1
|
Li M, Liu X, Sun C, Cao X, Zhang Y, Hou L, Yang H, Xu C. Ultra-Sensitive Simultaneous Detection of Dopamine and Acetaminophen over Hollow Porous AuAg Alloy Nanospheres. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1131. [PMID: 38998736 PMCID: PMC11243617 DOI: 10.3390/nano14131131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Hollow porous AuAg nanospheres (AuAg HPNSs) were obtained through a simple solvothermal synthesis, complemented by a dealloying strategy. The hollow interior, open pore voids, and integral interconnected skeleton shell in AuAg HPNSs are beneficial for providing sufficient electrolyte diffusion and contacts, abundant active sites, and efficient electron transport. This specific structure and the favorable alloy synergism contribute to the superior electrocatalytic activity toward dopamine (DA) and acetaminophen (AC). AuAg HPNSs show high sensitivity, good selectivity, excellent sensing durability, and outstanding repeatability for amperometric assays of AC and DA. In particular, the AuAg-based sensors achieve effective ultrasensitive simultaneous analyses of AC and DA, exhibiting the characteristics of the wide linear range and low detection limit. With their prominent electrocatalytic activity and simple preparation methods, AuAg HPNSs present broad application prospects for constructing a highly responsive electrochemical sensing system.
Collapse
Affiliation(s)
- Menghua Li
- Department of Chemistry, Qilu Normal University, Jinan 250011, China
| | - Xinzheng Liu
- Department of Chemistry, Qilu Normal University, Jinan 250011, China
| | - Changhui Sun
- Department of Chemistry, Qilu Normal University, Jinan 250011, China
| | - Xiaorong Cao
- Department of Chemistry, Qilu Normal University, Jinan 250011, China
| | - Yuanyuan Zhang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Linrui Hou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Hongxiao Yang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Caixia Xu
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
2
|
Zhou F, Lim HN, Ibrahim I, Endot NA, Malek EA, Gowthaman NSK. Simultaneous Electrochemical Detection of Dopamine and Uric Acid via Au@Cu-Metal Organic Framework. Chempluschem 2024; 89:e202300686. [PMID: 38261267 DOI: 10.1002/cplu.202300686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
The incorporation of noble metals with metal-organic frameworks (MOFs) are conducive to the simultaneous electrochemical detection of analytes owing to multiple accessible reaction sites. Herein, Au@Cu-metal organic framework (Au@Cu-MOF) is successfully synthesized and modified as a screen-printed carbon electrode (SPCE), which serves as an excellent electrocatalyst for the oxidation of dopamine (DA) and uric acid (UA). The sensor shows a linear range from 10 μM to 1000 μM, with sensitivity and detection limit of 0.231 μA μM-1 cm-2 and 3.40 μM for DA, and 0.275 μA μM-1 cm-2 and 10.36 μM for UA. Au@Cu-MOF could realize the individual and simultaneous electrochemical sensing of DA and UA, with distinguishable oxidation peak potentials. Moreover, it exhibits reproducibility, repeatability, and stability. Ultimately, the sensor provides an avenue for an ultrasensitive label-free electrochemical detection of DA and UA.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - H N Lim
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Foundry of Reticular Materials for Sustainability (FORMS) Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - I Ibrahim
- Foundry of Reticular Materials for Sustainability (FORMS) Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Functional Nanotechnology Devices Laboratory (FNDL), Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - N A Endot
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - E A Malek
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - N S K Gowthaman
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
3
|
Aschemacher NA, Gegenschatz SA, Teglia CM, Siano ÁS, Gutierrez FA, Goicoechea HC. Highly sensitive and selective electrochemical sensor for simultaneous determination of gallic acid, theophylline and caffeine using poly(l-proline) decorated carbon nanotubes in biological and food samples. Talanta 2024; 267:125246. [PMID: 37774452 DOI: 10.1016/j.talanta.2023.125246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
