1
|
Elmarsafy SM. A Comprehensive Narrative Review of Nanomaterial Applications in Restorative Dentistry: Reinforcement and Therapeutic Applications (Part II). Cureus 2025; 17:e80127. [PMID: 40190898 PMCID: PMC11972103 DOI: 10.7759/cureus.80127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Nanotechnology has been widely introduced into many areas of dentistry, including restorative dentistry, where it has contributed greatly to the improvement of restorative materials and procedures. This review was conceived with the aim of exploring the various applications of nanotechnology in restorative dentistry. The review consists of two parts. The first part addressed applications for remineralization inhibition and remineralization. This current review is the second part aimed at focusing on the reinforcement of restorative materials and other therapeutic applications of nanomaterials. Among the nanoparticles that are used to reinforce restorative materials are carbon, zirconia, hydroxyapatite, titanium dioxide, alumina, and gold nanoparticles. Furthermore, other promising applications of nanotechnology are for hypersensitivity management, protective varnish, whitening effect, drug delivery, and nanorobotics, which includes performing major tooth repairs and conducting dentition renaturalization procedures. These applications highlight the potential of nanoparticles in restorative dentistry; however, there are still certain limitations that need to be handled.
Collapse
Affiliation(s)
- Sahar M Elmarsafy
- Department of Restorative Dentistry, Faculty of Dental Medicine, Umm Al-Qura University, Makkah, SAU
| |
Collapse
|
2
|
Chor A, Dutra HDS, Dias ML, Gonçalves RP, Takiya CM, Rossi AM, Farina M. Leukopenia, weight loss and oral mucositis induced by 5-Fluorouracil in hamsters' model: A regenerative approach using electrospun poly(Lactic-co-Glycolic Acid) membrane. Oncotarget 2025; 16:103-117. [PMID: 39969203 PMCID: PMC11837862 DOI: 10.18632/oncotarget.28685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/09/2024] [Indexed: 02/20/2025] Open
Abstract
Clinical parameters of leukogram and weight were analyzed in animal models before and after seven days of 5-FU infusions. A comparison of leukograms before and after 5-FU administrations was analyzed. The results showed a significant difference (p = 0,004), confirming immunosuppression. There was a decrease in the weight of the animals after 7 days of 5-FU infusions (p = 0.02). After immunosuppression occurred, oral mucositis (OM) ulcerative lesions were observed. Two of the animals were selected to receive PLGA dressings. Then, electrospun PLGA membranes, with or without autologous cells, were applied to the ulcerative lesions, aiming to accelerate the regeneration process. Although this therapeutic innovation for OM lesions was still not tested in the bioengineering area, morphological analysis presented promising results. Lesions covered by cell-free PLGA, exhibited areas of inflammation persistence and angiogenesis. The cell-seeded cell-seeded PLGA membrane exhibited complete reepithelialization after 6 days, with minor inflammatory infiltrate. Interestingly, the present work showed preclinical parameters of cachexia induced by chemotherapy for cancer treatment. Moreover, it showed an innovative approach by applying dressings consisting of electrospun PLGA with the addition of autologous mesenchymal cells for OM ulcerative lesions. This promising innovation will pave the way for future applications in oral mucosa lesions.
Collapse
Affiliation(s)
- Ana Chor
- Biomineralization Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro 22290-180, Brazil
- These authors contributed equally to this work
| | - Hélio dos Santos Dutra
- University Hospital, Bone Marrow Transplantation Unit, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Marcos Lopes Dias
- Catalysis Laboratory for Polymerization, Recycling and Biodegradable Polymers, Institute of Macromolecules Professor Eloisa Mano, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Raquel Pires Gonçalves
- Catalysis Laboratory for Polymerization, Recycling and Biodegradable Polymers, Institute of Macromolecules Professor Eloisa Mano, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Christina Maeda Takiya
- Immunopathology Laboratory, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 20941-902, Brazil
- These authors contributed equally to this work
| | - Alexandre Malta Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro 22290-180, Brazil
| | - Marcos Farina
- Biomineralization Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
3
|
Luo Z, Yu M, Shen T. Research progress of dental pulp regeneration treatment. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:989-997. [PMID: 39311795 PMCID: PMC11420962 DOI: 10.11817/j.issn.1672-7347.2024.240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 09/26/2024]
Abstract
The dental pulp is the only soft tissue structure within the tooth, serving functions such as sensation and nutrition. However, the dental pulp is highly susceptible to necrosis due to external factors. Currently, root canal therapy is the most commonly used treatment for pulp necrosis. Nevertheless, teeth treated with root canal therapy are prone to secondary infections and adverse outcomes like vertical root fractures. Regenerative endodontic therapy has emerged as a solution, aiming to replace damaged tooth structures, including dentin, root structure, and the pulp-dentin complex cells. This approach demonstrates significant advantages in addressing clinical symptoms and achieving regeneration of the root and even the pulp. Since the discovery of dental pulp stem cells, regenerative endodontic therapy has gained new momentum. Advances in cell transplantation and cell homing techniques have rapidly developed, showing promising potential for clinical applications.
Collapse
Affiliation(s)
- Zhiwei Luo
- Department of Endodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410008.
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha 410008, China.
| | - Mingkai Yu
- Department of Endodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410008
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha 410008, China
| | - Ting Shen
- Department of Endodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410008.
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha 410008, China.
| |
Collapse
|
4
|
Salehi Abar E, Vandghanooni S, Torab A, Jaymand M, Eskandani M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int J Biol Macromol 2024; 254:127556. [PMID: 37884249 DOI: 10.1016/j.ijbiomac.2023.127556] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The creation of a suitable scaffold is a crucial step in the process of bone tissue engineering (BTE). The scaffold, acting as an artificial extracellular matrix, plays a significant role in determining the fate of cells by affecting their proliferation and differentiation in BTE. Therefore, careful consideration should be given to the fabrication approach and materials used for scaffold preparation. Natural polypeptides such as gelatin and collagen have been widely used for this purpose. The unique properties of nanoparticles, which vary depending on their size, charge, and physicochemical properties, have demonstrated potential in solving various challenges encountered in BTE. Therefore, nanocomposite biomaterials consisting of polymers and nanoparticles have been extensively used for BTE. Gelatin has also been utilized in combination with other nanomaterials to apply for this purpose. Composites of gelatin with various types of nanoparticles are particularly promising for creating scaffolds with superior biological and physicochemical properties. This review explores the use of nanocomposite biomaterials based on gelatin and various types of nanoparticles together for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Elaheh Salehi Abar
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Torab
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Cruz-Maya I, Altobelli R, Alvarez-Perez MA, Guarino V. Mineralized Microgels via Electrohydrodynamic Atomization: Optimization and In Vitro Model for Dentin-Pulp Complex. Gels 2023; 9:846. [PMID: 37998935 PMCID: PMC10670945 DOI: 10.3390/gels9110846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
There is growing interest in the use of micro-sized hydrogels, including bioactive signals, as efficient platforms for tissue regeneration because they are able to mimic cell niche structure and selected functionalities. Herein, it is proposed to optimize bioactive composite microgels via electrohydrodynamic atomization (EHDA) to regenerate the dentin-pulp complex. The addition of disodium phosphate (Na2HPO4) salts as mineral precursors triggered an in situ reaction with divalent ions in solution, thus promoting the encapsulation of different amounts of apatite-like phases. Morphological analysis via image analysis of optical images confirmed a narrow distribution of perfectly rounded particles, with an average diameter ranging from 223 ± 18 μm to 502 ± 64 μm as a function of mineral content and process parameters used. FTIR, TEM, and EDAX analyses confirmed the formation of calcium phosphates with a characteristic Ca/P ratio close to 1.67 and a needle-like crystal shape. In vitro studies-using dental pulp stem cells (DPSCs) in crown sections of natural teeth slices-showed an increase in cell viability until 14 days, recording a decay of proliferation at 21 days, independent on the mineral amount, suggesting that differentiation is started, as confirmed by the increase of ALP activity at 14 days. In this view, mineralized microgels could be successfully used to support in vitro osteogenesis, working as an interesting model to study dental tissue regeneration.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy
- Tissue Bioengineering Laboratory of DEPeI-FO, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City 04510, Mexico;
| | - Rosaria Altobelli
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory of DEPeI-FO, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City 04510, Mexico;
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
6
|
Paul M, Pramanik SD, Sahoo RN, Dey YN, Nayak AK. Dental delivery systems of antimicrobial drugs using chitosan, alginate, dextran, cellulose and other polysaccharides: A review. Int J Biol Macromol 2023; 247:125808. [PMID: 37460072 DOI: 10.1016/j.ijbiomac.2023.125808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
Dental caries, periodontal disease, and endodontic disease are major public health concerns worldwide due to their impact on individuals' quality of life. The present problem of dental disorders is the removal of the infection caused by numerous microbes, particularly, bacteria (both aerobes and anaerobes). The most effective method for treating and managing dental diseases appears to be the use of antibiotics or other antimicrobials, which are incorporated in some drug delivery systems. However, due to their insufficient bioavailability, poor availability for gastrointestinal absorption, and pharmacokinetics after administration via the oral route, many pharmaceutical medicines or natural bioactive substances have limited efficacy. During past few decades, a range of polysaccharide-based systems have been widely investigated for dental dug delivery. The polysaccharide-based carrier materials made of chitosan, alginate, dextran, cellulose and other polysaccharides have recently been spotlighted on the recent advancements in preventing, treating and managing dental diseases. The objective of the current review article is to present a brief comprehensive overview of the recent advancements in polysaccharide-based dental drug delivery systems for the delivery of different antimicrobial drugs.
