminants, and pesticides from wastewater streams. This review also highlighted the effects of various physical or chemical methods, such as crosslinking, grafting, the addition of fillers, nanoparticle incorporation, and polymer blending, on the physiochemical and adsorption properties of hydrogels. In addition, this review covered the alginate- and cellulose-based hydrogels' current limitations such as low mechanical performance and poor stability, while presenting strategies to improve the drawbacks of the hydrogels. Lastly, we discussed the prospects and future directions of alginate- and cellulose-based hydrogels. We hope this review provides valuable insights into the efficient preparations and applications of hydrogels.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suchart Siengchin
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
10
|
Panja A, Paul S, Jha P, Ghosh S, Prasad R. Waste and their polysaccharides: Are they worth bioprocessing? BIORESOURCE TECHNOLOGY REPORTS 2023; 24:101594. [DOI: 10.1016/j.biteb.2023.101594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Ayanda OS, Quadri RO, Adewuyi SO, Mmuoegbulam AO, Okezie O, Mohammed SE, Durumin-Iya NI, Lawal OS, Popoola KM, Adekola FA. Multidimensional applications and potential health implications of nanocomposites. JOURNAL OF WATER AND HEALTH 2023; 21:1110-1142. [PMID: 37632385 PMCID: wh_2023_141 DOI: 10.2166/wh.2023.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
This study reviews the concept, classifications, and techniques involved in the synthesis of nanocomposites. The environmental and health implications of nanoparticles and composite materials were detailed, as well as the applications of nanocomposites in water remediation, antibacterial application, and printed circuit boards. The study gave insights into the challenges of water pollution treatment and provided a broad list of nanocomposites that have been explored for water remediation. Moreover, the emergence of multi-drug resistance to many antibiotics has made current antibiotics inadequate in the treatment of disease. This has engineered the development of alternative strategies in the drug industries for the production of effective therapeutic agents, comprising nanocomposites with antibacterial agents. The new therapeutic agents known as nanoantibiotics are more efficient and have paved the way to handle the challenges of antibiotic resistance. In printed circuit boards, nanocomposites have shown promising applications because of their distinct mechanical, thermal, and electrical characteristics. The uniqueness of the write-up is that it provides a broad explanation of the concept, synthesis, application, toxicity, and harmful effects of nanocomposites. Thus, it will provide all-inclusive awareness to readers to identify research gaps and motivate researchers to synthesize novel nanocomposites for use in various fields.
Collapse
Affiliation(s)
- Olushola S Ayanda
- Nanoscience Research Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State P.M.B 373, Nigeria E-mail:
| | - Rukayat O Quadri
- Nanoscience Research Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State P.M.B 373, Nigeria
| | - Sulaiman O Adewuyi
- Nanoscience Research Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State P.M.B 373, Nigeria
| | - Augusta O Mmuoegbulam
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Onyemaechi Okezie
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Sa'adatu E Mohammed
- Department of Chemistry, Federal University Dutse, Dutse, Jigawa State PMB 7156, Nigeria
| | - Naseer I Durumin-Iya
- Department of Chemistry, Federal University Dutse, Dutse, Jigawa State PMB 7156, Nigeria
| | - Olayide S Lawal
- Nanoscience Research Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State P.M.B 373, Nigeria
| | - Kehinde M Popoola
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Folahan A Adekola
- Department of Industrial Chemistry, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
12
|
Bukhari NTM, Rawi NFM, Hassan NAA, Saharudin NI, Kassim MHM. Seaweed polysaccharide nanocomposite films: A review. Int J Biol Macromol 2023; 245:125486. [PMID: 37355060 DOI: 10.1016/j.ijbiomac.2023.125486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
A million tonnes of plastic produced each year are disposed of after single use. Biodegradable polymers have become a promising material as an alternative to petroleum-based polymers. Utilising biodegradable polymers will promote environmental sustainability which has emerged with potential features and performances for various applications in different sectors. Seaweed-derived polysaccharides-based composites have been the focus of numerous studies due to the composites' renewability and sustainability for industries (food packaging and medical fields like tissue engineering and drug delivery). Due to their biocompatibility, abundance, and gelling ability, seaweed derivatives such as alginate, carrageenan, and agar are commonly used for this purpose. Seaweed has distinct film-forming characteristics, but its mechanical and water vapour barrier qualities are weak. Thus, modifications are necessary to enhance the seaweed properties. This review article summarises and discusses the effect of incorporating seaweed films with different types of nanoparticles on their mechanical, thermal, and water barrier properties.