In this work, a novel, simple and reproducible poly(l-proline)/functionalized multi-walled carbon nanotube composite on glassy carbon electrode (poly(PRO)-MWCNTs/GCE) was developed as an electrochemical sensor for the simultaneous determination of gallic acid (GA), theophylline (TP) and caffeine (CAF) by differential pulse voltammetry (DPV). The sensing platform was optimized by experimental design and response surface methodology, using various factors affecting polymerization and detection, such as electropolymerization time and potential, and pH, respectively. As a result, the dispersion conditions were the mixing of 1.78 mg MWCNTs with 1.00 mL l-proline solution to 4.14 mg mL-1 (in SDBS 0.5%), followed by 21 min of sonication with electropolymerization by 16 cyclic scans. In addition, the final analysis was performed at a pH of 3.00 and prior accumulation at 0.350 V for 40 s. The electrochemical behavior of GA, TP and CAF on the optimized sensor was investigated. As a result, the electrode preserves and synergistically combines the properties of each modifier. This new electrochemical sensor showed superior electrocatalytic properties for the oxidation of GA, TP and CAF, which significantly improved the sensitivity of the three compounds. Under the optimized experimental conditions, the detection limits achieved by S/N were 0.03, 0.04 and 0.11 μmol L-1 for GA, TP and CAF, respectively. The analysis of real samples was successfully performed in human breast milk, tea, infusion of yerba mate, coffee, Coca-Cola zero and energy drink, showing good recoveries, ranged between 87 and 108%. The proposed sensor also showed good selectivity, repeatability and reproducibility, indicating feasibility and reliability. This is the first time that the l-proline monomer is used as a dispersant for MWCNTs and as a precursor for the in-situ polymerization of the proline polymer. Previously, the electropolymerizations were carried out with the monomer in solution rather than as an exfoliant of MWCNTs, where the polymer is electrosynthesized between MWCNTs rather than on them. In this way, the large specific surface area and strong adsorption ability of the nanomaterial are enhanced, and the ability to promote electron transfer reaction is increased, which provides enough effective reaction sites.
Collapse
Affiliation(s)
- Nicolás A Aschemacher
- Laboratorio de Péptidos Bioactivos (LPB), Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Sofía A Gegenschatz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Carla M Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - Álvaro S Siano
- Laboratorio de Péptidos Bioactivos (LPB), Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - Fabiana A Gutierrez
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina.
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| |
Collapse
|
4
|
Xia Y, Li G, Zhu Y, He Q, Hu C. Facile preparation of metal-free graphitic-like carbon nitride/graphene oxide composite for simultaneous determination of uric acid and dopamine. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
6
|
Cheunkar S, Oaew S, Parnsubsakul A, Asanithi P. Reactive argon-plasma activation of screen-printed carbon electrodes for highly selective dopamine determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4193-4201. [PMID: 36239194 DOI: 10.1039/d2ay01154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dopamine (DA) deficiency has been linked to several psychiatric disorders. Electrochemical determination of the level of DA suffers from abundant ascorbic acid (AA) and uric acid (UA) in body fluids. In this work, a facile argon (Ar) plasma treatment was utilized to enhance the electrocatalytic reactivity of screen-printed carbon electrodes (SPCEs) for selective DA detection. Surface characterization of the Ar-treated SCPEs verified that the carbon paste binders were successfully removed and single-bonded oxygenated moieties (-OH and C-O-C) were generated. Interestingly, the sharper D* and D'' Raman interbands were new key evidence of a higher exposure of carbon defect sites. Electrochemical studies further revealed that the Ar-treated SPCEs possessed faster heterogeneous electron-transfer rates, larger electroactive surface areas, and much higher conductivity when compared with untreated electrodes. As a result, the oxidation potentials of AA, DA, and UA in the mixture could be well-resolved and the current responses were significantly increased. The selective determination of DA in the presence of AA and UA by differential pulse voltammetry gave two linear responses with the limit of detection of 0.27 μM (0.15-10 μM range). Moreover, this Ar-treated SPCE had high reproducibility and good storage stability. These results suggest that Ar-plasma treatment could be a promising method to enhance the electrocatalytic properties of SPCEs for the detection of biomolecules.