Collapse
Affiliation(s)
- Mousumi Paul
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, West Bengal, India
| | - Siddhartha Das Pramanik
- Department of Biosciences and Bioengineering, Indian Institute Technology-Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Yadu Nandan Dey
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, West Bengal, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
7
|
Cui H, You Y, Cheng GW, Lan Z, Zou KL, Mai QY, Han YH, Chen H, Zhao YY, Yu GT. Advanced materials and technologies for oral diseases. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2156257. [PMID: 36632346 PMCID: PMC9828859 DOI: 10.1080/14686996.2022.2156257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Oral disease, as a class of diseases with very high morbidity, brings great physical and mental damage to people worldwide. The increasing burden and strain on individuals and society make oral diseases an urgent global health problem. Since the treatment of almost all oral diseases relies on materials, the rapid development of advanced materials and technologies has also promoted innovations in the treatment methods and strategies of oral diseases. In this review, we systematically summarized the application strategies in advanced materials and technologies for oral diseases according to the etiology of the diseases and the comparison of new and old materials. Finally, the challenges and directions of future development for advanced materials and technologies in the treatment of oral diseases were refined. This review will guide the fundamental research and clinical translation of oral diseases for practitioners of oral medicine.
Collapse
Affiliation(s)
- Hao Cui
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhou Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Long Zou
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qiu-Ying Mai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Hua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guang-Tao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Dexamethasone and zinc loaded polymeric nanoparticles reinforce and remineralize coronal dentin. A morpho-histological and dynamic-biomechanical study. Dent Mater 2023; 39:41-56. [PMID: 36460577 DOI: 10.1016/j.dental.2022.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the effect of novel polymeric nanoparticles (NPs) doped with dexamethasone (Dex) on viscoelasticity, crystallinity and ultra-nanostructure of the formed hydroxyapatite after NPs dentin infiltration. METHODS Undoped-NPs, Dex-doped NPs (Dex-NPs) and zinc-doped-Dex-NPs (Zn-Dex-NPs) were tested at dentin, after 24 h and 21 d. A control group without NPs was included. Coronal dentin surfaces were studied by nano-dynamic mechanical analysis measurements, atomic force microscopy, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS At 21 d of storage time, both groups doped with Dex exhibited the highest complex, storage and loss moduli among groups. Zn-Dex-NPs and Dex-NPs promoted the highest and lowest tan delta values, respectively. Dex-NPs contributed to increase the fibril diameters of dentin collagen over time. Dentin surfaces treated with Zn-Dex-NPs attained the lowest nano-roughness values, provoked the highest crystallinity, and produced the longest and shortest crystallite and grain size. These new crystals organized with randomly oriented lattices. Dex-NPs induced the highest microstrain. Crystalline and amorphous matter was present in the mineral precipitates of all groups, but Zn and Dex loaded NPs helped to increase crystallinity. SIGNIFICANCE Dentin treated with Zn-Dex-NPs improved crystallographic and atomic order, providing structural stability, high mechanical performance and tissue maturation. Amorphous content was also present, so high hydroxyapatite solubility, bioactivity and remineralizing activity due to the high ion-rich environment took place in the infiltrated dentin.
Collapse
|
9
|
Saghiri MA, Saghiri AM, Samadi E, Nath D, Vakhnovetsky J, Morgano SM. Neural network approach to evaluate the physical properties of dentin. Odontology 2023; 111:68-77. [PMID: 35819652 DOI: 10.1007/s10266-022-00726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/30/2022] [Indexed: 01/06/2023]
Abstract
This study intended to evaluate the effects of inorganic trace elements such as magnesium (Mg), strontium (Sr), and zinc (Zn) on root canal dentin using an Artificial Neural Network (ANN). The authors obtained three hundred extracted human premolars from type II diabetic individuals and divided them into three groups according to the solutions used (Mg, Sr, or Zn). The authors subdivided the specimens for each experimental group into five subgroups according to the duration for which the authors soaked the teeth in the solution: 0 (control group), 1, 2, 5, and 10 min (n = 20). The authors then tested the specimens for root fracture resistance (RFR), surface microhardness (SμH), and tubular density (TD). The authors used the data obtained from half of the specimens in each subgroup (10 specimens) for the training of ANN. The authors then used the trained ANN to evaluate the remaining data. The authors analyzed the data by Kolmogorov-Smirnov, one-way ANOVA, post hoc Tukey, and linear regression analysis (P < 0.05). Treatment with Mg, Sr, and Zn significantly increased the values of RFR and SμH (P < 0.05), and decreased the values of TD in dentin specimens (P < 0.05). The authors did not notice any significant differences between evaluations by manual or ANN methods (P > 0.05). The authors concluded that Mg, Sr, and Zn may improve the RFR and SμH, and decrease the TD of root canal dentin in diabetic individuals. ANN may be used as a reliable method to evaluate the physical properties of dentin.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Biomaterial and Prosthodontics Laboratory, Department of Restorative Dentistry, Rutgers School of Dental Medicine, 185 South Orange Avenue, Newark, NJ, 07103, USA. .,Department of Endodontics, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA.
| | - Ali Mohammad Saghiri
- Sector of Angiogenesis Regenerative Medicine, Dr. Hajar Afsar Lajevardi Research Cluster (DHAL), Hackensack, NJ, USA
| | - Elham Samadi
- Sector of Angiogenesis Regenerative Medicine, Dr. Hajar Afsar Lajevardi Research Cluster (DHAL), Hackensack, NJ, USA
| | - Devyani Nath
- Biomaterial Research Laboratory, Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Julia Vakhnovetsky
- Sector of Angiogenesis Regenerative Medicine, Dr. Hajar Afsar Lajevardi Research Cluster (DHAL), Hackensack, NJ, USA.,Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Steven M Morgano
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
10
|
Dalir Abdolahinia E, Safari Z, Sadat Kachouei SS, Zabeti Jahromi R, Atashkar N, Karbalaeihasanesfahani A, Alipour M, Hashemzadeh N, Sharifi S, Maleki Dizaj S. Cell homing strategy as a promising approach to the vitality of pulp-dentin complexes in endodontic therapy: focus on potential biomaterials. Expert Opin Biol Ther 2022; 22:1405-1416. [PMID: 36345819 DOI: 10.1080/14712598.2022.2142466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Safari
- Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Nastaran Atashkar
- Department of Orthodontics, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahdieh Alipour
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Histological Evaluation of Restylane Lyft Used as a Scaffold for Dental Pulp Regeneration in Non-Infected Immature Teeth in Dogs. MATERIALS 2022; 15:ma15124095. [PMID: 35744154 PMCID: PMC9228365 DOI: 10.3390/ma15124095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Commercially available hyaluronic acid dermal fillers used as a scaffold in regenerative endodontic procedures (REPs) have demonstrated attractive potentials. This study aimed to histologically evaluate the outcome of REPs using Restylane Lyft (HA) as a scaffold. REPs were performed on pulpless, immature roots in dogs (n = 69). The roots were divided into four groups: blood clot (BC), Restylane Lyft (BC + HA), negative control, and positive control. At 13 weeks postoperatively, hard tissue formation, vascularization, the presence of vascularized soft connective tissue and collagen fibers, the degree of inflammation within pulp spaces and/or periapical tissues, and apical closure were evaluated histologically. The vascularization and formation of loosely arranged collagen fibers within the regenerated soft connective tissues were observed significantly more in the BC+HA group (85% and 40%, respectively; p < 0.05) compared to the BC group (54.6% and 9.1%, respectively; p < 0.05). The degree of inflammation was significantly higher in the HA group than in the BC group; moderate to severe inflammatory cell infiltration was seen in 45% and 13.6% of the cases, respectively. The results of the present study suggest that Restylane Lyft combined with a blood clot used as a scaffold may improve the outcomes of REPs in non-infected, pulpless, immature teeth in dogs.
Collapse
|
12
|
Advances in Electrospun Hybrid Nanofibers for Biomedical Applications. NANOMATERIALS 2022; 12:nano12111829. [PMID: 35683685 PMCID: PMC9181850 DOI: 10.3390/nano12111829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Electrospun hybrid nanofibers, based on functional agents immobilized in polymeric matrix, possess a unique combination of collective properties. These are beneficial for a wide range of applications, which include theranostics, filtration, catalysis, and tissue engineering, among others. The combination of functional agents in a nanofiber matrix offer accessibility to multifunctional nanocompartments with significantly improved mechanical, electrical, and chemical properties, along with better biocompatibility and biodegradability. This review summarizes recent work performed for the fabrication, characterization, and optimization of different hybrid nanofibers containing varieties of functional agents, such as laser ablated inorganic nanoparticles (NPs), which include, for instance, gold nanoparticles (Au NPs) and titanium nitride nanoparticles (TiNPs), perovskites, drugs, growth factors, and smart, inorganic polymers. Biocompatible and biodegradable polymers such as chitosan, cellulose, and polycaprolactone are very promising macromolecules as a nanofiber matrix for immobilizing such functional agents. The assimilation of such polymeric matrices with functional agents that possess wide varieties of characteristics require a modified approach towards electrospinning techniques such as coelectrospinning and template spinning. Additional focus within this review is devoted to the state of the art for the implementations of these approaches as viable options for the achievement of multifunctional hybrid nanofibers. Finally, recent advances and challenges, in particular, mass fabrication and prospects of hybrid nanofibers for tissue engineering and biomedical applications have been summarized.
Collapse
|
13
|
Progress in the Development of Graphene-Based Biomaterials for Tissue Engineering and Regeneration. MATERIALS 2022; 15:ma15062164. [PMID: 35329615 PMCID: PMC8955908 DOI: 10.3390/ma15062164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
Over the last few decades, tissue engineering has become an important technology for repairing and rebuilding damaged tissues and organs. The scaffold plays an important role and has become a hot pot in the field of tissue engineering. It has sufficient mechanical and biochemical properties and simulates the structure and function of natural tissue to promote the growth of cells inward. Therefore, graphene-based nanomaterials (GBNs), such as graphene and graphene oxide (GO), have attracted wide attention in the field of biomedical tissue engineering because of their unique structure, large specific surface area, good photo-thermal effect, pH response and broad-spectrum antibacterial properties. In this review, the structure and properties of typical GBNs are summarized, the progress made in the development of GBNs in soft tissue engineering (including skin, muscle, nerve and blood vessel) are highlighted, the challenges and prospects of the application of GBNs in soft tissue engineering have prospected.
