1
|
Dykman L, Khlebtsov B, Khlebtsov N. Drug delivery using gold nanoparticles. Adv Drug Deliv Rev 2025; 216:115481. [PMID: 39617254 DOI: 10.1016/j.addr.2024.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Modern nanotechnologies provide various possibilities for efficiently delivering drugs to biological targets. This review focuses on using functionalized gold nanoparticles (GNPs) as a drug delivery platform. Owing to their exceptional size and surface characteristics, GNPs are a perfect drug delivery vehicle for targeted and selective distribution. Several in vitro and in vivo tests have shown how simple it is to tailor these particles to administer chemical medications straight to tumors. The GNP surface can also be coated with ligands to modify drug release or improve selectivity. Moreover, the pharmacological activity can be enhanced by using the photothermal characteristics of the particles.
Collapse
Affiliation(s)
- Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia.
| |
Collapse
|
2
|
Hancharova M, Halicka-Stępień K, Dupla A, Lesiak A, Sołoducho J, Cabaj J. Antimicrobial activity of metal-based nanoparticles: a mini-review. Biometals 2024; 37:773-801. [PMID: 38286956 DOI: 10.1007/s10534-023-00573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
The resistance of pathogenic microorganisms to antibiotics is one of the main problems of world health. Of particular concern are multidrug-resistant (MDR) bacteria. Infections caused by these microorganisms affect the appearance of acute or chronic diseases. In this regard, modern technologies, such as nanomaterials (NMs), especially promising nanoparticles (NPs), can possess antimicrobial properties or improve the effectiveness and delivery of known antibiotics. Their diversity and characteristics, combined with surface functionalization, enable multivalent interactions with microbial biomolecules. This article presents an overview of the most current research on replacing antibiotics with NPs, including the prospects and risks involved.
Collapse
Affiliation(s)
- Marharyta Hancharova
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kinga Halicka-Stępień
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Aleksandra Dupla
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Lesiak
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
- Laboratoire de Chimie, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Jadwiga Sołoducho
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
3
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
4
|
Rawat N, Ahmad N, Raturi P, Singhvi N, Sahai N, Kothiyal P. Nanobiomaterials: exploring mechanistic roles in combating microbial infections and cancer. DISCOVER NANO 2023; 18:158. [PMID: 38123864 PMCID: PMC10733259 DOI: 10.1186/s11671-023-03946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
The initiation of the "nanotechnology era" within the past decade has been prominently marked by advancements in biomaterials. This intersection has opened up numerous possibilities for enhancing the detection, diagnosis, and treatment of various illnesses by leveraging the synergy between biomaterials and nanotechnology. The term "nano biomaterials" referring to biomaterials featuring constituent or surface feature sizes below 100 nm, presents a realm of extraordinary materials endowed with unique structures and properties. Beyond addressing common biomedical challenges, these nano biomaterials contribute unprecedented insights and principles that enrich our understanding of biology, medicine, and materials science. A critical evaluation of recent technological progress in employing biomaterials in medicine is essential, along with an exploration of potential future trends. Nanotechnology breakthroughs have yielded novel surfaces, materials, and configurations with notable applications in the biomedical domain. The integration of nanotechnology has already begun to enhance traditional biomedical practices across diverse fields such as tissue engineering, intelligent systems, the utilization of nanocomposites in implant design, controlled release systems, biosensors, and more. This mini review encapsulates insights into biomaterials, encompassing their types, synthesis methods, and the roles of organic and inorganic nanoparticles, elucidating their mechanisms of action. Furthermore, the focus is squarely placed on nano biomaterials and their versatile applications, with a particular emphasis on their roles in anticancer and antimicrobial interventions. This review underscores the dynamic landscape of nanotechnology, envisioning a future where nano biomaterials play a pivotal role in advancing medical applications, particularly in combating cancer and microbial infections.
Collapse
Affiliation(s)
- Neha Rawat
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Nabeel Ahmad
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India.
| | - Pratishtha Raturi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Nitin Sahai
- 3D Printing and Visualization Center, University of Pecs, Boszorkany str. 2, Pecs, Hungary
- Departmnet of Biomedical Engineering, North Eastern Hill University (Central University), Shillong, India
| | - Preeti Kothiyal
- School of Pharmacy and Research, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| |
Collapse
|
5
|
Laxmi V, Singhvi N, Ahmad N, Sinha S, Negi T, Gupta V, Mubashshir M, Ahmad A, Sharma S. Emerging Field of Nanotechnology in Environment. Indian J Microbiol 2023; 63:244-252. [PMID: 37781004 PMCID: PMC10533467 DOI: 10.1007/s12088-023-01092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023] Open
Abstract
The art of utilizing and manipulating micro materials have been dated back to antient era. With the advancement in technologies, the state-of-art methods of nano technologies and nano sciences has been employed in various sectors including environment, product designing, food industry, pharmaceuticals industries to way out solve standard problem of mankind. Due to rapid industrialization and the alarming levels of pollution there has been an urgent need to address the environmental and energy issues. Environmental sustainability concerns the global climate change and pollution including air, water, soil. The field of nanotechnology has proven to be a promising field where sensing and remediation, have been dramatically advanced by the use of nanomaterials. This emergent science of surface to mass ratio is the principle theorem for manipulating structure at molecular levels. The review sums up all the advancements in the field of nanotechnology and their recent application in the environment. New opportunities and challenges have also been discussed in detail to understand the use of nanotechnology as problem-to-solution ratio. Graphical abstract Image depicting the application of nanotechnology in environmental concerns. The combinations of technologies like bioremediations, bioaugmentations with state-of-the-art nanotechnology like carbon nanotubes and Nano capsules to answer the environmental challenges of soil quality, and plant productivity.