Collapse
Affiliation(s)
- Sarawut Cheunkar
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| | - Sukunya Oaew
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Attasith Parnsubsakul
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Road, Pathum Wan, Bangkok 10330, Thailand
| | - Piyapong Asanithi
- Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|
7
|
Rajesh M, Yan WM, Yen YK. Solvothermal synthesis of two-dimensional graphitic carbon nitride/tungsten oxide nanocomposite: a robust electrochemical scaffold for selective determination of dopamine and uric acid. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01699-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Garima, Parkash V, Mehta SK, Sharma S. Selective Response Studies of Graphene Materials with Forensic Relevant Drugs Through Fluorescence Spectroscopy. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Imanzadeh H, Bakirhan NK, Kuralay F, Amiri M, Ozkan SA. Achievements of Graphene and Its Derivatives Materials on Electrochemical Drug Assays and Drug-DNA Interactions. Crit Rev Anal Chem 2021; 53:1263-1284. [PMID: 34941476 DOI: 10.1080/10408347.2021.2018568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Graphene, emerging as a true two-dimensional (2D) material, has attracted increasing attention due to its unique physical and electrochemical properties such as high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production. The entire scientific community recognizes the significance and potential impact of graphene. Electrochemical detection strategies have advantages such as being simple, fast, and low-cost. The use of graphene as an excellent interface for electrode modification provides a promising way to construct more sensitive and stable electrochemical (bio)sensors. The review presents sensors based on graphene and its derivatives for electrochemical drug assays from pharmaceutical dosage forms and biological samples. Future perspectives in this rapidly developing field are also discussed. In addition, the interaction of several important anticancer drug molecules with deoxyribonucleic acid (DNA) that was immobilized onto graphene-modified electrodes has been detailed in terms of dosage regulation and utility purposes.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Nurgul K Bakirhan
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
Wang J, Khorasani Motlagh M, Noroozifar M, Kerman K, Kraatz H. Ferrocene‐Functionalized Multiwalled Carbon Nanotubes for the Simultaneous Determination of Dopamine, Uric Acid, and Xanthine. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junyan Wang
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
| | - Mozhgan Khorasani Motlagh
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
| | - Meissam Noroozifar
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
| | - Kagan Kerman
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
- Department of Chemistry University of Toronto 280 St. George St., Toronto M5S 3H6 Ontario Canada
| | - Heinz‐Bernhard Kraatz
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
- Department of Chemistry University of Toronto 280 St. George St., Toronto M5S 3H6 Ontario Canada
| |
Collapse
|
11
|
Baluchová S, Brycht M, Taylor A, Mortet V, Krůšek J, Dittert I, Sedláková S, Klimša L, Kopeček J, Schwarzová-Pecková K. Enhancing electroanalytical performance of porous boron-doped diamond electrodes by increasing thickness for dopamine detection. Anal Chim Acta 2021; 1182:338949. [PMID: 34602205 DOI: 10.1016/j.aca.2021.338949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Novel porous boron-doped diamond (BDDporous)-based materials have attracted lots of research interest due to their enhanced detection ability and biocompatibility, favouring them for use in neuroscience. This study reports on morphological, spectral, and electrochemical characterisation of three BDDporous electrodes of different thickness given by a number of deposited layers (2, 3 and 5). These were prepared using microwave plasma-enhanced chemical vapour deposition on SiO2 nanofiber-based scaffolds. Further, the effect of number of layers and poly-l-lysine coating, commonly employed in neuron cultivation experiments, on sensing properties of the neurotransmitter dopamine in a pH 7.4 phosphate buffer media was investigated. The boron doping level of ∼2 × 1021 atoms cm-3 and increased content of non-diamond (sp2) carbon in electrodes with more layers was evaluated by Raman spectroscopy. Cyclic voltammetric experiments revealed reduced working potential windows (from 2.4 V to 2.2 V), higher double-layer capacitance values (from 405 μF cm-2 to 1060 μF cm-2), enhanced rates of electron transfer kinetics and larger effective surface areas (from 5.04 mm2 to 7.72 mm2), when the number of porous layers increases. For dopamine, a significant boost in analytical performance was recognized with increasing number of layers using square-wave voltammetry: the highest sensitivity of 574.1 μA μmol-1 L was achieved on a BDDporous electrode with five layers and dropped to 35.9 μA μmol-1 L when the number of layers decreased to two. Consequently, the lowest detection limit of 0.20 μmol L-1 was obtained on a BDDporous electrode with five layers. Moreover, on porous electrodes, enhanced selectivity for dopamine detection in the presence of ascorbic acid and uric acid was demonstrated. The application of poly-l-lysine coating on porous electrode surface resulted in a decrease in dopamine peak currents by 17% and 60% for modification times of 1 h and 15 h, respectively. Hence, both examined parameters, the number of deposited porous layers and the presence of poly-l-lysine coating, were proved to considerably affect the characteristics and performance of BDDporous electrodes.