Collapse
Affiliation(s)
- Nur Thohiroh Md Bukhari
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nur Adilah Abu Hassan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nur Izzaati Saharudin
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Haafiz Mohamad Kassim
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
13
|
Anani OA, Adama KK, Ukhurebor KE, Habib AI, Abanihi VK, Pal K. Application of nanofibrous protein for the purification of contaminated water as a next generational sorption technology: a review. NANOTECHNOLOGY 2023; 34:232004. [PMID: 36807991 DOI: 10.1088/1361-6528/acbd9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Globally, wastes from agricultural and industrial activities cause water pollution. Pollutants such as microbes, pesticides, and heavy metals in contaminated water bodies beyond their threshold limits result in several diseases like mutagenicity, cancer, gastrointestinal problems, and skin or dermal issues when bioaccumulated via ingestion and dermal contacts. Several technologies have been used in modern times to treat wastes or pollutants such as membrane purification technologies and ionic exchange methods. However, these methods have been recounted to be capital intensive, non-eco-friendly, and need deep technical know-how to operate thus, contributing to their inefficiencies and non-efficacies. This review work evaluated the application of Nanofibrils-protein for the purification of contaminated water. Findings from the study indicated that Nanofibrils protein is economically viable, green, and sustainable when used for water pollutant management or removal because they have outstanding recyclability of wastes without resulting in a secondary phase-pollutant. It is recommended to use residues from dairy industries, agriculture, cattle guano, and wastes from a kitchen in conjunction with nanomaterials to develop nanofibrils protein which has been recounted for the effective removal of micro and micropollutants from wastewater and water. The commercialization of nanofibrils protein for the purification of wastewater and water against pollutants has been tied to novel methods in nanoengineering technology, which depends strongly on the environmental impact in the aqueous ecosystem. So, there is a need to establish a legal framework for the establishment of a nano-based material for the effective purification of water against pollutants.
Collapse
Affiliation(s)
- Osikemekha Anthony Anani
- Laboratory for Ecotoxicology and Forensic Biology, Department of Biological Science, Faculty of Science, Edo State University, Uzairue, Edo State, Nigeria
| | - Kenneth Kennedy Adama
- Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | | | - Aishatu Idris Habib
- Department of Microbiology, Edo State University, Faculty of Science, Uzairue, Nigeria
| | - Vincent Kenechi Abanihi
- Department of Electrical/Electronic Engineering, Faculty of Engineering, Edo State University, Uzairue, Nigeria
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab 140413, India
| |
Collapse
|
14
|
Kushwaha R, Kumar S, Das A, Sukriti, Verma ML. Silver nanoparticle-based nanocomposite hydrogels for biomedical applications. FUNCTIONAL NANOCOMPOSITE HYDROGELS 2023:241-265. [DOI: 10.1016/b978-0-323-99638-9.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Akartasse N, Azzaoui K, Mejdoubi E, Elansari LL, Hammouti B, Siaj M, Jodeh S, Hanbali G, Hamed R, Rhazi L. Chitosan-Hydroxyapatite Bio-Based Composite in Film Form: Synthesis and Application in Wastewater. Polymers (Basel) 2022; 14:polym14204265. [PMID: 36297842 PMCID: PMC9610050 DOI: 10.3390/polym14204265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
Water purification from toxic metals was the main objective of this work. A composite in film form was prepared from the biomaterials hydroxyapatite, chitosan and glycerol using the dissolution/recrystallization method. A nanoparticle-based film with a homogenous and smooth surface was produced. The results of total reflectance infrared spectroscopy (ATR-FTIR) and thermal gravimetric analysis (TGA/DTA) demonstrated the presence of a substantial physical force between composite components. The composite was tested for its ability to absorb Cd2+ and Zn2+ ions from aqueous solutions. Cd2+ and Zn2+ adsorption mechanisms are fit using the Langmuir model and the pseudo-second-order model. Thermodynamic parameters indicated that Cd2+ and Zn2+ ion adsorption onto the composite surface is spontaneous and preferred at neutral pH and temperatures somewhat higher than room temperature. The adsorption studies showed that the maximum adsorption capacity of the HAp/CTs bio-composite membrane for Cd2+ and Zn2+ ions was in the order of cadmium (120 mg/g) > Zinc (90 mg/g) at an equilibrium time of 20 min and a temperature of 25 °C. The results obtained on the physico-chemical properties of nanocomposite membranes and their sorption capacities offer promising potential for industrial and biological activities.