Collapse
|
14
|
Şahbazoğlu KB, Demirbilek M, Bayarı SH, Buber E, Toklucu S, Türk M, Karabulut E, Akalın FA. In vitro comparison of nanofibrillar and macroporous-spongious composite tissue scaffolds for periodontal tissue engineering. Connect Tissue Res 2022; 63:183-197. [PMID: 33899631 DOI: 10.1080/03008207.2021.1912029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM OF THE STUDY The ultimate goal of periodontal treatment is to regenerate the lost periodontal tissues. The interest in nanomaterials in dentistry is growing rapidly and has focused on improvements in various biomedical applications, such as periodontal regeneration and periodontal tissue engineering. To enhance periodontal tissue regeneration, hydroxyapatite (HA) was used in conjunction with other scaffold materials, such as Poly lactic-co-glycolic-acid (PLGA) and collagen (C). The main target of this study was to compare the effects of nano and macrostructures of the tissue scaffolds on cell behavior in vitro for periodontal tissue engineering. MATERIALS AND METHODS Nanofibrillar and macroporous-spongious composite tissue scaffolds were produced using PLGA/C/HA. Subgroups with BMP-2 signal molecule and without HA were also created. The scaffolds were characterized by FTIR, SEM/EDX techniques, and mechanical tests. The scaffolds were compared in the periodontal ligament (PDL) and MCT3-E1 cell cultures. The cell behaviors; adhesions by SEM, proliferation by WST-1, differentiation by ALP and mineralization with Alizarin Red Tests were determined. RESULTS Cell adhesion and mineralization were higher in the nanofibrillar scaffolds compared to the macroporous-spongious scaffolds. Macroporous-spongious scaffolds seemed better for the proliferation of PDL cells and differentiation of MC3T3-E1-preosteoblastic cells, while nanofibrillar scaffolds were more convenient for the differentiation of PDL cells and proliferation of MC3T3-E1-preosteoblastic cells. CONCLUSIONS In general, nanofibrillar scaffolds showed more favorable results in cell behaviors, compared to the macroporous-spongious scaffolds, and mostly, BMP-2 and HA promoted the activities of the cells.
Collapse
Affiliation(s)
| | - Murat Demirbilek
- Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey.,Biology Department, Ankara Hacı Bayram Veli University, Ankara, Turkey
| | - Sevgi Haman Bayarı
- Department of Physical Engineering, Hacettepe University, Ankara, Turkey
| | - Esra Buber
- Department of Medical Biochemistry, Hacettepe University, Ankara, Turkey
| | - Selçuk Toklucu
- Department of Bioengineering, Kırıkkale University, Kırıkkale, Turkey
| | - Mustafa Türk
- Department of Bioengineering, Kırıkkale University, Kırıkkale, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
15
|
Potential of Bone-Marrow-Derived Mesenchymal Stem Cells for Maxillofacial and Periodontal Regeneration: A Narrative Review. Int J Dent 2021; 2021:4759492. [PMID: 34795761 PMCID: PMC8594991 DOI: 10.1155/2021/4759492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/19/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (BM-MSCs) are one of the most widely studied postnatal stem cell populations and are considered to utilize more frequently in cell-based therapy and cancer. These types of stem cells can undergo multilineage differentiation including blood cells, cardiac cells, and osteogenic cells differentiation, thus providing an alternative source of mesenchymal stem cells (MSCs) for tissue engineering and personalized medicine. Despite the ability to reprogram human adult somatic cells to induced pluripotent stem cells (iPSCs) in culture which provided a great opportunity and opened the new door for establishing the in vitro disease modeling and generating an unlimited source for cell base therapy, using MSCs for regeneration purposes still have a great chance to cure diseases. In this review, we discuss the important issues in MSCs biology including the origin and functions of MSCs and their application for craniofacial and periodontal tissue regeneration, discuss the potential and clinical applications of this type of stem cells in differentiation to maxillofacial bone and cartilage in vitro, and address important future hopes and challenges in this field.
Collapse
|
16
|
Raman and XANES Spectroscopic Study of the Influence of Coordination Atomic and Molecular Environments in Biomimetic Composite Materials Integrated with Dental Tissue. NANOMATERIALS 2021; 11:nano11113099. [PMID: 34835863 PMCID: PMC8625886 DOI: 10.3390/nano11113099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022]
Abstract
In this work, for the first time, the influence of the coordination environment as well as Ca and P atomic states on biomimetic composites integrated with dental tissue was investigated. Bioinspired dental composites were synthesised based on nanocrystalline calcium carbonate-substituted hydroxyapatite Ca4ICa6IIPO46−xCO3x+yOH2−y (nano-cHAp) obtained from a biogenic source and a set of polar amino acids that modelled the organic matrix. Biomimetic composites, as well as natural dental tissue samples, were investigated using Raman spectromicroscopy and synchrotron X-ray absorption near edge structure (XANES) spectroscopy. Molecular structure and energy structure studies revealed several important features related to the different calcium atomic environments. It was shown that biomimetic composites created in order to reproduce the physicochemical properties of dental tissue provide good imitation of molecular and electron energetic properties, including the carbonate anion CO32− and the atomic Ca/P ratio in nanocrystals. The features of the molecular structure of biomimetic composites are inherited from the nano-cHAp (to a greater extent) and the amino acid cocktail used for their creation, and are caused by the ratio between the mineral and organic components, which is similar to the composition of natural enamel and dentine. In this case, violation of the nano-cHAp stoichiometry, which is the mineral basis of the natural and bioinspired composites, as well as the inclusion of different molecular groups in the nano-cHAp lattice, do not affect the coordination environment of phosphorus atoms. The differences observed in the molecular and electron energetic structures of the natural enamel and dentine and the imitation of their properties by biomimetic materials are caused by rearrangement in the local environment of the calcium atoms in the HAp crystal lattice. The surface of the nano-cHAp crystals in the natural enamel and dentine involved in the formation of bonds with the organic matrix is characterised by the coordination environment of the calcium atom, corresponding to its location in the CaI position—that is, bound through common oxygen atoms with PO4 tetrahedrons. At the same time, on the surface of nano-cHAp crystals in bioinspired dental materials, the calcium atom is characteristically located in the CaII position, bound to the hydroxyl OH group. The features detected in the atomic and molecular coordination environment in nano-cHAp play a fundamental role in recreating a biomimetic dental composite of the natural organomineral interaction in mineralised tissue and will help to find an optimal way to integrate the dental biocomposite with natural tissue.
Collapse
|
17
|
Nanomaterials Application in Endodontics. MATERIALS 2021; 14:ma14185296. [PMID: 34576522 PMCID: PMC8464804 DOI: 10.3390/ma14185296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
In recent years, nanomaterials have become increasingly present in medicine, especially in dentistry. Their characteristics are proving to be very useful in clinical cases. Due to the intense research in the field of biomaterials and nanotechnology, the efficacy and possibilities of dental procedures have immensely expanded over the years. The nano size of materials allows them to exhibit properties not present in their larger-in-scale counterparts. The medical procedures in endodontics are time-consuming and mostly require several visits to be able to achieve the proper result. In this field of dentistry, there are still major issues about the removal of the mostly bacterial infection from the dental root canals. It has been confirmed that nanoparticles are much more efficient than traditional materials and appear to have superior properties when it comes to surface chemistry and bonding. Their unique antibacterial properties are also promising features in every medical procedure, especially in endodontics. High versatility of use of nanomaterials makes them a powerful tool in dental clinics, in a plethora of endodontic procedures, including pulp regeneration, drug delivery, root repair, disinfection, obturation and canal filling. This study focuses on summing up the current knowledge about the utility of nanomaterials in endodontics, their characteristics, advantages, disadvantages, and provides a number of reasons why research in this field should be continued.
Collapse
|
18
|
Melatonin-doped polymeric nanoparticles reinforce and remineralize radicular dentin: Morpho-histological, chemical and biomechanical studies. Dent Mater 2021; 37:1107-1120. [PMID: 33846017 DOI: 10.1016/j.dental.2021.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To investigate the effectiveness of novel polymeric nanoparticles (NPs) doped with melatonin (ML) in reducing dentin permeability and facilitating dentin remineralization after endodontic treatment. METHODS The effect of undoped NPs and ML-doped NPs (ML-NPs) was tested in radicular dentin, at 24 h and 6 m. A control group without NPs was included. ML liberation was measured. Radicular dentin was assessed for fluid filtration. Dentin remineralization was analyzed by scanning electron microscopy, AFM, Young's modulus (Ei), Nano DMA-tan delta, and Raman analysis. RESULTS ML release ranged from 1.85 mg/mL at 24 h to 0.033 mg/mL at 28 d. Both undoped NPs and ML-NPs treated dentin exhibited the lowest microleakage, but samples treated with ML-NPs exhibited hermetically sealed dentinal tubules and extended mineral deposits onto dentin. ML-NPs promoted higher and durable Ei, and functional remineralization at root dentin, generating differences between the values of tan delta among groups and creating zones of stress concentration. Undoped-NPs produced closure of some tubules and porosities at the expense of a relative mineral amorphization. Chemical remineralization based on mineral and organic assessments was higher in samples treated with ML-NPs. When using undoped NPs, precipitation of minerals occurred; however, radicular dentin was not mechanically reinforced but weakened over time. SIGNIFICANCE Application of ML-NPs in endodontically treated teeth, previous to the canal filling step, is encouraged due to occlusion of dentinal tubules and the reinforcement of the radicular dentin structure.