Collapse
Affiliation(s)
- Simona Baluchová
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00, Prague 2, Czech Republic; FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Mariola Brycht
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91-403, Łódź, Poland
| | - Andrew Taylor
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Vincent Mortet
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Sítná Sq. 3105, 272 01, Kladno, Czech Republic
| | - Jan Krůšek
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Ivan Dittert
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Silvia Sedláková
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Ladislav Klimša
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Jaromír Kopeček
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Karolina Schwarzová-Pecková
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
12
|
Islam S, Shaheen Shah S, Naher S, Ali Ehsan M, Aziz MA, Ahammad AJS. Graphene and Carbon Nanotube-based Electrochemical Sensing Platforms for Dopamine. Chem Asian J 2021; 16:3516-3543. [PMID: 34487610 DOI: 10.1002/asia.202100898] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Shamsun Naher
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
13
|
Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021; 6:1878-1909. [PMID: 33364529 PMCID: PMC7744653 DOI: 10.1016/j.bioactmat.2020.12.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed.
Collapse
Affiliation(s)
- Maochao Zheng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Wancong Zhang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Huanchang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Shenlang Wu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Shijie Tang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
14
|
Reanpang P, Mool-Am-Kha P, Upan J, Jakmunee J. A novel flow injection amperometric sensor based on carbon black and graphene oxide modified screen-printed carbon electrode for highly sensitive determination of uric acid. Talanta 2021; 232:122493. [PMID: 34074450 DOI: 10.1016/j.talanta.2021.122493] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/23/2023]
Abstract
A simple, rapid, and cost-effective flow injection amperometric (FI-Amp) sensor for sensitive determination of uric acid (UA) was developed based on a new combination of carbon black (CB) and graphene oxide (GO) modified screen-printed carbon electrode (SPCE). The CB-GO nanocomposites were simply synthesized and modified on the working electrode surface to increase electrode conductivity and enhance the sensitivity of UA determination via the electrocatalytic activity toward UA oxidation. The morphologies and electrochemical properties of the synthesized nanomaterials were investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The modified electrode was incorporated with FI-Amp to improve UA detection's sensitivity, stability, and automation. Some parameters affecting sensitivity were optimized, including pH of the electrolyte solution, applied potential, amount of CB-GO suspension, flow rate, injection volume, and reaction coil length. Using an applied potential of +0.35 V (vs Ag/AgCl), the anodic current was linearly proportional to UA concentration over the range of 0.05-2000 μM with a detection limit of 0.01 μM (3 S/N). Besides, the developed method provides a sample throughput of 25 injections h-1, excellent sensitivity (0.0191 μA/μM), selectivity, repeatability (RSD 3.1%, n = 7), and stability (RSD 1.08%, n = 50). The proposed system can tolerate potential interferences commonly found in human urine. Furthermore, a good correlation coefficient between the results obtained from the FI-Amp sensor and a hospital laboratory implies that the proposed system is accurate and can be utilized for UA detection in urine samples.
Collapse
Affiliation(s)
- Preeyaporn Reanpang
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Lampang, 52190, Thailand
| | - Pijika Mool-Am-Kha
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jantima Upan
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaroon Jakmunee
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
15
|
Liu J, Liu Y, Liang Y, Ma F, Bai Q. Poly- l-lysine-functionalized magnetic graphene for the immobilized metal affinity purification of histidine-rich proteins. NEW J CHEM 2021. [DOI: 10.1039/d1nj00059d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal affinity-poly-l-lysine functionalization on a magnetic graphene substrate for simultaneously improving the adsorption selectivity toward histidine-rich proteins and inhibiting the non-specific adsorption.
