1
|
Tabatabaei M, Cho DW, Fahad S, Jeong DW, Hwang JH. Photocatalytic innovations in PFAS removal: Emerging trends and advances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179567. [PMID: 40315548 DOI: 10.1016/j.scitotenv.2025.179567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are persistent environmental pollutants posing significant risks to ecosystems, drinking water safety, and human health. Conventional PFAS removal methods effectively mitigate contamination but face challenges such as high operational costs, energy demands, and secondary waste production. Photocatalytic methods have emerged as a promising alternative, utilizing light-activated semiconductors to generate reactive oxygen species (ROS), which facilitate the efficient degradation of PFAS into non-toxic byproducts. Advanced photocatalysts, such as titanium dioxide (TiO2), demonstrate significant potential under UV and visible light, though challenges remain, including low activity under visible light, rapid recombination of photogenerated electron-hole pairs, and inefficient carrier utilization. To address these limitations, strategies such as non-metal and metal doping and combining wide- and narrow-bandgap semiconductors have been explored to enhance light absorption, photocatalytic efficiency, and stability. Recent developments in photocatalysts, including PMR technology (80 % PFOA removal in 2 h) (Junker et al., 2024b), Bi4O7-modified Ga2O3 (59.6 % defluorination) (Chen et al., 2024), and lead-doped TiO2/rGO (98 % PFOA removal in 24 h) (Chowdhury and Choi, 2023), have improved PFAS degradation by optimizing light absorption, charge separation, and surface adsorption. Hybrid systems integrating photocatalysis with other treatment methods, such as adsorption and electrochemical oxidation, offer a path toward sustainable, efficient PFAS remediation. This review explores the latest advancements in photocatalytic technologies and highlights future directions, including the development of cost-effective, environmentally friendly materials and field-scale validation. These efforts emphasize the potential of photocatalysis as a cornerstone in achieving sustainable water treatment solutions and protecting environmental and public health.
Collapse
Affiliation(s)
- Maryam Tabatabaei
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Dong-Wan Cho
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | | | - Dae-Woon Jeong
- Department of Environment & Energy Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam 51140, Republic of Korea.
| | - Jae-Hoon Hwang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| |
Collapse
|
2
|
Lv D, Gao J, Shao Y, Wang Y, Pan J, Cong Y, Lv SW. Internal electric field triggered charge redistribution in CuO/Fe 2O 3 composite to regulate the peroxymonosulfate activation for enhancing the degradation of organic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125618. [PMID: 39743196 DOI: 10.1016/j.envpol.2024.125618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Herein, we adopt a feasible method to synthesize the CuO/Fe2O3 composite with heterostructure. Owing to the significant differences in work functions, an internal electric field is built at the interface of heterojunction after the combination of CuO with Fe2O3, which can reduce interface resistance and accelerate charge transfer. Interestingly, under the induction of electrostatic interaction provided by internal electric field, the CuO/Fe2O3 composite will form electron-rich and electron-deficient active zones. More importantly, the peroxymonosulfate (PMS) can be oxidized by the CuO with electron-deficient active zone to generate SO5•‒, subsequently converting into 1O2. Meanwhile, the Fe2O3 component with electron-rich active zone can provide electrons for PMS to achieve the heterolysis of Fe-O-O, thereby producing the high-valent metal complex (namely ≡ Fe5+=O). Consequently, the CuO/Fe2O3-2-mediated PMS system with good anti-interference ability displays excellent performance in wastewater treatment. Benefiting from the electrophilic reaction of 1O2 and ≡ Fe5+=O, various typical organic pollutants can be ultimately mineralized into CO2, H2O and other nontoxic by-products by the CuO/Fe2O3-2-mediated PMS system. In short, current work shares some novel insights into the effect of internal electric field on PMS activation, which can provide valuable references for future research.