Collapse
|
19
|
Toledano M, Vallecillo-Rivas M, Aguilera FS, Osorio MT, Osorio E, Osorio R. Polymeric zinc-doped nanoparticles for high performance in restorative dentistry. J Dent 2021; 107:103616. [PMID: 33636241 DOI: 10.1016/j.jdent.2021.103616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The aim was to state the different applications and the effectiveness of polymeric zinc-doped nanoparticles to achieve dentin remineralization. DATA, SOURCES AND STUDY SELECTION Literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. A narrative exploratory review was undertaken. CONCLUSIONS Polymeric nanospheres (NPs) were efficiently loaded with zinc. NPs sequestered calcium and phosphate in the presence of silicon, and remained effectively embedded at the hybrid layer. NPs incorporation did not alter bond strength and inhibited MMP-mediated dentin collagen degradation. Zn-loaded NPs remineralized the hybrid layer inducing a generalized low-carbonate substitute apatite precipitation, chemically crystalline with some amorphous components, and an increase in mechanical properties was also promoted. Viscoelastic analysis determined that dentin infiltrated with Zn-NPs released the stress by breaking the resin-dentin interface and creating specific mineral formations in response to the energy dissipation. Bacteria were scarcely encountered at the resin-dentin interface. The combined antibacterial and remineralizing effects, when Zn-NPs were applied, reduced biofilm formation. Zn-NPs application at both cervical and radicular dentin attained the lowest microleakage and also promoted durable sealing ability. The new zinc-based salt minerals generated covered the dentin surface totally occluding cracks, porosities and dentinal tubules. CLINICAL SIGNIFICANCE Zinc-doped NPs are proposed for effective dentin remineralization and tubular occlusion. This offers new strategies for regeneration of eroded cervical dentin, effective treatment of dentin hypersensitivity and in endodontically treated teeth previous to the canal filling. Zn-NPs also do reduce biofilm formation due to antibacterial properties.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain.
| | - Marta Vallecillo-Rivas
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain
| | - María T Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain
| |
Collapse
|
20
|
Sohrabi A, Hosseini M, Abazari MF, Zare Karizi S, Sadeghi Oskouei SA, Hajati-Birgani N, Karimi Hafshejani F, Hashemi SAR, Rahmati M, Askari M. Wnt pathway activator delivery by poly (lactide-co-glycolide)/silk fibroin composite nanofibers promotes dental pulp stem cell osteogenesis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Zakrzewski W, Dobrzynski M, Dobrzynski W, Zawadzka-Knefel A, Janecki M, Kurek K, Lubojanski A, Szymonowicz M, Rybak Z, Wiglusz RJ. Nanomaterials Application in Orthodontics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:337. [PMID: 33525572 PMCID: PMC7912679 DOI: 10.3390/nano11020337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/20/2022]
Abstract
Nanotechnology has gained importance in recent years due to its ability to enhance material properties, including antimicrobial characteristics. Nanotechnology is applicable in various aspects of orthodontics. This scientific work focuses on the concept of nanotechnology and its applications in the field of orthodontics, including, among others, enhancement of antimicrobial characteristics of orthodontic resins, leading to reduction of enamel demineralization or control of friction force during orthodontic movement. The latter one enables effective orthodontic treatment while using less force. Emphasis is put on antimicrobial and mechanical characteristics of nanomaterials during orthodontic treatment. The manuscript sums up the current knowledge about nanomaterials' influence on orthodontic appliances.
Collapse
Affiliation(s)
- Wojciech Zakrzewski
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (A.L.); (M.S.); (Z.R.)
| | - Maciej Dobrzynski
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Wojciech Dobrzynski
- Student Scientific Circle at the Department of Dental Materials, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Akademicki Sq. 17, 41-902 Bytom, Poland;
| | - Anna Zawadzka-Knefel
- Department of Conservative Dentistry and Endodontics Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Mateusz Janecki
- Department of Maxillofacial Surgery, Mikulicz Radecki’s University Hospital, Borowska 213, 50-556 Wroclaw, Poland;
| | | | - Adam Lubojanski
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (A.L.); (M.S.); (Z.R.)
| | - Maria Szymonowicz
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (A.L.); (M.S.); (Z.R.)
| | - Zbigniew Rybak
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (A.L.); (M.S.); (Z.R.)
| | - Rafal J. Wiglusz
- International Institute of Translational Medicine, Jesionowa 11 St., 55–124 Malin, Poland
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
22
|
Angiogenesis in Regenerative Dentistry: Are We Far Enough for Therapy? Int J Mol Sci 2021; 22:ijms22020929. [PMID: 33477745 PMCID: PMC7832295 DOI: 10.3390/ijms22020929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is a broad spread term of high interest in regenerative medicine and tissue engineering including the dental field. In the last two decades, researchers worldwide struggled to find the best ways to accelerate healing, stimulate soft, and hard tissue remodeling. Stem cells, growth factors, pathways, signals, receptors, genetics are just a few words that describe this area in medicine. Dental implants, bone and soft tissue regeneration using autologous grafts, or xenografts, allografts, their integration and acceptance rely on their material properties. However, the host response, through its vascularization, plays a significant role. The present paper aims to analyze and organize the latest information about the available dental stem cells, the types of growth factors with pro-angiogenic effect and the possible therapeutic effect of enhanced angiogenesis in regenerative dentistry.
Collapse
|
23
|
Dubey SK, Alexander A, Sivaram M, Agrawal M, Singhvi G, Sharma S, Dayaramani R. Uncovering the Diversification of Tissue Engineering on the Emergent Areas of Stem Cells, Nanotechnology and Biomaterials. Curr Stem Cell Res Ther 2020; 15:187-201. [PMID: 31957615 DOI: 10.2174/1574888x15666200103124821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022]
Abstract
Damaged or disabled tissue is life-threatening due to the lack of proper treatment. Many conventional transplantation methods like autograft, iso-graft and allograft are in existence for ages, but they are not sufficient to treat all types of tissue or organ damages. Stem cells, with their unique capabilities like self-renewal and differentiate into various cell types, can be a potential strategy for tissue regeneration. However, the challenges like reproducibility, uncontrolled propagation and differentiation, isolation of specific kinds of cell and tumorigenic nature made these stem cells away from clinical application. Today, various types of stem cells like embryonic, fetal or gestational tissue, mesenchymal and induced-pluripotent stem cells are under investigation for their clinical application. Tissue engineering helps in configuring the stem cells to develop into a desired viable tissue, to use them clinically as a substitute for the conventional method. The use of stem cell-derived Extracellular Vesicles (EVs) is being studied to replace the stem cells, which decreases the immunological complications associated with the direct administration of stem cells. Tissue engineering also investigates various biomaterials to use clinically, either to replace the bones or as a scaffold to support the growth of stemcells/ tissue. Depending upon the need, there are various biomaterials like bio-ceramics, natural and synthetic biodegradable polymers to support replacement or regeneration of tissue. Like the other fields of science, tissue engineering is also incorporating the nanotechnology to develop nano-scaffolds to provide and support the growth of stem cells with an environment mimicking the Extracellular matrix (ECM) of the desired tissue. Tissue engineering is also used in the modulation of the immune system by using patient-specific Mesenchymal Stem Cells (MSCs) and by modifying the physical features of scaffolds that may provoke the immune system. This review describes the use of various stem cells, biomaterials and the impact of nanotechnology in regenerative medicine.
Collapse
Affiliation(s)
- Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup-781125, Guwahati (Assam), India
| | - Munnangi Sivaram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka- Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Swapnil Sharma
- Department of Pharmacy, Banastahli Vidyapith, Tonk, Rajasthan 304022, India
| | | |
Collapse
|
24
|
Preparation and Optimization of Waterborne Acrylic Core Microcapsules for Waterborne Wood Coatings and Comparison with Epoxy Resin Core. Polymers (Basel) 2020; 12:polym12102366. [PMID: 33076382 PMCID: PMC7602527 DOI: 10.3390/polym12102366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/03/2022] Open
Abstract
Microcapsules were prepared by in situ polymerization with urea formaldehyde resin as the wall material and Dulux waterborne acrylic acid as the core material. The effects of the core–wall ratio, water bath temperature and depositing time on the morphology, particle size, yield and encapsulation ratio of microcapsules were investigated by orthogonal experiment of three factors and two levels. The results showed that the core–wall ratio had the greatest influence on the performance of microcapsules. When the core–wall ratio was 0.58:1, the water bath temperature was 70 °C, and the depositing time was 5 d, the microcapsule performance was the best. With the increase in depositing time, the yield of microcapsule particles increased gradually, and the microcapsules appeared to show an adhesive phenomenon. However, the long-term depositing time did not lead to complete deposition and agglomeration of microcapsules. When 10.0% concentration of the waterborne acrylic microcapsules with 0.58:1 of core–wall ratio was added to the coatings, the mechanical and optical properties of the coatings did not decrease significantly, but the elongation at break increased significantly. Therefore, this study offers a new prospect for using waterborne acrylic microcapsules to improve the toughness of waterborne paint film which can be cured at room temperature on a wood surface.