Collapse
Affiliation(s)
- Jiawei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Yingying Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Yixun Liang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| |
Collapse
|
16
|
Kamal Eddin FB, Wing Fen Y. Recent Advances in Electrochemical and Optical Sensing of Dopamine. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1039. [PMID: 32075167 PMCID: PMC7071053 DOI: 10.3390/s20041039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Nowadays, several neurological disorders and neurocrine tumours are associated with dopamine (DA) concentrations in various biological fluids. Highly accurate and ultrasensitive detection of DA levels in different biological samples in real-time can change and improve the quality of a patient's life in addition to reducing the treatment cost. Therefore, the design and development of diagnostic tool for in vivo and in vitro monitoring of DA is of considerable clinical and pharmacological importance. In recent decades, a large number of techniques have been established for DA detection, including chromatography coupled to mass spectrometry, spectroscopic approaches, and electrochemical (EC) methods. These methods are effective, but most of them still have some drawbacks such as consuming time, effort, and money. Added to that, sometimes they need complex procedures to obtain good sensitivity and suffer from low selectivity due to interference from other biological species such as uric acid (UA) and ascorbic acid (AA). Advanced materials can offer remarkable opportunities to overcome drawbacks in conventional DA sensors. This review aims to explain challenges related to DA detection using different techniques, and to summarize and highlight recent advancements in materials used and approaches applied for several sensor surface modification for the monitoring of DA. Also, it focuses on the analytical features of the EC and optical-based sensing techniques available.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
17
|
Yao W, Guo H, Liu H, Li Q, Wu N, Li L, Wang M, Fan T, Yang W. Highly electrochemical performance of Ni-ZIF-8/ N S-CNTs/CS composite for simultaneous determination of dopamine, uric acid and L-tryptophan. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104357] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Plenis A, Olędzka I, Kowalski P, Miękus N, Bączek T. Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review. J Clin Med 2019; 8:E640. [PMID: 31075927 PMCID: PMC6572256 DOI: 10.3390/jcm8050640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023] Open
Abstract
Biogenic amines (BAs) are bioactive endogenous compounds which play a significant physiological role in many cell processes like cell proliferation and differentiation, signal transduction and membrane stability. Likewise, they are important in the regulation of body temperature, the increase/decrease of blood pressure or intake of nutrition, as well as in the synthesis of nucleic acids and proteins, hormones and alkaloids. Additionally, it was confirmed that these compounds can be considered as useful biomarkers for the diagnosis, therapy and prognosis of several neuroendocrine and cardiovascular disorders, including neuroendocrine tumours (NET), schizophrenia and Parkinson's Disease. Due to the fact that BAs are chemically unstable, light-sensitive and possess a high tendency for spontaneous oxidation and decomposition at high pH values, their determination is a real challenge. Moreover, their concentrations in biological matrices are extremely low. These issues make the measurement of BA levels in biological matrices problematic and the application of reliable bioanalytical methods for the extraction and determination of these molecules is needed. This article presents an overview of the most recent trends in the quantification of BAs in human samples with a special focus on liquid chromatography (LC), gas chromatography (GC) and capillary electrophoresis (CE) techniques. Thus, new approaches and technical possibilities applied in these methodologies for the assessment of BA profiles in human samples and the priorities for future research are reported and critically discussed. Moreover, the most important applications of LC, GC and CE in pharmacology, psychology, oncology and clinical endocrinology in the area of the analysis of BAs for the diagnosis, follow-up and monitoring of the therapy of various health disorders are presented and critically evaluated.
Collapse
Affiliation(s)
- Alina Plenis
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Ilona Olędzka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Piotr Kowalski
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Natalia Miękus
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
19
|
Cyclic Voltammetric and Quantum Chemical Studies of a Poly(methionine) Modified Carbon Paste Electrode for Simultaneous Detection of Dopamine and Uric Acid. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7020024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fabrication of biocompatible electrodes for the investigation of catecholamines is a known challenge. In this work, methionine was chosen as a modifier for fabrication of a biocompatible carbon paste electrode by electropolymerization, through cyclic voltammetry. The electrochemical behavior of the poly(methionine) modified carbon paste electrode was characterized by cyclic voltammetry for simultaneous determination of dopamine (DA) and uric acid (UA) in a phosphate-buffered solution at pH 7.0. In the absence of an amino acid methionine layer, the bare carbon paste electrode exhibits rather poor voltammetric signals in DA and UA in the binary mixture, with oxidation potentials of DA and UA overlapping with each other. The poly(methionine) modified carbon paste electrode exhibits good catalytic activity with noticeably different oxidation potentials of DA and UA. The experimental results closely agree with the theoretical prediction based on a Fukui function complementary to the simulated electrostatic potential maps.