Collapse
Affiliation(s)
- Dongchen Lv
- Zaozhuang Mining Group Co., Ltd, Zaozhuang, 277100, China
| | - Jiayi Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yifan Shao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yudi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jiahong Pan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shi-Wen Lv
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Zhou Y, Huo Y, Ma Y, Wen N, Gu Q, He M. Dual action of non-metal doped C 2N and Ti 3C 2T 2 heterojunction enhances the catalytic activity of electrochemical simultaneous oxidation of hydrogen peroxide and peroxymonosulfate:A theoretical study. ENVIRONMENTAL RESEARCH 2025; 267:120698. [PMID: 39725136 DOI: 10.1016/j.envres.2024.120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Electrochemical advanced oxidation processes (EAOPs) are energy-efficient methods for generating activated radicals like HO• and SO4•-, which enable the degradation of difficult-to-mineralize chlorinated organic compounds. This study explored the catalytic activity and reaction mechanism of EAOPs under a dual strategy involving non-metal doped C2N (X@C2N (X = O, F, Si)) and a heterostructured build (X@C2N/Ti3C2T2) using first principles calculation. The non-metal doping and the heterojunction construction can make H2O2 and PMS spontaneously adsorb (Eads < 0), with negative Gibbs free energy for their oxidation to HO• and SO4•-, significantly enhancing catalytic activity. The catalytic activity of the X@C2N catalysts was in the order of O@, F@, and Si@C2N. The loading of Ti3C2T2 improved the stability and activity of the material, while Ti3C2F2 and Ti3C2O2 proved superior as heterojunction carriers compared to Ti3C2(OH)2. Notably, O@C2N/Ti3C2F2 is proved to be an appropriate catalyst for simultaneous hydrogen peroxide (ΔGmax = -0.90 eV) and peroxymonosulfate (ΔGmax = -0.99 eV) oxidation reactions, achieving non-selective generation of oxidants in electrochemistry. 2,4-D can be effectively degraded by surface-generated HO• and SO4•-, with the reactivity of SO4•- towards 2,4-D greater than that of HO•. This research highlights the potential of combining heteroatom doping with heterojunction catalyst formation to enhance EAOPs for environmental remediation.
Collapse
Affiliation(s)
- Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Nuan Wen
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qingyuan Gu
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China; School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
4
|
Batikh A, Colombano S, Cochennec M, Davarzani D, Perrault A, Lions J, Grandclément J, Guyonnet D, Togola A, Zornig C, Devau N, Lion F, Alamooti A, Bristeau S, Djemil M, van Hullebusch ED. Mobilization of poly- and perfluoroalkyl substances (PFAS) from heterogeneous soils: Desorption by ethanol/xanthan gum mixture. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136496. [PMID: 39561539 DOI: 10.1016/j.jhazmat.2024.136496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Remediating soils contaminated by per- and polyfluoroalkyl substances (PFAS) is a challenging task due to the unique properties of these compounds, such as variable solubility and resistance to degradation. In-situ soil flushing with solvents has been considered as a remediation technique for PFAS-contaminated soils. The use of non-Newtonian fluids, displaying variable viscosity depending on the applied shear rate, can offer certain advantages in improving the efficiency of the process, particularly in heterogeneous porous media. In this work, the efficacy of ethanol/xanthan mixture (XE) in the recovery of a mixture of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorobutane sulfonate (PFBS) from soil has been tested at lab-scale. XE's non-Newtonian behavior was examined through rheological measurements, confirming that ethanol did not affect xanthan gum's (XG) shear-thinning behavior. The recovery of PFAS in batch-desorption exceeded 95 % in ethanol, and 99 % in XE, except for PFBS which reached 94 %. 1D-column experiments revealed overshoots in PFAS breakthrough curves during ethanol and XE injection, due to over-solubilization. XE, (XG 0.05 % w/w) could recover 99 % PFOA, 98 % PFBS, 97 % PFHxS, and 92 % PFOS. Numerical modeling successfully reproduces breakthrough curves for PFOA, PFHxS, and PFBS with the convection-dispersion-sorption equation and Langmuir sorption isotherm.