Collapse
Affiliation(s)
- Vijya Laxmi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
| | - Nabeel Ahmad
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
| | - Shruti Sinha
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
| | - Tripti Negi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
| | - Vipin Gupta
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun, Uttarakhand 248001 India
| | - Muhammad Mubashshir
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
- Faculty of Basic and Applied Sciences, Vivekananda Global University, Jaipur, India
| | - Adnan Ahmad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026 India
| | - Sandeep Sharma
- School of Engineering and Computing, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
- Omkarr Tech Solutions, Dehradun, Uttarakhand 248001 India
| |
Collapse
|
6
|
Al Hagbani T, Rizvi SMD, Shakil S, Lila ASA. Nano-Formulating Besifloxacin and Employing Quercetin as a Synergizer to Enhance the Potency of Besifloxacin against Pathogenic Bacterial Strains: A Nano-Synergistic Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2083. [PMID: 37513094 PMCID: PMC10384196 DOI: 10.3390/nano13142083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The present study applied a nano-synergistic approach to enhance besifloxacin's potency via nano-formulating besifloxacin on gold nanoparticles (Besi-AuNPs) and adding quercetin as a natural synergistic compound. In fact, a one-pot AuNP synthesis approach was applied for the generation of Besi-AuNPs, where besifloxacin itself acted as a reducing and capping agent. Characterization of Besi-AuNPs was performed by spectrophotometry, DLS, FTIR, and electron microscopy techniques. Moreover, antibacterial assessment of pure besifloxacin, Besi-AuNPs, and their combinations with quercetin were performed on Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. UV-spectra showed a peak of AuNPs at 526 nm, and the electron microscopy-based size was estimated to be 15 ± 3 nm. The effective MIC50 concentrations of besifloxacin after loading on AuNPs were reduced by approximately 50% against the tested bacterial strains. Interestingly, adding quercetin to Besi-AuNPs further enhanced their antibacterial potency, and isobologram analysis showed synergistic potential (combination index below 1) for different quercetin and Besi-AuNP combinations. However, Besi-AuNPs and quercetin combinations were most effective against Gram-positive S. aureus in comparison to Gram-negative P. aeruginosa and E. coli. Their potent activity against S. aureus has its own clinical significance, as it is one the main causative agents of ocular infection, and besifloxacin is primarily used for treating infectious eye diseases. Thus, the outcomes of the present study could be explored further to provide better medication for eye infections caused by resistant pathogens.
Collapse
Affiliation(s)
- Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
7
|
Eissa NG, Eldehna WM, Abdelazim EB, Eissa RA, Mohamed HH, Diab NH, El Hassab MA, Elkaeed EB, Elsayed ZM, Sabet MA, Bakr MH, Aboelela A, Abdelshafi NA, Kamoun EA, Supuran CT, Elsabahy M, Allam AA. Morphologic Design of Nanogold Carriers for a Carbonic Anhydrase Inhibitor: Effect on Ocular Retention and Intraocular Pressure. Int J Pharm 2023:123161. [PMID: 37379891 DOI: 10.1016/j.ijpharm.2023.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Morphologic design of nanomaterials for a diversity of biomedical applications is of increasing interest. The aim of the current study is to construct therapeutic gold nanoparticles of different morphologies and investigate their effect on ocular retention and intraocular pressure in a glaucoma rabbit model. Poly(lactic-co-glycolic acid) (PLGA)-coated nanorods and nanospheres have been synthesized and loaded with carbonic anhydrase inhibitor (CAI), and characterized in vitro for their size, zeta potential and encapsulation efficiency. Nanosized PLGA-coated gold nanoparticles of both morphologies demonstrated high entrapment efficiency (˃ 98%) for the synthesized CAI and the encapsulation of the drug into the developed nanoparticles was confirmed via Fourier transform-infrared spectroscopy. In vivo studies revealed a significant reduction in intraocular pressure upon instillation of drug-loaded nanogold formulations compared to the marketed eye drops. Spherical nanogolds exhibited a superior efficacy compared to the rod-shaped counterparts, probably due to the enhanced ocular retention of spherical nanogolds within collagen fibers of the stroma, as illustrated by transmission electron microscopy imaging. Normal histological appearance was observed for the cornea and retina of the eyes treated with spherical drug-loaded nanogolds. Hence, incorporation of a molecularly-designed CAI into nanogold of tailored morphology may provide a promising strategy for management of glaucoma.
Collapse
Affiliation(s)
- Noura G Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Esraa B Abdelazim
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Rana A Eissa
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Hend H Mohamed
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Nadeen H Diab
- Pharmaceutics Department, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut, Egypt
| | - Mahmoud A El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh Uinversity, Kafrelsheikh, Egypt
| | - Marwa A Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New-Assiut 71684, Egypt
| | - Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ashraf Aboelela
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Nahla A Abdelshafi
- Department of Pharmaceutical Analytical Chemistry, School of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Elbadawy A Kamoun
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), El Sherouk City, Suez Desert Road, Cairo 1183, Egypt; Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute, the City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mahmoud Elsabahy
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA.
| | - Ayat A Allam
- Pharmaceutics Department, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut, Egypt; Pharmaceutics Department, Faculty of Pharmacy, Assiut university, Assiut 71526, Egypt
| |
Collapse
|