Collapse
|
25
|
Nagata M, Ono N, Ono W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 2020; 383:603-616. [PMID: 32803323 DOI: 10.1007/s00441-020-03271-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
26
|
Filippi M, Born G, Chaaban M, Scherberich A. Natural Polymeric Scaffolds in Bone Regeneration. Front Bioeng Biotechnol 2020; 8:474. [PMID: 32509754 PMCID: PMC7253672 DOI: 10.3389/fbioe.2020.00474] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Despite considerable advances in microsurgical techniques over the past decades, bone tissue remains a challenging arena to obtain a satisfying functional and structural restoration after damage. Through the production of substituting materials mimicking the physical and biological properties of the healthy tissue, tissue engineering strategies address an urgent clinical need for therapeutic alternatives to bone autografts. By virtue of their structural versatility, polymers have a predominant role in generating the biodegradable matrices that hold the cells in situ to sustain the growth of new tissue until integration into the transplantation area (i.e., scaffolds). As compared to synthetic ones, polymers of natural origin generally present superior biocompatibility and bioactivity. Their assembly and further engineering give rise to a wide plethora of advanced supporting materials, accounting for systems based on hydrogels or scaffolds with either fibrous or porous architecture. The present review offers an overview of the various types of natural polymers currently adopted in bone tissue engineering, describing their manufacturing techniques and procedures of functionalization with active biomolecules, and listing the advantages and disadvantages in their respective use in order to critically compare their actual applicability potential. Their combination to other classes of materials (such as micro and nanomaterials) and other innovative strategies to reproduce physiological bone microenvironments in a more faithful way are also illustrated. The regeneration outcomes achieved in vitro and in vivo when the scaffolds are enriched with different cell types, as well as the preliminary clinical applications are presented, before the prospects in this research field are finally discussed. The collection of studies herein considered confirms that advances in natural polymer research will be determinant in designing translatable materials for efficient tissue regeneration with forthcoming impact expected in the treatment of bone defects.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Xing F, Xiang Z, Rommens PM, Ritz U. 3D Bioprinting for Vascularized Tissue-Engineered Bone Fabrication. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2278. [PMID: 32429135 PMCID: PMC7287611 DOI: 10.3390/ma13102278] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023]
Abstract
Vascularization in bone tissues is essential for the distribution of nutrients and oxygen, as well as the removal of waste products. Fabrication of tissue-engineered bone constructs with functional vascular networks has great potential for biomimicking nature bone tissue in vitro and enhancing bone regeneration in vivo. Over the past decades, many approaches have been applied to fabricate biomimetic vascularized tissue-engineered bone constructs. However, traditional tissue-engineered methods based on seeding cells into scaffolds are unable to control the spatial architecture and the encapsulated cell distribution precisely, which posed a significant challenge in constructing complex vascularized bone tissues with precise biomimetic properties. In recent years, as a pioneering technology, three-dimensional (3D) bioprinting technology has been applied to fabricate multiscale, biomimetic, multi-cellular tissues with a highly complex tissue microenvironment through layer-by-layer printing. This review discussed the application of 3D bioprinting technology in the vascularized tissue-engineered bone fabrication, where the current status and unique challenges were critically reviewed. Furthermore, the mechanisms of vascular formation, the process of 3D bioprinting, and the current development of bioink properties were also discussed.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany; (F.X.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Trauma Medical Center of West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Trauma Medical Center of West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany; (F.X.); (P.M.R.)
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany; (F.X.); (P.M.R.)
| |
Collapse
|
28
|
Haugen HJ, Basu P, Sukul M, Mano JF, Reseland JE. Injectable Biomaterials for Dental Tissue Regeneration. Int J Mol Sci 2020; 21:E3442. [PMID: 32414077 PMCID: PMC7279163 DOI: 10.3390/ijms21103442] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Injectable biomaterials scaffolds play a pivotal role for dental tissue regeneration, as such materials are highly applicable in the dental field, particularly when compared to pre-formed scaffolds. The defects in the maxilla-oral area are normally small, confined and sometimes hard to access. This narrative review describes different types of biomaterials for dental tissue regeneration, and also discusses the potential use of nanofibers for dental tissues. Various studies suggest that tissue engineering approaches involving the use of injectable biomaterials have the potential of restoring not only dental tissue function but also their biological purposes.
Collapse
Affiliation(s)
- Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Poulami Basu
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Mousumi Sukul
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - João F Mano
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| |
Collapse
|
29
|
Ondur E, Bolukbasi Balcioglu N, Soluk Tekkesin M, Guzel O, Ersanli S. Effects of Platelet-Rich Fibrin on Hard Tissue Healing: A Histomorphometric Crossover Trial in Sheep. MATERIALS 2020; 13:ma13071695. [PMID: 32260464 PMCID: PMC7178662 DOI: 10.3390/ma13071695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
Bone defects lead to aesthetic and functional losses, causing dental rehabilitation to be more difficult. The objective of this work is to histologically assess the hard tissue healing of bone defects filled with platelet-rich fibrin (PRF) alone or as an adjuvant for mixing with and covering anorganic bovine bone (ABB), compared to ABB covered with a resorbable collagen membrane (CM). This study was designed as a crossover animal study. Four 5-mm tibia defects, 5 mm apart from each other, were surgically created on the tibias of 6 sheep. The defects were randomly filled with ABB + CM; PRF alone; ABB+PRF; or were left empty. The animals were euthanized on days 10, 20, and 40 post-operatively. No group showed any signs of bone necrosis. Inflammation was observed in 2 control and 3 test defects with no statistically significant difference between groups at each time point. The ABB + CM and ABB + PRF groups experienced the highest bone regeneration ratios. No differences between the empty-defect and PRF groups were observed in regard to bone regeneration. No statistical difference was observed between the ABB+PRF and ABB + CM groups in regard to bone regeneration and the amount of residual graft material at each time point. The use of PRF should be preferred due to its autogenous origin, low cost, and ease of use.
Collapse
Affiliation(s)
- Esra Ondur
- Department of Oral Implantology, Faculty of Dentistry, Istanbul University, Istanbul 34093, Turkey; (E.O.); (S.E.)
| | - Nilufer Bolukbasi Balcioglu
- Department of Oral Implantology, Faculty of Dentistry, Istanbul University, Istanbul 34093, Turkey; (E.O.); (S.E.)
- Correspondence: or
| | - Merva Soluk Tekkesin
- Department of Tumor Pathology, Institute of Oncology, Istanbul University, Istanbul 34093, Turkey;
| | - Ozlem Guzel
- Department of Surgery, Veterinary Faculty, Istanbul University Cerrahpasa, Istanbul 34320, Turkey;
| | - Selim Ersanli
- Department of Oral Implantology, Faculty of Dentistry, Istanbul University, Istanbul 34093, Turkey; (E.O.); (S.E.)
| |
Collapse
|
30
|
Belluzo MS, Medina LF, Molinuevo MS, Cortizo MS, Cortizo AM. Nanobiocomposite based on natural polyelectrolytes for bone regeneration. J Biomed Mater Res A 2020; 108:1467-1478. [PMID: 32170892 DOI: 10.1002/jbm.a.36917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 01/10/2023]
Abstract
We developed a composite hydrogel based on chitosan and carboxymethyl cellulose with nanometric hydroxyapatite (nHA) as filler (ranging from 0.5 to 5%), by ultrasonic methodology to be used for bone regeneration. The 3D porous-structure of the biocomposite scaffolds were confirmed by Scanning Electron Microscopy and Microtomography analysis. Infrared analysis did not show specific interactions between the organic components of the composite and nHA in the scaffold. The hydrogel properties of the matrices were studied by swelling and mechanical tests, indicating that the scaffold presented a good mechanical behavior. The degradation test demonstrated that the material is slowly degraded, while the addition of nHA slightly influences the degradation of the scaffolds. Biocompatibility studies carried out with bone marrow mesenchymal progenitor cells (BMPC) showed that cell proliferation and alkaline phosphatase activity were increased depending on the matrix nHA content. On the other hand, no cytotoxic effect was observed when RAW264.7 cells were seeded on the scaffolds. Altogether, our results allow us to conclude that these nanobiocomposites are promising candidates to induce bone tissue regeneration.
Collapse
Affiliation(s)
- M Soledad Belluzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, CC 16 Suc. 4, CONICET, CCT-La Plata, La Plata, Argentina
| | - Lara F Medina
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, CC 16 Suc. 4, CONICET, CCT-La Plata, La Plata, Argentina.,LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - M Silvina Molinuevo
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - M Susana Cortizo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, CC 16 Suc. 4, CONICET, CCT-La Plata, La Plata, Argentina
| | - Ana M Cortizo
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| |
Collapse
|
31
|
A Comparative In Vitro Analysis of the Osteogenic Potential of Human Dental Pulp Stem Cells Using Various Differentiation Conditions. Int J Mol Sci 2020; 21:ijms21072280. [PMID: 32224849 PMCID: PMC7177908 DOI: 10.3390/ijms21072280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Dental pulp stem cells (DPSCs) have excellent proliferative properties, mineralization potential and can be easily obtained from third molar teeth. Recently, many studies have focused on isolation and differentiation of DPSCs. In our study, we focused on biological properties of non-differentiated DPSCs in comparison with osteogenic differentiated cells from DPSCs. We analyzed morphology as well as mineralization potential using three varied osteogenic differentiation media. After fifteen days of differentiation, calcium deposit production was observed in all three osteogenic differentiation media. However, only one osteogenic medium, without animal serum supplement, showed rapid and strong calcification—OsteoMAX-XF™ Differentiation Medium. Therefore, we examined specific surface markers, and gene and protein expression of cells differentiated in this osteogenic medium, and compared them to non-differentiated DPSCs. We proved a decrease in expression of CD9 and CD90 mesenchymal stem cell surface markers, as well as downregulation in the expression of pluripotency genes (NANOG and OCT-4) and increased levels of expression in osteogenic genes (ALP, BSP, OCN and RUNX2). Moreover, osteogenic proteins, such as BSP and OCN, were only produced in differentiated cells. Our findings confirm that carefully selected differentiation conditions for stem cells are essential for their translation into future clinical applications.