Collapse
Affiliation(s)
- Ali Batikh
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France; Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France; COLAS Environnement, 91, rue de la Folliouse, 01700 Miribel, France.
| | - Stéfan Colombano
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Maxime Cochennec
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Dorian Davarzani
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Arnault Perrault
- COLAS Environnement, 91, rue de la Folliouse, 01700 Miribel, France
| | - Julie Lions
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | | | - Dominique Guyonnet
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Anne Togola
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Clément Zornig
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Nicolas Devau
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Fabien Lion
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Amir Alamooti
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Sébastien Bristeau
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Mohamed Djemil
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| |
Collapse
|
5
|
Osonga FJ, Eshun GB, Xue H, Kurilla S, Al Hassan MT, Qamar A, Chen H, Boufadel M, Sadik OA. IMPACT: Innovative (nano)Materials and processes for advanced catalytic technologies to degrade PFOA in water. CHEMOSPHERE 2024; 364:143057. [PMID: 39146983 DOI: 10.1016/j.chemosphere.2024.143057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
We hereby report the development of a novel electrochemical method to degrade perfluorooctanoic acid (C7F15COOH, PFOA). At the center of the approach are bimetallic Pd-Ru nano-catalyst materials called IMPACT: Innovative (nano)Materials and Processes for Advanced Catalytic Technologies. IMPACT uses flavonoid-sequestered Pd-Ru, allowing the development of specialized electrodes with tunable properties to sequentially degrade PFOA in wastewater samples into a sustainable byproduct via an indirect electrochemical method. Electron transfers at RuOxHy species stabilize the Pd component of the nano-catalysts, enabling the degradation process via PFOA deprotonation, chain shortening, decarboxylation, hydrolysis, fluoride elimination, and CF2 flake-off mechanism. IMPACT enabled the observation of redox peaks at -0.26 V and 0.56 V for the first time, with accompanying reduction peaks at -0.5V and 0.29 V, respectively. These redox peaks, which correlated with the concentrations of PFOA (20, 50, 100, 200, and 400. mg L-1), were verified and confirmed using electrochemical simulations. Control experiments did not show degradation of PFOA in the absence of Pd-Ru nano-catalyst. The degradation in wastewater was obtained within 3 h with an efficiency of 98.5%. The electrochemical degradation products of PFOA were identified using High-resolution desalting paper spray mass spectrometry (DPS-MS) and collision-induced dissociation (CID) analysis. The results yielded C2F5COOH, C3F7COOH, and C6F13OH with dissociation losses of CF2O or CO2. IMPACT introduces a novel nano-catalyst with high efficiency and a reliable capability that defluorinates strong C-F bonds that are components of recalcitrant organics in myriad environmental matrices.
Collapse
Affiliation(s)
- Francis J Osonga
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Gaddi B Eshun
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Huize Xue
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Stephen Kurilla
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Md Tanim Al Hassan
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Areej Qamar
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Hao Chen
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Michel Boufadel
- Department of Civil & Environmental Engineering, 323 Martin Luther King Blvd, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA.
| |
Collapse
|
6
|
Chu B, Tan Y, Lou Y, Lin J, Liu Y, Feng J, Chen H. Preparation of Cobalt-Nitrogen Co-Doped Carbon Nanotubes for Activated Peroxymonosulfate Degradation of Carbamazepine. Molecules 2024; 29:1525. [PMID: 38611805 PMCID: PMC11013098 DOI: 10.3390/molecules29071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Cobalt-nitrogen co-doped carbon nanotubes (Co3@NCNT-800) were synthesized via a facile and economical approach to investigate the efficient degradation of organic pollutants in aqueous environments. This material demonstrated high catalytic efficiency in the degradation of carbamazepine (CBZ) in the presence of peroxymonosulfate (PMS). The experimental data revealed that at a neutral pH of 7 and an initial CBZ concentration of 20 mg/L, the application of Co3@NCNT-800 at 0.2 g/L facilitated a degradation rate of 64.7% within 60 min. Mechanistic investigations indicated that the presence of pyridinic nitrogen and cobalt species enhanced the generation of reactive oxygen species. Radical scavenging assays and electron spin resonance spectroscopy confirmed that radical and nonradical pathways contributed to CBZ degradation, with the nonradical mechanism being predominant. This research presents the development of a novel PMS catalyst, synthesized through an efficient and stable method, which provides a cost-effective solution for the remediation of organic contaminants in water.
Collapse
Affiliation(s)
- Bei Chu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi 315300, China; (Y.T.); (Y.L.); (J.L.); (Y.L.); (J.F.); (H.C.)
| | | | | | | | | | | | | |
Collapse
|