1
|
Xu Z, Li Q, Sun X, Xing J, Hong X, Liu F. The Preparation and Performance Study of Polyamide Film Based on PDA@MWCNTs/PVDF Porous Support Layer. Molecules 2024; 29:1460. [PMID: 38611740 PMCID: PMC11013461 DOI: 10.3390/molecules29071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
It is urgent to develop a polyamide (PA) thin-film composite (TFC) membrane with a new method in this study by designing and constructing a new nanomaterial support layer instead of the conventional support layer. Polydopamine-wrapped single-walled carbon nanotubes (PDA@MWCNTs) as the place of the polymerization reaction can optimize the PA film structure and performance. The resulting composite membrane presents a higher water flux of 15.8 L·m-2·h-1·bar-1 and a rejection rate of 97% to Na2SO4, simultaneously maintaining this high separation performance in 300 min. It is a new ideal to construct novel support layer by using inorganic nanoparticles and organic polymer nanofiber membranes.
Collapse
Affiliation(s)
- Zhenzhen Xu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; (Z.X.); (Q.L.); (X.S.); (J.X.)
| | - Quanjun Li
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; (Z.X.); (Q.L.); (X.S.); (J.X.)
| | - Xuzhi Sun
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; (Z.X.); (Q.L.); (X.S.); (J.X.)
| | - Jian Xing
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; (Z.X.); (Q.L.); (X.S.); (J.X.)
| | - Xinghua Hong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Hangzhou 310018, China
| | - Feng Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; (Z.X.); (Q.L.); (X.S.); (J.X.)
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Hangzhou 310018, China
- Advanced Fiber Materials Engineering Research Center of Anhui Province, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
2
|
Zhang Q, Zhou R, Peng X, Li N, Dai Z. Development of Support Layers and Their Impact on the Performance of Thin Film Composite Membranes (TFC) for Water Treatment. Polymers (Basel) 2023; 15:3290. [PMID: 37571184 PMCID: PMC10422403 DOI: 10.3390/polym15153290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Thin-film composite (TFC) membranes have gained significant attention as an appealing membrane technology due to their reversible fouling and potential cost-effectiveness. Previous studies have predominantly focused on improving the selective layers to enhance membrane performance. However, the importance of improving the support layers has been increasingly recognized. Therefore, in this review, preparation methods for the support layer, including the traditional phase inversion method and the electrospinning (ES) method, as well as the construction methods for the support layer with a polyamide (PA) layer, are analyzed. Furthermore, the effect of the support layers on the performance of the TFC membrane is presented. This review aims to encourage the exploration of suitable support membranes to enhance the performance of TFC membranes and extend their future applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Rui Zhou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Xue Peng
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
3
|
Gayatri R, Fizal ANS, Yuliwati E, Hossain MS, Jaafar J, Zulkifli M, Taweepreda W, Ahmad Yahaya AN. Preparation and Characterization of PVDF-TiO 2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1023. [PMID: 36985917 PMCID: PMC10057082 DOI: 10.3390/nano13061023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Polymeric membranes offer straightforward modification methods that make industry scaling affordable and easy; however, these materials are hydrophobic, prone to fouling, and vulnerable to extreme operating conditions. Various attempts were made in this study to fix the challenges in using polymeric membranes and create mixed-matrix membrane (MMMs) with improved properties and hydrophilicity by adding titanium dioxide (TiO2) and pore-forming agents to hydrophobic polyvinylidene fluoride (PVDF). The PVDF mixed-matrix ultrafiltration membranes in this study were made using the non-solvent phase inversion approach which is a simple and effective method for increasing the hydrophilic nature of membranes. Polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) as pore-forming chemicals were created. Pure water flux, BSA flux, and BSA rejection were calculated to evaluate the mixed-matrix membrane's efficiency. Bovine serum albumin (BSA) solution was employed in this study to examine the protein rejection ability. Increases in hydrophilicity, viscosity, and flux in pure water and BSA solution were achieved using PVP and PEG additives. The PVDF membrane's hydrophilicity was raised with the addition of TiO2, showing an increased contact angle to 71°. The results show that the PVDF-PVP-TiO2 membrane achieved its optimum water flux of 97 L/(m2h) while the PVDF-PEG-TiO2 membrane rejected BSA at a rate greater than 97%. The findings demonstrate that use of a support or additive improved filtration performance compared to a pristine polymeric membrane by increasing its hydrophilicity.
Collapse
Affiliation(s)
- Rianyza Gayatri
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
- Polymer Science Program, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat-Yai 90110, Songkhla, Thailand;
| | - Ahmad Noor Syimir Fizal
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
| | - Erna Yuliwati
- Program Study of Chemical Engineering, Faculty of Engineering, Universitas Muhammadiyah Palembang, Jalan A. Yani 13 Ulu Kota, Palembang 30263, Indonesia;
| | - Md Sohrab Hossain
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Faculty of Science and Information Technology, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Muzafar Zulkifli
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
| | - Wirach Taweepreda
- Polymer Science Program, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat-Yai 90110, Songkhla, Thailand;
| | - Ahmad Naim Ahmad Yahaya
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
| |
Collapse
|
4
|
Cojocaru C, Pascariu P, Enache AC, Bargan A, Samoila P. Application of Surface-Modified Nanoclay in a Hybrid Adsorption-Ultrafiltration Process for Enhanced Nitrite Ions Removal: Chemometric Approach vs. Machine Learning. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:697. [PMID: 36839065 PMCID: PMC9963183 DOI: 10.3390/nano13040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Herein, we report the results of a study on combining adsorption and ultrafiltration in a single-stage process to remove nitrite ions from contaminated water. As adsorbent, a surface-modified nanoclay was employed (i.e., Nanomer® I.28E, containing 25-30 wt. % trimethyl stearyl ammonium). Ultrafiltration experiments were conducted using porous polymeric membranes (Ultracel® 10 kDa). The hybrid process of adsorption-ultrafiltration was modeled and optimized using three computational tools: (1) response surface methodology (RSM), (2) artificial neural network (ANN), and (3) support vector machine (SVM). The optimal conditions provided by machine learning (SVM) were found to be the best, revealing a rejection efficiency of 86.3% and an initial flux of permeate of 185 LMH for a moderate dose of the nanoclay (0.674% w/v). Likewise, a new and more retentive membrane (based on PVDF-HFP copolymer and halloysite (HS) inorganic nanotubes) was produced by the phase-inversion method, characterized by SEM, EDX, AFM, and FTIR techniques, and then tested under optimal conditions. This new composite membrane (PVDF-HFP/HS) with a thickness of 112 μm and a porosity of 75.32% unveiled an enhanced rejection efficiency (95.0%) and a lower initial flux of permeate (28 LMH). Moreover, molecular docking simulations disclosed the intermolecular interactions between nitrite ions and the functional moiety of the organonanoclay.
Collapse
Affiliation(s)
- Corneliu Cojocaru
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Petronela Pascariu
- Laboratory of Physical Chemistry of Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Andra-Cristina Enache
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Bargan
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Petrisor Samoila
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|