Collapse
|
32
|
Ortega-Mejia H, Estrugo-Devesa A, Saka-Herrán C, Ayuso-Montero R, López-López J, Velasco-Ortega E. Platelet-Rich Plasma in Maxillary Sinus Augmentation: Systematic Review. MATERIALS 2020; 13:ma13030622. [PMID: 32019255 PMCID: PMC7040697 DOI: 10.3390/ma13030622] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Background: Sinus augmentation can be performed with or without grafting biomaterials, and to date, there is no quality evidence regarding the augmentation of the sinus floor using only platelet concentrates, which can improve the healing period and enhance bone regeneration by stimulating angiogenesis and bone formation. The main objective of this paper was to assess the effect of the sole use of platelet concentrates in sinus augmentation in terms of newly formed bone, augmented bone height, and clinical outcomes and to assess the additional beneficial effects of platelet-rich fibrin (PRF) in combination with other grafting biomaterials. Methods: A systematic review was conducted following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Pooled analyses were performed with the Review Manager software. Results: For sinus elevation only using platelet concentrates, 11 studies met the inclusion criteria and were included for qualitative synthesis. Only one study was a clinical trial, which reported improved outcomes for the allograft group compared to the titanium-PRF (T-PRF) group. A total of 12 studies where PRF was used in addition to grafting biomaterials met eligibility criteria and were included in the review. Results from meta-analyses provided no additional beneficial effects of PRF in sinus augmentation in terms of bone height and percentage of soft tissue area. There was a statistically significant lower percentage of residual bone substitute material in the PRF (+) group compared to the PRF (−) group. The percentage of newly formed bone was slightly higher in the PRF (+) group, but this was not statistically significant. Conclusion: There is no robust evidence to make firm conclusions regarding the beneficial effects of the sole use of platelet concentrates in sinus augmentation. However, studies have shown favorable outcomes regarding implant survival, bone gain, and bone height. The use of PRF with other grafting biomaterials appears to provide no additional beneficial effects in sinus lift procedures, but they may improve the healing period and bone formation. Well-conducted randomized clinical trials (RCTs) are necessary to confirm the available results to provide recommendations for the clinical practice.
Collapse
Affiliation(s)
- Holmes Ortega-Mejia
- Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (H.O.-M.); (C.S.-H.)
| | - Albert Estrugo-Devesa
- Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (A.E.-D.); (R.A.-M.)
| | - Constanza Saka-Herrán
- Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (H.O.-M.); (C.S.-H.)
| | - Raúl Ayuso-Montero
- Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (A.E.-D.); (R.A.-M.)
| | - José López-López
- Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (A.E.-D.); (R.A.-M.)
- Service of the Medical-Surgical Area of Dentistry Hospital, University of Barcelona, 08970 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-402-42-71; Fax: +34-93-402-42-48
| | - Eugenio Velasco-Ortega
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41013 Seville, Spain
| |
Collapse
|
33
|
Toledano M, Osorio E, Aguilera FS, Muñoz-Soto E, Toledano-Osorio M, López-López MT, Medina-Castillo AL, Carrasco-Carmona Á, Osorio R. Polymeric nanoparticles for endodontic therapy. J Mech Behav Biomed Mater 2019; 103:103606. [PMID: 32090933 DOI: 10.1016/j.jmbbm.2019.103606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
The effectiveness of novel polymeric nanoparticles (NPs) application in reducing dentin permeability and facilitating dentin remineralization after endodontic treatment was evaluated. The effect of undoped NPs, zinc, calcium and doxycycline-doped NPs (Zn-NPs, Ca-NPs and D-NPs, respectively) was tested in radicular dentin. A control group without NPs was included. Radicular dentin was assessed for fluid filtration. Dentin remineralization was analyzed by scanning and transmission electron microscopy, energy-dispersive analysis, AFM, Young's modulus (Ei), Nano DMA, Raman, and X-Ray Diffraction analysis. Ca-NPs and Zn-NPs treated dentin exhibited the lowest microleakage with hermetically sealed dentinal tubules and a zinc-based salt generation onto dentin. Zn-NPs favored crystallinity and promoted the highest Ei and functional remineralization at the apical dentin, generating differences between the values of complex modulus among groups. Ca-NPs produced closure of tubules and porosities at the expense of a relative mineral amorphization, without creating zones of stress concentration. The highest sealing efficacy was obtained in Zn-NPs-treated samples, along with the highest values of Young's modulus and dentin mineralization. These high values of Ei were obtained by closing voids, cracks, pores and tubules, and by strengthening the root dentin. When using undoped NPs or Ca-NPs, deposition of minerals occurred, but radicular dentin was not mechanically reinforced. Therefore, application of Zn-NPs in endodontically treated teeth previous to the canal filling is encouraged.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Esther Muñoz-Soto
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Manuel Toledano-Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain.
| | - Modesto T López-López
- University of Granada, Faculty of Science, Applied Physics Department, Fuente Nueva S/n, Granada, 18071, Spain
| | - Antonio L Medina-Castillo
- NanoMyP, Spin-Off Enterprise from University of Granada, Edificio BIC-Granada, Avda. Innovación 1, Armilla, Granada, 18016, Spain
| | - Álvaro Carrasco-Carmona
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| |
Collapse
|
34
|
Usai P, Campanella V, Sotgiu G, Spano G, Pinna R, Eramo S, Saderi L, Garcia-Godoy F, Derchi G, Mastandrea G, Milia E. Effectiveness of Calcium Phosphate Desensitising Agents in Dental Hypersensitivity Over 24 Weeks of Clinical Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1748. [PMID: 31818019 PMCID: PMC6955887 DOI: 10.3390/nano9121748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Calcium phosphate-based compounds are used to treat dental hypersensitivity (DH). Their long-term clinical behaviour needs further research. This study compared the 24-week effectiveness of Teethmate Desensitizer (TD), a pure tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD) powder/water, to that of Dentin Desensitizer (DD), and Bite & White ExSense (BWE), both of calcium phosphate crystallites. METHODS A total of 105 subjects were selected. A random table was utilised to form three groups of 35 subjects. DH was evaluated using the evaporative sensitivity, tactile sensitivity tests, and the visual analogue scale (VAS) of pain. Response was recorded before the application of the materials (Pre-1), immediately after (Post-0), at 1 week (Post-1), 4 weeks (Post-2), 12 weeks (Post-3) and 24 weeks (Post-4). The non-parametric distribution was assessed with the Shapiro-Wilk statistical test. Intra-group differences for the six time points were evaluated with the Friedman statistical test and the Kruskal-Wallis test. RESULTS All the materials decreased DH after 24 weeks in comparison to Pre-1. However, the TTCP/DCPD cement showed the greatest statistical efficiency. CONCLUSIONS The significant decrease of VAS scores produced by TD in the long term suggest the material as the most reliable in the clinical relief of DH.
Collapse
Affiliation(s)
- Paolo Usai
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (P.U.); (R.P.); (G.M.)
| | - Vincenzo Campanella
- Department of Clinical and Translational Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giovanni Sotgiu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Giovanni Spano
- Dental Unit, Azienda Ospedaliero-Universitaria, 07100 Sassari, Italy;
| | - Roberto Pinna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (P.U.); (R.P.); (G.M.)
| | - Stefano Eramo
- Department of Surgical and Biomedical Sciences, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy;
| | - Laura Saderi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, TN USA and The Forsyth Institute, Memphis, TN 38163, USA;
| | - Giacomo Derchi
- Department of Surgical Pathology, Medicine and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Giorgio Mastandrea
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (P.U.); (R.P.); (G.M.)
| | - Egle Milia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Dental Unit, Azienda Ospedaliero-Universitaria, 07100 Sassari, Italy;
| |
Collapse
|
35
|
Hughes EAB, Robinson TE, Bassett DB, Cox SC, Grover LM. Critical and diverse roles of phosphates in human bone formation. J Mater Chem B 2019; 7:7460-7470. [PMID: 31729501 DOI: 10.1039/c9tb02011j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humans utilise biomineralisation in the formation of bone and teeth. Human biomineralisation processes are defined by the transformation of an amorphous phosphate-based precursor to highly organised nanocrystals. Interestingly, ionic phosphate species not only provide a fundamental building block of biological mineral, but rather exhibit several diverse roles in mediating mineral formation in the physiological milieu. In this review, we focus on elucidating the complex roles of phosphate ions and molecules within human biomineralisation pathways, primarily referring to the nucleation and crystallisation of bone mineral.
Collapse
Affiliation(s)
- Erik A B Hughes
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK. and NIHR Surgical Rec and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK
| | - Thomas E Robinson
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK.
| | - David B Bassett
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK. and Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK.
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
36
|
Wang J, Qu Y, Chen C, Sun J, Pan H, Shao C, Tang R, Gu X. Fabrication of collagen membranes with different intrafibrillar mineralization degree as a potential use for GBR. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109959. [DOI: 10.1016/j.msec.2019.109959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/02/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022]
|
37
|
Use of Platelet-Rich Fibrin Associated with Xenograft in Critical Bone Defects: Histomorphometric Study in Rabbits. Symmetry (Basel) 2019. [DOI: 10.3390/sym11101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Platelet-rich fibrin (PRF) is an autologous material used to improve bone regeneration when associated with bone grafts. It affects tissue angiogenesis, increasing the healing process and, theoretically, presenting potential to increase bone neoformation. The aim of this study was to verify, histomorphometrically, the effects of the association of PRF to a xenograft. Twelve adult white New Zealand rabbits were randomly assigned into two groups containing six animals each. After general anesthesia of the animals, two critical defects of 12 mm were created in the rabbit calvaria, one on each side of the sagittal line. Each defect was filled with the following biomaterials: in the control group (CG), xenograft hydrated with saline solution filling one defect and xenograft hydrated with saline solution covered with collagen membrane on the other side; in the test group (TG), xenograft associated with PRF filling the defect of one side and xenograft associated with PRF covered with collagen membrane on the other side. After eight weeks the animals were euthanized and a histomorphometric analysis was performed. The results showed that in the sites that were covered with collagen membrane, there was no statistically significant difference for all the analyzed parameters. However, when comparing the groups without membrane coverage, a statistically significant difference could be observed for the vital mineralized tissue (VMT) and nonmineralized tissue (NMT) parameters, with more VMT in the test group and more NMT in the control group. Regarding the intragroup comparison, the use of the membrane coverage presented significant outcomes in both groups. Therefore, in this experimental model, PRF did not affect the levels of bone formation when a membrane coverage technique was used. However, higher levels of bone formation were observed in the test group when membrane coverage was not used.