Collapse
|
20
|
Laurinavičius L, Radzevič A, Ignatjev I, Niaura G, Vitkutė K, Širšinaitis T, Trusovas R, Pauliukaite R. Investigation of electrochemical polymerisation of L-lysine and application for immobilisation of functionalised graphene as platform for electrochemical sensing. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Ionic liquid/poly-l-cysteine composite deposited on flexible and hierarchical porous laser-engraved graphene electrode for high-performance electrochemical analysis of lead ion. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.176] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Kong D, Zhuang Q, Han Y, Xu L, Wang Z, Jiang L, Su J, Lu CH, Chi Y. Simultaneous voltammetry detection of dopamine and uric acid in human serum and urine with a poly(procaterol hydrochloride) modified glassy carbon electrode. Talanta 2018; 185:203-212. [DOI: 10.1016/j.talanta.2018.03.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/03/2023]
|
23
|
Naseri M, Fotouhi L, Ehsani A. Recent Progress in the Development of Conducting Polymer-Based Nanocomposites for Electrochemical Biosensors Applications: A Mini-Review. CHEM REC 2018; 18:599-618. [PMID: 29460399 DOI: 10.1002/tcr.201700101] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/05/2018] [Indexed: 01/09/2023]
Abstract
Among various immobilizing materials, conductive polymer-based nanocomposites have been widely applied to fabricate the biosensors, because of their outstanding properties such as excellent electrocatalytic activity, high conductivity, and strong adsorptive ability compared to conventional conductive polymers. Electrochemical biosensors have played a significant role in delivering the diagnostic information and therapy monitoring in a rapid, simple, and low cost portable device. This paper reviews the recent developments in conductive polymer-based nanocomposites and their applications in electrochemical biosensors. The article starts with a general and concise comparison between the properties of conducting polymers and conducting polymer nanocomposites. Next, the current applications of conductive polymer-based nanocomposites of some important conducting polymers such as PANI, PPy, and PEDOT in enzymatic and nonenzymatic electrochemical biosensors are overviewed. This review article covers an 8-year period beginning in 2010.
Collapse
Affiliation(s)
- Maryam Naseri
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| | - Lida Fotouhi
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
24
|
Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 2018; 107:184-191. [PMID: 29459331 DOI: 10.1016/j.bios.2018.02.031] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 02/12/2018] [Indexed: 01/08/2023]
Abstract
The fabrication of a novel, and highly selective electrochemical sensor based on a poly(3,4-ethylenedioxythiophene) (PEDOT) modified laser scribed graphene (LSG), and detection of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA) is described. LSG electrodes were produced with a 3-dimensional macro-porous network and large electrochemically-active surface area via direct laser writing on polyimide sheets. PEDOT was electrodeposited on the LSG electrode, and the physical properties of the obtained films were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray diffraction microanalysis (EDAX). The modified electrodes were applied for the determination of DA in the presence of AA and UA using cyclic voltammetry (CV), and differential pulse voltammetry (DPV) techniques. The linear range for dopamine detection was found to be 1-150 µM with a sensitivity of 0.220 ± 0.011 µA μM-1 and a detection limit of 0.33 µM; superior values to those obtained without PEDOT. For the first time, PEDOT-modified LSG have been fabricated and assessed for high-performance dopamine sensing using cost-effective, disposable electrodes, with potential for development in further sensing applications.
