1
|
Wang Y, Liu Y, Zhang H, Duan X, Ma J, Sun H, Tian W, Wang S. Carbonaceous materials in structural dimensions for advanced oxidation processes. Chem Soc Rev 2025; 54:2436-2482. [PMID: 39895415 DOI: 10.1039/d4cs00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Carbonaceous materials have attracted extensive research and application interests in water treatment owing to their advantageous structural and physicochemical properties. Despite the significant interest and ongoing debates on the mechanisms through which carbonaceous materials facilitate advanced oxidation processes (AOPs), a systematic summary of carbon materials across all dimensions (0D-3D nanocarbon to bulk carbon) in various AOP systems remains absent. Addressing this gap, the current review presents a comprehensive analysis of various carbon/oxidant systems, exploring carbon quantum dots (0D), nanodiamonds (0D), carbon nanotubes (1D), graphene derivatives (2D), nanoporous carbon (3D), and biochar (bulk 3D), across different oxidant systems: persulfates (peroxymonosulfate/peroxydisulfate), ozone, hydrogen peroxide, and high-valent metals (Mn(VII)/Fe(VI)). Our discussion is anchored on the identification of active sites and elucidation of catalytic mechanisms, spanning both radical and nonradical pathways. By dissecting catalysis-related factors such as sp2/sp3 C, defects, and surface functional groups that include heteroatoms and oxygen groups in different carbon configurations, this review aims to provide a holistic understanding of the catalytic nature of different dimensional carbonaceous materials in AOPs. Furthermore, we address current challenges and underscore the potential for optimizing and innovating water treatment methodologies through the strategic application of carbon-based catalysts. Finally, prospects for future investigations and the associated bottlenecks are proposed.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ya Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Wan YL, Zhang J, Wang L, Lei YZ, Wen LL. Poly(ionic liquid)-coated hydroxy-functionalized carbon nanotube nanoarchitectures with boosted catalytic performance for carbon dioxide cycloaddition. J Colloid Interface Sci 2024; 653:844-856. [PMID: 37769363 DOI: 10.1016/j.jcis.2023.09.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
Poly(ionic liquid)s (PILs) bearing high ionic densities are promising candidates for carbon dioxide (CO2) fixation. However, efficient and metal-free methods for boosting the catalytic efficiencies of PILs are still challenging. In this study, a novel family of poly(ionic liquid)-coated carbon nanotube nanoarchitectures (CNTs@PIL) were facilely prepared via a noncovalent and in-situ polymerization method. The effects of different carbon nanotubes (CNTs) and PILs on the structure, properties, and catalytic performance of the composite catalysts were systematically investigated. Characterizations and experimental results showed that hybridization of PIL with hydroxyl- or carboxyl-functionalized CNTs (CNT-OH, CNT-COOH) endows the composite catalyst with increased porosity, CO2 capture capacity, swelling ability and diffusion rate with respect to individual PIL, and allows the CNTs@PIL to provide H-bond donors for the synergistic activation of epoxides at the interfacial layer. Benefiting from these merits, the optimal composite catalyst (CNT-OH@PIL) delivered a super catalytic efficiency in the cycloaddition of CO2 to propylene oxide, which was over 4.5 times that of control PIL under metal- and co-catalyst free conditions. Additionally, CNT-OH@PIL showed high carbon dioxide/nitrogen (CO2/N2) adsorptive selectivity and could smoothly catalyze the cycloaddition reaction with a simulated flue gas (15% CO2 and 85% N2). Furthermore, the CNT-OH@PIL exhibited broad substrate tolerance and could be readily recycled and efficiently reused at least 12 times. Hybridization of PIL with functionalized CNTs provides a feasible approach for boosting the catalytic performance of PIL-based solid catalysts for CO2 fixation.
Collapse
Affiliation(s)
- Ya-Li Wan
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Jiao Zhang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, PR China
| | - Li Wang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yi-Zhu Lei
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, PR China.
| | - Li-Li Wen
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
3
|
Lu X, Wang Z. Individual and binary exposure of embryonic zebrafish (Danio rerio) to single-walled and multi-walled carbon nanotubes in the absence and presence of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166458. [PMID: 37625727 DOI: 10.1016/j.scitotenv.2023.166458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The available toxicological information was inadequate to assess the potential ecological risk of a mixture of different nanostructured carbon nanotubes (CNTs) to aquatic organisms, especially for the co-existence of mixed CNTs with dissolved organic matter (DOM). Herein, we investigated individual and binary exposure of zebrafish (Danio rerio) embryos to single-walled (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) in the absence and presence of DOM. Results indicated that embryonic chorions were more resistant to mixed-type CNTs than to single-type CNTs, yet the addition of DOM decreased this resistance. The mixed-type CNTs increased the antioxidant capacity of zebrafish embryos by increasing superoxide dismutase activity in comparison to the single-type CNTs. Furthermore, the mixed-type CNTs caused oxidative damage to the zebrafish embryos, characterized by an increase in malondialdehyde level. Nevertheless, the activation of the antioxidant defense system was modulated by the presence of DOM. Transcriptome sequencing analysis showed that the number of unique genes (UGs) and differentially expressed genes (DEGs) between the mixed-type CNTs and control groups was significantly enhanced compared to the single-type CNTs. DOM increased the number of UGs and up-regulated DEGs, but decreased the number of down-regulated DEGs. GO classification analysis revealed that the mixed-type CNTs mainly altered the cellular component process of single-type CNTs to induce joint effects. DOM generally enhanced the GO enrichment of DEGs in D. rerio embryos exposed to the mixed-type CNTs during the biological process. KEGG pathway enrichment analysis for the mixed-type CNTs showed enrichment of DEGs encoding ether lipid metabolism, glycerophospholipid metabolism, glycerolipid metabolism, citrate cycle, and biosynthesis of nucleotide sugars. However, DOM allowed more specific KEGG pathways towards the mixed-type CNTs to be identified. Despite the mixed-type CNTs exhibiting differential expression of functional genes compared to the control and single-type CNTs, DOM could regulate the expression of these functional genes associated with oxidative stress response, carbohydrate metabolism, endoplasmic reticulum stress, neuroendocrine, osmotic stress, and DNA damage and repair. Our study thus paves a solid way for exploring the molecular mechanism of aquatic toxicity of multiple nanomaterials under field-relevant conditions.