Collapse
|
38
|
Patel DK, Lim KT. Biomimetic Polymer-Based Engineered Scaffolds for Improved Stem Cell Function. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2950. [PMID: 31514460 PMCID: PMC6766224 DOI: 10.3390/ma12182950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
Scaffolds are considered promising materials for tissue engineering applications due to their unique physiochemical properties. The high porosity and adequate mechanical properties of the scaffolds facilitate greater cell adhesion, proliferation, and differentiation. Stem cells are frequently applied in tissue engineering applications due to their excellent potential. It has been noted that cell functions are profoundly affected by the nature of the extracellular matrix (ECM). Naturally derived ECM contains the bioactive motif that also influences the immune response of the organism. The properties of polymer scaffolds mean they can resemble the native ECM and can regulate cellular responses. Various techniques such as electrospinning and 3D printing, among others, are frequently used to fabricate polymer scaffolds, and their cellular responses are different with each technique. Furthermore, enhanced cell viability, as well as the differentiation ability of stem cells on the surface of scaffolds, opens a fascinating approach to the formation of ECM-like environments for tissue engineering applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon-24341, Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-24341, Korea.
| |
Collapse
|
39
|
El Gezawi M, Wölfle UC, Haridy R, Fliefel R, Kaisarly D. Remineralization, Regeneration, and Repair of Natural Tooth Structure: Influences on the Future of Restorative Dentistry Practice. ACS Biomater Sci Eng 2019; 5:4899-4919. [PMID: 33455239 DOI: 10.1021/acsbiomaterials.9b00591] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, the principal strategy for the treatment of carious defects involves cavity preparations followed by the restoration of natural tooth structure with a synthetic material of inferior biomechanical and esthetic qualities and with questionable long-term clinical reliability of the interfacial bonds. Consequently, prevention and minimally invasive dentistry are considered basic approaches for the preservation of sound tooth structure. Moreover, conventional periodontal therapies do not always ensure predictable outcomes or completely restore the integrity of the periodontal ligament complex that has been lost due to periodontitis. Much effort and comprehensive research have been undertaken to mimic the natural development and biomineralization of teeth to regenerate and repair natural hard dental tissues and restore the integrity of the periodontium. Regeneration of the dentin-pulp tissue has faced several challenges, starting with the basic concerns of clinical applicability. Recent technologies and multidisciplinary approaches in tissue engineering and nanotechnology, as well as the use of modern strategies for stem cell recruitment, synthesis of effective biodegradable scaffolds, molecular signaling, gene therapy, and 3D bioprinting, have resulted in impressive outcomes that may revolutionize the practice of restorative dentistry. This Review covers the current approaches and technologies for remineralization, regeneration, and repair of natural tooth structure.
Collapse
Affiliation(s)
- Moataz El Gezawi
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Uta Christine Wölfle
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Department of Conservative Dentistry, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| | - Riham Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital, LMU Munich, 80337 Munich, Germany.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany.,Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| |
Collapse
|
40
|
Takahashi A, Tsujino T, Yamaguchi S, Isobe K, Watanabe T, Kitamura Y, Okuda K, Nakata K, Kawase T. Distribution of platelets, transforming growth factor‐β1, platelet‐derived growth factor‐BB, vascular endothelial growth factor and matrix metalloprotease‐9 in advanced platelet‐rich fibrin and concentrated growth factor matrices. ACTA ACUST UNITED AC 2019; 10:e12458. [DOI: 10.1111/jicd.12458] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/04/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | - Taisuke Watanabe
- Division of Anatomy and Cell Biology of the Hard Tissue, Institute of Medicine and Dentistry Niigata University Niigata Japan
| | - Yutaka Kitamura
- Department of Oral and Maxillofacial Surgery Matsumoto Dental University Shiojiri Japan
| | - Kazuhiro Okuda
- Division of Periodontology, Institute of Medicine and Dentistry Niigata University Niigata Japan
| | - Koh Nakata
- Bioscience Medical Research Center Niigata University Medical and Dental Hospital Niigata Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry Niigata University Niigata Japan
| |
Collapse
|
41
|
Improving 3D photogrammetry models through spectral imaging: Tooth enamel as a case study. PLoS One 2019; 14:e0220949. [PMID: 31408481 PMCID: PMC6692069 DOI: 10.1371/journal.pone.0220949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/28/2019] [Indexed: 01/17/2023] Open
Abstract
Reflective or translucent materials are a challenge to digitize in 3D. Results are better with a matt coating although objects from museum collections are often too fragile or too valuable to be treated in this way. It is therefore essential that alternative solutions are found. This study analyzed spectral photogrammetry as a possible solution. Spectral photogrammetry is an emerging technique which uses images at different wavelengths to create 3D models. Tooth enamel is a challenging material to digitize. Six sets of teeth were photographed at different wavelengths. The results showed that the quality of the models enamels parts improved when taken with ultraviolet wavelengths whilst models were less accurate when photogrammetry was performed with the red and infrared spectrum. This can be explained by the optical properties of enamel. This study demonstrates that knowing the optical properties of a material beforehand could help future photogrammetric digitization of challenging materials.
Collapse
|
42
|
Wang SS, Yu Y, Sun Y, Liu N, Zhou DQ. Comparison of Physicochemical Characteristics and Fibril Formation Ability of Collagens Extracted from the Skin of Farmed River Puffer ( Takifugu obscurus) and Tiger Puffer ( Takifugu rubripes). Mar Drugs 2019; 17:E462. [PMID: 31394862 PMCID: PMC6723254 DOI: 10.3390/md17080462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
Acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the skin of river puffer (ASC-RP and PSC-RP) and tiger puffer (ASC-TP and PSC-TP) were extracted and physicochemically examined. Denaturation temperature (Td) for all the collagens was found to be 25.5-29.5 °C, which was lower than that of calf skin collagen (35.9 °C). Electrophoretic patterns indicated all four samples were type I collagen with molecular form of (α1)2α2. FTIR spectra confirmed the extracted collagens had a triple-helical structure, and that the degree of hydrogen bonding in ASC was higher than PSC. All the extracted collagens could aggregate into fibrils with D-periodicity. The fibril formation rate of ASC-RP and PSC-RP was slightly higher than ASC-TP and PSC-TP. Turbidity analysis revealed an increase in fibril formation rate when adding a low concentration of NaCl (less than 300 mM). The fibril formation ability was suppressed with further increasing of NaCl concentration, as illustrated by a reduction in the turbidity and formation degree. SEM analysis confirmed the well-formed interwoven structure of collagen fibrils after 24 h of incubation. Summarizing the experimental results suggested that the extracted collagens from the skin of river puffer and tiger puffer could be considered a viable substitute to mammalian-derived collagens for further use in biomaterial applications.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ying Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - De-Qing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
43
|
Sahle FF, Kim S, Niloy KK, Tahia F, Fili CV, Cooper E, Hamilton DJ, Lowe TL. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev 2019; 148:290-307. [PMID: 31707052 PMCID: PMC7474549 DOI: 10.1016/j.addr.2019.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
In recent years, regenerative medicine is gaining momentum and is giving hopes for restoring function of diseased, damaged, and aged tissues and organs and nanotechnology is serving as a catalyst. In the ophthalmology field, various types of allogenic and autologous stem cells have been investigated to treat some ocular diseases due to age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and corneal and lens traumas. Nanomaterials have been utilized directly as nanoscaffolds for these stem cells to promote their adhesion, proliferation and differentiation or indirectly as vectors for various genes, tissue growth factors, cytokines and immunosuppressants to facilitate cell reprogramming or ocular tissue regeneration. In this review, we reviewed various nanomaterials used for retina, cornea, and lens regenerations, and discussed the current status and future perspectives of nanotechnology in tracking cells in the eye and personalized regenerative ophthalmology. The purpose of this review is to provide comprehensive and timely insights on the emerging field of nanotechnology for ocular tissue engineering and regeneration.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sangyoon Kim
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Cameron V Fili
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Emily Cooper
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - David J Hamilton
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
44
|
Moon H, Choy S, Park Y, Jung YM, Koo JM, Hwang DS. Different Molecular Interaction between Collagen and α- or β-Chitin in Mechanically Improved Electrospun Composite. Mar Drugs 2019; 17:md17060318. [PMID: 31151236 PMCID: PMC6628339 DOI: 10.3390/md17060318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/19/2023] Open
Abstract
Although collagens from vertebrates are mainly used in regenerative medicine, the most elusive issue in the collagen-based biomedical scaffolds is its insufficient mechanical strength. To solve this problem, electrospun collagen composites with chitins were prepared and molecular interactions which are the cause of the mechanical improvement in the composites were investigated by two-dimensional correlation spectroscopy (2DCOS). The electrospun collagen is composed of two kinds of polymorphs, α- and β-chitin, showing different mechanical enhancement and molecular interactions due to different inherent configurations in the crystal structure, resulting in solvent and polymer susceptibility. The collagen/α-chitin has two distinctive phases in the composite, but β-chitin composite has a relatively homogeneous phase. The β-chitin composite showed better tensile strength with ~41% and ~14% higher strength compared to collagen and α-chitin composites, respectively, due to a favorable secondary interaction, i.e., inter- rather than intra-molecular hydrogen bonds. The revealed molecular interaction indicates that β-chitin prefers to form inter-molecular hydrogen bonds with collagen by rearranging their uncrumpled crystalline regions, unlike α-chitin.
Collapse
Affiliation(s)
- Hyunwoo Moon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Korea.
| | - Seunghwan Choy
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Korea.
| | - Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea.
| | - Jun Mo Koo
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, SE-100 44 Stockholm, Sweden.
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Korea.