Collapse
Affiliation(s)
- Guangyuan Xu
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Zahraa A Jarjes
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, New Zealand
| | - Valentin Desprez
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, New Zealand
| | - Paul A Kilmartin
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand.
| |
Collapse
|
25
|
Abstract
Neurotransmitters are chemicals that act as messengers in the synaptic transmission process. They are essential for human health and any imbalance in their activities can cause serious mental disorders such as Parkinson’s disease, schizophrenia, and Alzheimer’s disease. Hence, monitoring the concentrations of various neurotransmitters is of great importance in studying and diagnosing such mental illnesses. Recently, many researchers have explored the use of unique materials for developing biosensors for both in vivo and ex vivo neurotransmitter detection. A combination of nanomaterials, polymers, and biomolecules were incorporated to implement such sensor devices. For in vivo detection, electrochemical sensing has been commonly applied, with fast-scan cyclic voltammetry being the most promising technique to date, due to the advantages such as easy miniaturization, simple device architecture, and high sensitivity. However, the main challenges for in vivo electrochemical neurotransmitter sensors are limited target selectivity, large background signal and noise, and device fouling and degradation over time. Therefore, achieving simultaneous detection of multiple neurotransmitters in real time with long-term stability remains the focus of research. The purpose of this review paper is to summarize the recently developed sensing techniques with the focus on neurotransmitters as the target analyte, and to discuss the outlook of simultaneous detection of multiple neurotransmitter species. This paper is organized as follows: firstly, the common materials used for developing neurotransmitter sensors are discussed. Secondly, several sensor surface modification approaches to enhance sensing performance are reviewed. Finally, we discuss recent developments in the simultaneous detection capability of multiple neurotransmitters.
Collapse
|
26
|
YunYang, Lei W, Xu Y, Zhou T, Xia M, Hao Q. Determination of trace uric acid in serum using porous graphitic carbon nitride (g-C 3N 4) as a fluorescent probe. Mikrochim Acta 2017; 185:39. [PMID: 29594453 DOI: 10.1007/s00604-017-2533-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/09/2017] [Indexed: 11/29/2022]
Abstract
Porous graphitic carbon nitride (g-C3N4) was prepared by a one-step acid etching and ultrasonication process. It is found that the strong blue fluorescence of g-C3N4 (with excitation/emission maxima at 320/400 nm) is fairly selectively quenched by uric acid (UA). The morphology and chemical structure of the nanoporous g-C3N4 were characterized by XRD, TEM and FTIR. Quenching studies and Stern-Volmer plots reveal two UA concentration ranges of different quenching efficiency. The first extends from 50 to 500 nM, the other from 0.5 to 10 μM. The limit of detection is 8.4 nM. The two quenching processes are attributed to both dynamic and static quenching. The porous g-C3N4 probes were applied to the determination of UA in (spiked) human serum and human plasma, and the results were as good as those obtained with UA standard solutions. These data illustrate that g-C3N4 can be used to selectively and sensitively quantify trace levels of UA even in a complex environment. Graphical abstract Porous graphite nitride carbon (g-C3N4) is shown to be a viable fluorescent probe for uric acid (UA) via both dynamic and static quenching. The electron transfer of carbon nitride is represented by the arrows; hν is the incident light; PL is the fluorescence emission.
Collapse
Affiliation(s)
- YunYang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yujuan Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tong Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mingzhu Xia
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qingli Hao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
27
|
Au-Pt bimetallic nanoparticles decorated on sulfonated nitrogen sulfur co-doped graphene for simultaneous determination of dopamine and uric acid. Talanta 2017; 178:315-323. [PMID: 29136829 DOI: 10.1016/j.talanta.2017.09.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 11/24/2022]
Abstract
In this work, a novel nanohybrid (AuPtNPs/S-NS-GR) of well-defined Au-Pt bimetallic nanoparticles (Au-PtNPs) decorated on sulfonated nitrogen sulfur co-doped graphene (S-NS-GR) was developed. Firstly, nitrogen sulfur co-doped graphene (NS-GR) was synthesized by one-step thermal annealing method. Secondly, phenyl SO3H- group was introduced onto the surface of NS-GR via diazotization reaction, which could provide more binding sites for the formation of metal nanoparticles. Finally, Au-Pt bimetallic nanoparticles were anchored on the surface of S-NS-GR by using electrochemical deposition. The prepared material was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy and electrochemical impedance spectra (EIS). In addition, the electrocatalytic activity towards dopamine (DA) and uric acid (UA) was systematically studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Under optimum conditions, the linear ranges for the detection of DA and UA were 1.0×10-8 - 4.0×10-4 M and 1.0×10-6 - 1.0×10-3 M with the limits of detection (LOD, S/N = 3) of 0.006μM and 0.038μM, respectively. Furthermore, the modified electrode was applied to real sample analysis.
Collapse
|