Collapse
Affiliation(s)
- Noureddine Akartasse
- Laboratory of Applied Chemistry and Environment LCAE, Faculty of Sciences, First Mohammed University, Oujda 60 000, Morocco
| | - Khalil Azzaoui
- Laboratory of Applied Chemistry and Environment LCAE, Faculty of Sciences, First Mohammed University, Oujda 60 000, Morocco
- Correspondence: (K.A.); (S.J.); Tel.: +21-26-6669-4324 (N.A.); +21-26-7704-2082 (K.A.)
| | - Elmiloud Mejdoubi
- Laboratory of Applied Chemistry and Environment LCAE, Faculty of Sciences, First Mohammed University, Oujda 60 000, Morocco
| | - Lhaj Lahcen Elansari
- Laboratory of Applied Chemistry and Environment LCAE, Faculty of Sciences, First Mohammed University, Oujda 60 000, Morocco
| | - Belkhir Hammouti
- Laboratory of Applied Chemistry and Environment LCAE, Faculty of Sciences, First Mohammed University, Oujda 60 000, Morocco
| | - Mohamed Siaj
- Department of Chemistry and Biochemistry, Université Du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Shehdeh Jodeh
- Department of Chemistry, An-Najah National University, Nablus P.O. Box 7, Palestine
- Correspondence: (K.A.); (S.J.); Tel.: +21-26-6669-4324 (N.A.); +21-26-7704-2082 (K.A.)
| | - Ghadir Hanbali
- Department of Chemistry, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Rinad Hamed
- Department of Chemistry, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle Transformations & Agro-Resources Research Unit (ULR7519), 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| |
Collapse
|
16
|
Mahdhi N, Alsaiari NS, Amari A, Chakhoum MA. Effect of TiO 2 Nanoparticles on Capillary-Driven Flow in Water Nanofilters Based on Chitosan Cellulose and Polyvinylidene Fluoride Nanocomposites: A Theoretical Study. Polymers (Basel) 2022; 14:polym14142908. [PMID: 35890682 PMCID: PMC9320925 DOI: 10.3390/polym14142908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel concept of nanofiltration process of drinking water based on capillary-driven nanofiltration is demonstrated using a bio-based nanocomposites’ nanofilter as free power: a green and sustainable solution. Based on Lifshitz and Young–Laplace theories, we show that the chitosan (CS), cellulose acetate (CLA), and Polyvinylidene fluoride (PVDF) polymer matrixes demonstrate hydrophobic behavior, which leads to the draining of water from nanopores when negative capillary pressure is applied and consequently prevents the capillary-driven nanofiltration process. By incorporating 10%, 20%, and 30% volume fraction of titanium dioxide (TiO2) nanoparticles (NPs) to the polymers’ matrixes, we demonstrate a wetting conversion from hydrophobic to hydrophilic behavior of these polymer nanocomposites. Subsequently, the threshold volume fraction of the TiO2 NPs for the conversion from draining (hydrophobic) to filling (hydrophilic) by capillary pressure were found to be equal to 5.1%, 10.9%, and 13.9%, respectively, for CS/TiO2, CLA/TiO2, and PVDF/TiO2 nanocomposites. Then, we demonstrated the negligible effect of the gravity force on capillary rise as well as the capillary-driven flow for nanoscale pore size. For nanofilters with the same effective nanopore radius, porosity, pore shape factor, and tortuosity, results from the modified Lucas–Washburn model show that the capillary rise as well as the capillary-driven water volume increase with increased volume fraction of the TiO2 NPs for all nanocomposite nanofilter. Interestingly, the capillary-driven water volume was in range (5.26–6.39) L/h·m2 with 30% volume fraction of TiO2 NPs, which support our idea for capillary-driven nanofiltration as zero energy consumption nano-filtration process. Correspondingly, the biodegradable CS/TiO2 and CLA/TiO2 nanocomposites nanofilter demonstrate capillary-driven water volume higher, ~1.5 and ~1.2 times, respectively, more than the synthetic PVDF/TiO2 nanocomposite.
Collapse
Affiliation(s)
- Noureddine Mahdhi
- Laboratory Materials Organizations and Properties, Tunis El Manar University, Tunis 2092, Tunisia
- Correspondence: (N.M.); (A.A.)
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
- Research Laboratory of Processes, Energetics, Environment and Electrical Systems, National School of Engineers, Gabes University, Gabes 6072, Tunisia
- Correspondence: (N.M.); (A.A.)
| | - Mohamed Ali Chakhoum
- Laboratoire des Sciences de la Matière Condensée (LSMC), Université Oran 1 Ahmed Ben Bella, Oran 31100, Algeria;
| |
Collapse
|