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Korea.
| |
Collapse
|
45
|
Li Y, Liao C, Tjong SC. Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E590. [PMID: 30974820 PMCID: PMC6523566 DOI: 10.3390/nano9040590] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
Abstract
This paper provides review updates on the current development of bionanocomposites with polymeric matrices consisting of synthetic biodegradable aliphatic polyesters reinforced with nanohydroxyaptite (nHA) and/or graphene oxide (GO) nanofillers for bone tissue engineering applications. Biodegradable aliphatic polyesters include poly(lactic acid) (PLA), polycaprolactone (PCL) and copolymers of PLA-PGA (PLGA). Those bionanocomposites have been explored for making 3D porous scaffolds for the repair of bone defects since nHA and GO enhance their bioactivity and biocompatibility by promoting biomineralization, bone cell adhesion, proliferation and differentiation, thus facilitating new bone tissue formation upon implantation. The incorporation of nHA or GO into aliphatic polyester scaffolds also improves their mechanical strength greatly, especially hybrid GO/nHA nanofilllers. Those mechanically strong nanocomposite scaffolds can support and promote cell attachment for tissue growth. Porous scaffolds fabricated from conventional porogen leaching, and thermally induced phase separation have many drawbacks inducing the use of organic solvents, poor control of pore shape and pore interconnectivity, while electrospinning mats exhibit small pores that limit cell infiltration and tissue ingrowth. Recent advancement of 3D additive manufacturing allows the production of aliphatic polyester nanocomposite scaffolds with precisely controlled pore geometries and large pores for the cell attachment, growth, and differentiation in vitro, and the new bone formation in vivo.
Collapse
Affiliation(s)
- Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
46
|
Biological Performance of Electrospun Polymer Fibres. MATERIALS 2019; 12:ma12030363. [PMID: 30682805 PMCID: PMC6384992 DOI: 10.3390/ma12030363] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
The evaluation of biological responses to polymeric scaffolds are important, given that the ideal scaffold should be biocompatible, biodegradable, promote cell adhesion and aid cell proliferation. The primary goal of this research was to measure the biological responses of cells against various polymeric and collagen electrospun scaffolds (polycaprolactone (PCL) and polylactic acid (PLA) polymers: PCL⁻drug, PCL⁻collagen⁻drug, PLA⁻drug and PLA⁻collagen⁻drug); cell proliferation was measured with a cell adhesion assay and cell viability using 5-bromo-2'-deoxyuridine (BrdU) and resazurin assays. The results demonstrated that there is a distinct lack of growth of cells against any irgasan (IRG) loaded scaffolds and far greater adhesion of cells against levofloxacin (LEVO) loaded scaffolds. Fourteen-day studies revealed a significant increase in cell growth after a 7-day period. The addition of collagen in the formulations did not promote greater cell adhesion. Cell viability studies revealed the levels of IRG used in scaffolds were toxic to cells, with the concentration used 475 times higher than the EC50 value for IRG. It was concluded that the negatively charged carboxylic acid group found in LEVO is attracting positively charged fibronectin, which in turn is attracting the cell to adhere to the adsorbed proteins on the surface of the scaffold. Overall, the biological studies examined in this paper are valuable as preliminary data for potential further studies into more complex aspects of cell behaviour with polymeric scaffolds.
Collapse
|
47
|
Bhadada SK, Pal R, Sood A, Dhiman V, Saini UC. Co-administration of Systemic and Intralesional Zoledronic Acid in a Case of Fibrous Dysplasia: A Potentially Novel Therapy. Front Endocrinol (Lausanne) 2019; 10:803. [PMID: 31803145 PMCID: PMC6877477 DOI: 10.3389/fendo.2019.00803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022] Open
Abstract
Fibrous dysplasia (FD) is a benign bone lesion characterized by replacement of normal bone with abnormal fibrous tissue, clinically manifesting as deformities, bone pains, and pathological fractures. The standard medical management for FD includes systemic bisphosphonate therapy. The efficacy of systemic bisphosphonate is however limited with minimal functional improvement and pain relief. Keeping the above lacunae in mind, we have made a solitary attempt at treating FD with locally administered zoledronic acid. A 25-year-old gentleman had presented to our institute with swelling and pain involving the left thigh and left lower leg. He was diagnosed as having polyostotic FD, confirmed on bone histopathology. He was administered 4 mg of zoledronic acid intravenously while 1 mg of the drug was injected locally into the femoral lesion under ultrasound and fluoroscopy guidance. There were no peri-procedural complications. At 6 months follow-up, there was marked improvement in pain scores at the left thigh, while that at the left leg remained unchanged. In addition, repeat bone scintigraphy showed a 20.8% and 25.3% reduction in anterior and posterior uptake values, respectively, at the left femur while that at the left tibia remained unaltered.
Collapse
Affiliation(s)
- Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- *Correspondence: Sanjay Kumar Bhadada
| | - Rimesh Pal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vandana Dhiman
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Uttam Chand Saini
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
48
|
The Impact of Hybrid Nano-Materials in Tooth Tissue Restoration. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2018. [DOI: 10.4028/www.scientific.net/jbbbe.39.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tooth loss due to dental diseases, caries, and other related pathological conditions has plagued people and is the most prevalent cause of human organ failure. Billions of people have suffered from losing teeth and dental diseases so that generating natural dental tissues are more appreciated than artificial tooth implantation. The aspiration among the dentists to restore this loss biologically is the genesis of the tooth regeneration. Current trends initiate tissue engineering with a concept of functional restoration of tissue and organ defects by the triad of biomaterial scaffolds, growth factors, and stem cells (Rosa et al. 2012). This paper, therefore, focuses on the significance of nanostructured hybrid materials in the tooth regeneration through tissue engineering. For this purpose, literature was examined and studies on nanomorphological features of stem cells, dental tissues found within the oral area, the signaling molecules utilized in the tissue engineering, and the hybrid scaffolds that guide reconstructions of periodontal tissues were selected for the review. The nanodentistry has been potential, undoubtedly, to achieve almost perfect dental health in the nearest future. However, the success will largely be determined by human requirements and resource supply (technology, economy, and time). Finally, the future and actual potentials of nanotechnologies pertaining tissue engineering will be applied in dentistry (Mitziadis, Woloszyk, & Jimenez-Rojo, 2012).Keywords: Stem cells; scaffolds; nanomaterials; hybrid materials, tissue engineering; dentistry; signaling molecules.
Collapse
|
49
|
Ether-Oxygen Containing Electrospun Microfibrous and Sub-Microfibrous Scaffolds Based on Poly(butylene 1,4-cyclohexanedicarboxylate) for Skeletal Muscle Tissue Engineering. Int J Mol Sci 2018; 19:ijms19103212. [PMID: 30336625 PMCID: PMC6214009 DOI: 10.3390/ijms19103212] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023] Open
Abstract
We report the study of novel biodegradable electrospun scaffolds from poly(butylene 1,4-cyclohexandicarboxylate-co-triethylene cyclohexanedicarboxylate) (P(BCE-co-TECE)) as support for in vitro and in vivo muscle tissue regeneration. We demonstrate that chemical composition, i.e., the amount of TECE co-units (constituted of polyethylene glycol-like moieties), and fibre morphology, i.e., aligned microfibrous or sub-microfibrous scaffolds, are crucial in determining the material biocompatibility. Indeed, the presence of ether linkages influences surface wettability, mechanical properties, hydrolytic degradation rate, and density of cell anchoring points of the studied materials. On the other hand, electrospun scaffolds improve cell adhesion, proliferation, and differentiation by favouring cell alignment along fibre direction (fibre morphology), also allowing for better cell infiltration and oxygen and nutrient diffusion (fibre size). Overall, C2C12 myogenic cells highly differentiated into mature myotubes when cultured on microfibres realised with the copolymer richest in TECE co-units (micro-P73 mat). Lastly, when transplanted in the tibialis anterior muscles of healthy, injured, or dystrophic mice, micro-P73 mat appeared highly vascularised, colonised by murine cells and perfectly integrated with host muscles, thus confirming the suitability of P(BCE-co-TECE) scaffolds as substrates for skeletal muscle tissue engineering.
Collapse
|
50
|
Li F, Jiang X, Shao Z, Zhu D, Luo Z. Microstructure and Mechanical Properties of Nano-Carbon Reinforced Titanium Matrix/Hydroxyapatite Biocomposites Prepared by Spark Plasma Sintering. NANOMATERIALS 2018; 8:nano8090729. [PMID: 30223566 PMCID: PMC6163190 DOI: 10.3390/nano8090729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Nano-carbon reinforced titanium matrix/hydroxyapatite (HA) biocomposites were successfully prepared by spark plasma sintering (SPS). The microstructure, mechanical properties, biocompatibility, and the relationship between microstructure and properties of biocomposites were systematically investigated. Results showed there are some new phases in sintered composites, such as β-Ti, TiO3, ZrO2, etc. Moreover, a small amount of Ti17P10, CaTiO3, Ca3(PO4)2 were also detected. The reaction that may occur during the preparation process is suppressed to some extent, which is because that the addition of second phases can prevent the direct contact of titanium with HA and reduce the contact areas. Transmission electron microscope (TEM) analysis proved the existence of elemental diffusion and chemical reactions in sintered composites. Compared with results of composites prepared by hot-pressed sintering before, mechanical properties (microhardness, compressive strength, and shear strength) of 0.5-GNFs composites prepared by SPS were increased by about 2.8, 4.8, and 4.1 times, respectively. The better mechanical properties of 0.5-GNFs composite in nano-carbon reinforced composites are mainly due to the lower degree of agglomeration of tubular carbon nanotubes (CNTs) compared to lamellar graphene nanoflakes (GNFs). Moreover, the strengthening and toughening mechanisms of nano-carbon reinforced titanium alloy/HA biocomposite prepared by spark plasma sintering (SPS) mainly included second phase strengthening, grain refinement strengthening, solution strengthening, graphene extraction, carbon nanotubes bridging, crack tail stripping, etc. In addition, in vitro bioactivity test revealed that the addition of nano-carbon was beneficial to promote the adhesion and proliferation of cells on the surface of titanium alloy/HA composite, because nano-carbon can enhance the formation of mineralized necks in the composites after transplantation, stimulate biomineralization and promote bone regeneration.
Collapse
Affiliation(s)
- Feng Li
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xiaosong Jiang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zhenyi Shao
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Degui Zhu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zhiping Luo
- Department of Chemistry and Physics, Fayetteville State University, Fayetteville, NC 28301, USA.
| |
Collapse
|