Collapse
Affiliation(s)
- Xibo Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| |
Collapse
|
4
|
Liu M, Ye Y, Xu L, Gao T, Zhong A, Song Z. Recent Advances in Nanoscale Zero-Valent Iron (nZVI)-Based Advanced Oxidation Processes (AOPs): Applications, Mechanisms, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2830. [PMID: 37947676 PMCID: PMC10647831 DOI: 10.3390/nano13212830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The fast rise of organic pollution has posed severe health risks to human beings and toxic issues to ecosystems. Proper disposal toward these organic contaminants is significant to maintain a green and sustainable development. Among various techniques for environmental remediation, advanced oxidation processes (AOPs) can non-selectively oxidize and mineralize organic contaminants into CO2, H2O, and inorganic salts using free radicals that are generated from the activation of oxidants, such as persulfate, H2O2, O2, peracetic acid, periodate, percarbonate, etc., while the activation of oxidants using catalysts via Fenton-type reactions is crucial for the production of reactive oxygen species (ROS), i.e., •OH, •SO4-, •O2-, •O3CCH3, •O2CCH3, •IO3, •CO3-, and 1O2. Nanoscale zero-valent iron (nZVI), with a core of Fe0 that performs a sustained activation effect in AOPs by gradually releasing ferrous ions, has been demonstrated as a cost-effective, high reactivity, easy recovery, easy recycling, and environmentally friendly heterogeneous catalyst of AOPs. The combination of nZVI and AOPs, providing an appropriate way for the complete degradation of organic pollutants via indiscriminate oxidation of ROS, is emerging as an important technique for environmental remediation and has received considerable attention in the last decade. The following review comprises a short survey of the most recent reports in the applications of nZVI participating AOPs, their mechanisms, and future prospects. It contains six sections, an introduction into the theme, applications of persulfate, hydrogen peroxide, oxygen, and other oxidants-based AOPs catalyzed with nZVI, and conclusions about the reported research with perspectives for future developments. Elucidation of the applications and mechanisms of nZVI-based AOPs with various oxidants may not only pave the way to more affordable AOP protocols, but may also promote exploration and fabrication of more effective and sustainable nZVI materials applicable in practical applications.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, China
| | - Yuyuan Ye
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Linli Xu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Ting Gao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Aiguo Zhong
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Zhenjun Song
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| |
Collapse
|
5
|
Peng X, Zhou C, Li X, Qi K, Gao L. Degradation of tetracycline by peroxymonosulfate activated with Mn 0.85Fe 2.15O 4-CNTs: Key role of singlet oxygen. ENVIRONMENTAL RESEARCH 2023; 227:115750. [PMID: 37003552 DOI: 10.1016/j.envres.2023.115750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Tetracycline (TC) is a kind of electron-rich organic, and singlet oxygen (1O2) oxidative pathway-based advanced oxidation processes (AOPs) have represented outstanding selective degradation to such pollutants. In this paper, an excellent prepared strategy for 1O2 dominated catalyst was adopted. A catalyst composed of non-stoichiometric doping Mn-Fe bimetallic oxide supported on CNTs (0.3-Mn0.85Fe2.15O4-CNTs) was synthesized and optimized by regulating the non-stoichiometric doping ratio of Mn & Fe and the loading amount of CNTs. Through optimization and control experiments, the optimized catalyst represented 94.9% of TC removal efficiency within 60 min in neutral condition under relatively low concentrations of Mn0.85Fe2.15O4-CNTs (0.4 g/L) and PMS (0.8 mM). Through SEM and XRD characterization, Mn0.85Fe2.15O4-CNTs was a hybrid of cubic Mn0.85Fe2.15O4 uniformly dispersing on CNTs. By the characterization of XPS and FT-IR, more CO bonds and low-valent Mn (II) & Fe (II) appeared in Mn0.85Fe2.15O4-CNTs. Reactive oxygen species (ROS) was determined by radical quenching experiments and electron spin resonance (EPR) spectroscopy, and 1O2 was verified to be the dominated ROS. The mechanism for PMS' activation was speculated, and more low-valent Mn (II) and Fe (II) contributed to the production of free-radical (•OH & SO4•-), while the reaction between PMS and the enhanced CO bond on Mn0.85Fe2.15O4-CNTs played a crucial part in the generation of 1O2. In addition, through the comparative degradation of four different organics with distinct charge densities, the excellent selectivity of 1O2-based oxidative pathway to electron-rich pollutants was found. This paper supplied a good strategy to prepare catalyst for PMS activation to form a 1O2-dominated oxidative pathway.
Collapse
Affiliation(s)
- Xueer Peng
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Chenyang Zhou
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Xuelian Li
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Kai Qi
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Lili Gao
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China.
| |
Collapse
|