1
|
Chen B, Gao J, Sun H, Chen Z, Qiu X. Wearable SERS devices in health management: Challenges and prospects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125957. [PMID: 40024086 DOI: 10.1016/j.saa.2025.125957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Surface-Enhanced Raman Scattering (SERS) is an advanced analytical technique renowned for its heightened sensitivity in detecting molecular vibrations. Its integration into wearable technologies facilitates the monitoring of biofluids, such as sweat and tears, enabling continuous, non-invasive, real-time analysis of human chemical and biomolecular processes. This capability underscores its significant potential for early disease detection and the advancement of personalized medicine. SERS has attracted considerable research attention in the fields of wearable flexible sensing and point-of-care testing (POCT) within medical diagnostics. Nonetheless, the integration of SERS with wearable technology presents several challenges, including device miniaturization, reliable biofluid sampling, user comfort, biocompatibility, and data interpretation. The ongoing advancements in nanotechnology and artificial intelligence are instrumental in addressing these challenges. This review provides a comprehensive analysis of design strategies for wearable SERS sensors and explores their applications within this domain. Finally, it addresses the current challenges in this area and the future prospects of combining SERS wearable sensors with other portable health monitoring systems for POCT medical diagnostics. Wearable SERS is a promising innovation in future healthcare, potentially enhancing individual health outcomes and reducing healthcare costs by fostering preventive health management approaches.
Collapse
Affiliation(s)
- Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jiayin Gao
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Haizhu Sun
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Zhi Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Xiaohong Qiu
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| |
Collapse
|
2
|
Zeng P, Zhou Y, Zhang C, Yao J, Pan M, Fu Y, Chen H, Chen G, Zhao Q, Guan X, Zheng M. Nanostructures/TiN layer/Al 2O 3 layer/TiN substrate configuration-based high-performance refractory metasurface solar absorber. Sci Rep 2024; 14:25827. [PMID: 39468174 PMCID: PMC11519511 DOI: 10.1038/s41598-024-76118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Metasurface solar absorber serves as a kind of important component for green energy devices to convert solar electromagnetic waves into thermal energy. In this work, we design a new solar light absorber configuration that incorporates the titanium nitride substrate, aluminum oxide layer, titanium nitride layer, and the topmost refractory nanostructures. The metasurface absorber based on this configuration can achieve an average spectral absorption of over 91% and a total solar radiation absorption of 91.5% at ultra-wide wavelengths of 300-2500 nm. It is discovered that the excellent performance of the proposed metasurface absorber is attributed to the synergistic effects of surface plasmonic effect and Fabry-Pérot (FP) cavity resonance by comprehensive analysis of the simulated field distributions. Furthermore, the effect of geometrical parameter of the proposed configuration on absorber performance is studied, indicating the proposed configuration possesses a large fabrication tolerance. Moreover, the proposed configuration is not sensitive to the polarization direction and the angle of incident light. It is also found that the use of other refractory metal materials and other shapes as the topmost absorbent nanostructures also have good results with this configuration. This work can offer a universal platform for constructing and guiding the design of refractory metasurface solar absorbers.
Collapse
Affiliation(s)
- Pei Zeng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Jihua Laboratory, Foshan, 528000, China
| | - Yuting Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Chonghao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Jingtong Yao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | | | - Yifei Fu
- Jihua Laboratory, Foshan, 528000, China
| | - Hao Chen
- Jihua Laboratory, Foshan, 528000, China
| | | | - Qian Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Xun Guan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China.
| | | |
Collapse
|
3
|
Yang X, Zeng P, Zhou Y, Wang Q, Zuo J, Duan H, Hu Y. High-performance, large-area flexible SERS substrates prepared by reactive ion etching for molecular detection. NANOTECHNOLOGY 2024; 35:245301. [PMID: 38478979 DOI: 10.1088/1361-6528/ad3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
In the realm of molecular detection, the surface-enhanced Raman scattering (SERS) technique has garnered increasing attention due to its rapid detection, high sensitivity, and non-destructive characteristics. However, conventional rigid SERS substrates are either costly to fabricate and challenging to prepare over a large area, or they exhibit poor uniformity and repeatability, making them unsuitable for inspecting curved object surfaces. In this work, we present a flexible SERS substrate with high sensitivity as well as good uniformity and repeatability. First, the flexible polydimethylsiloxane (PDMS) substrate is manually formulated and cured. SiO2/Ag layer on the substrate can be obtained in a single process by using ion beam sputtering. Then, reactive ion etching is used to etch the upper SiO2layer of the film, which directly leads to the desired densely packed nanostructure. Finally, a layer of precious metal is deposited on the densely packed nanostructure by thermal evaporation. In our proposed system, the densely packed nanostructure obtained by etching the SiO2layer directly determines the SERS ability of the substrate. The bottom layer of silver mirror can reflect the penetrative incident light, the spacer layer of SiO2and the top layer of silver thin film can further localize the light in the system, which can realize the excellent absorption of Raman laser light, thus enhancing SERS ability. In the tests, the prepared substrates show excellent SERS performance in detecting crystalline violet with a detection limit of 10-11M. The development of this SERS substrate is anticipated to offer a highly effective and convenient method for molecular substance detection.
Collapse
Affiliation(s)
- Xing Yang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Pei Zeng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuting Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Qingyu Wang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jiankun Zuo
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Innovation Institute of the Greater Bay Area, Hunan University, Guangzhou, 511300, People's Republic of China
| | - Huigao Duan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Innovation Institute of the Greater Bay Area, Hunan University, Guangzhou, 511300, People's Republic of China
- Advanced Manufacturing Laboratory of Micro-Nano Optical Devices, Shenzhen Research Institute, Hunan University, Shenzhen, 518000, People's Republic of China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Advanced Manufacturing Laboratory of Micro-Nano Optical Devices, Shenzhen Research Institute, Hunan University, Shenzhen, 518000, People's Republic of China
| |
Collapse
|