1
|
Rajendran J. Amperometric determination of salivary thiocyanate using electrochemically fabricated poly (3, 4-ethylenedioxythiophene)/MXene hybrid film. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130979. [PMID: 36801710 DOI: 10.1016/j.jhazmat.2023.130979] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Thiocyanate (SCN) is a hazardous byproduct of the detoxification of cyanide. Even in minute quantity, the SCN has a negative impact on health. Although there are several ways for SCN analysis, an efficient electrochemical procedure has hardly ever been attempted. Here, the author reports the development of a highly selective and sensitive electrochemical sensor for SCN utilizing Poly (3, 4-Ethylenedioxythiophene) incorporated MXene (PEDOT/MXene) modified screen-printed electrode (SPE). The Raman, X-ray photoelectron (XPS), and X-ray diffraction (XRD) analyses support the effective integration of PEDOT on the MXene surface. Further, scanning electron microscopy (SEM) is employed to demonstrate the formation of MXene and PEDOT/MXene hybrid film. In order to specifically detect SCN in phosphate buffer media (pH 7.4), the PEDOT/MXene hybrid film is grown on the SPE surface via the electrochemical deposition method. Under the optimized condition, the PEDOT/MXene/SPE-based sensor provides a linear response against SCN from 10 to 100 µM and 0.1 μM to 1000 μM with the lowest limit of detections (LOD) of 1.44 μM and 0.0325 μM by differential pulse voltammetry (DPV) and amperometry, respectively. For accurate detection of SCN, our newly created PEDOT/MXene hybrid film-coated SPE demonstrates excellent sensitivity, selectivity, and repeatability. Ultimately, this novel sensor can be used to detect SCN precisely in environmental and biological samples.
Collapse
Affiliation(s)
- Jerome Rajendran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Tringides CM, Mooney DJ. Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107207. [PMID: 34716730 DOI: 10.1002/adma.202107207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Surface electrode arrays are mainly fabricated from rigid or elastic materials, and precisely manipulated ductile metal films, which offer limited stretchability. However, the living tissues to which they are applied are nonlinear viscoelastic materials, which can undergo significant mechanical deformation in dynamic biological environments. Further, the same arrays and compositions are often repurposed for vastly different tissues rather than optimizing the materials and mechanical properties of the implant for the target application. By first characterizing the desired biological environment, and then designing a technology for a particular organ, surface electrode arrays may be more conformable, and offer better interfaces to tissues while causing less damage. Here, the various materials used in each component of a surface electrode array are first reviewed, and then electrically active implants in three specific biological systems, the nervous system, the muscular system, and skin, are described. Finally, the fabrication of next-generation surface arrays that overcome current limitations is discussed.
Collapse
Affiliation(s)
- Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
3
|
Skunik‐Nuckowska M, Lubera J, Rączka P, Mroziewicz AA, Dyjak S, Kulesza PJ. Conducting Polymer‐Based Hybrid Electrochemical Capacitor Utilizing Potassium Iodide Redox Electrolyte with Controlled Self‐Discharge. ChemElectroChem 2022. [DOI: 10.1002/celc.202101222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Justyna Lubera
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Patryk Rączka
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | | | - Sławomir Dyjak
- Institute of Chemistry Military University of Technology Kaliskiego 2 00-908 Warsaw Poland
| | - Pawel J. Kulesza
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| |
Collapse
|
4
|
Yağci Ö, Arvas MB, Yazar S. Facile and single step produced Ba:Sn-codoped PEDOT:PSS thin film electrode with improved optics and electrochemical properties for transparent and flexible supercapacitor applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj04194d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Figure shows preparation and characterization steps of different ratio (0–3 mg ml−1) Ba:Sn-codoped PEDOT:PSS thin films.
Collapse
Affiliation(s)
- Özlem Yağci
- Department of Physics, Yıldız Technical University, Istanbul, 34200, Turkey
- Science and Technology Application and Research Center, Yildiz Technical University, Istanbul, 34200, Turkey
| | - Melih Beşir Arvas
- Department of Chemistry, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Sibel Yazar
- Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, 34320, Turkey
| |
Collapse
|
5
|
Wang R, Wang H, Zhou Y, Gao Z, Han Y, Jiang K, Zhang W, Wu D. Green Synthesis of N doped Porous carbon/Carbon dots Composite as Metal-Free Catalytic Electrode Materials for Iodide Mediated Quasi-solid Flexible Supercapacitor. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
P-nitroaniline is adopted as versatile precursor for preparation of N-doped porous carbon (PC) and carbon dots (CDs) with enriched N functionalities, and the CDs are further anchored onto PC to...
Collapse
|
6
|
Kim D, Franco-Gonzalez JF, Zozoulenko I. How Long are Polymer Chains in Poly(3,4-ethylenedioxythiophene):Tosylate Films? An Insight from Molecular Dynamics Simulations. J Phys Chem B 2021; 125:10324-10334. [PMID: 34473507 DOI: 10.1021/acs.jpcb.1c04079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most important conductive polymers utilized in a variety of applications in organic electronics and bioelectronics and energy storage. PEDOT chains are believed to be rather short, but detailed knowledge of their length is missing because of the challenges in its experimental determination due to insolubility of PEDOT films. Here, we report a molecular dynamics (MD) study of in situ oxidative chemical polymerization and simultaneous crystallization of molecularly doped PEDOT focusing on the determination of its chain lengths at different polymerization temperatures. We find the average chain length to be 6, 7, and 11 monomers for 298, 323 and 373 K, respectively. At the same time, the length distribution is rather broad, for example, between 2 and 16 monomer units for T = 323 K. We demonstrate that the limiting factor determining the chain length is the diffusivity of the reactants (PEDOT monomers and oligomers). We also study the polymer film formation during solvent evaporation, and we find that although crystallization starts and proceeds already during the polymerization and doping phases, it mostly occurs during the evaporation phase. Finally, we believe that our results providing the oligomer chain length and polymerization and crystallization mechanisms obtained by means of MD "computational microscopy" provide an important insight into the morphology of PEDOT that cannot be obtained by other means.
Collapse
Affiliation(s)
- Donghyun Kim
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | | | - Igor Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
7
|
|
8
|
Kanth S, Narayanan P, Betty C, Rao R, Kumar S. Investigations on performance of
PEDOT
:
PSS
/
V
2
O
5
hybrid symmetric supercapacitor with redox electrolyte. J Appl Polym Sci 2021. [DOI: 10.1002/app.50838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Supriya Kanth
- Chemistry Division Bhabha Atomic Research Centre Mumbai India
- Homi Bhabha National Institute Mumbai India
| | - Padma Narayanan
- Homi Bhabha National Institute Mumbai India
- Technical Physics Division Bhabha Atomic Research Centre Mumbai India
| | - C.A. Betty
- Chemistry Division Bhabha Atomic Research Centre Mumbai India
- Homi Bhabha National Institute Mumbai India
| | - Rekha Rao
- Homi Bhabha National Institute Mumbai India
- Solid State Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Sanjay Kumar
- Materials Science Division Bhabha Atomic Research Centre Mumbai India
| |
Collapse
|
9
|
Electrochemical double-layer capacitors with lithium-ion electrolyte and electrode coatings with PEDOT:PSS binder. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01497-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractAlthough typical electrochemical double-layer capacitors (EDLCs) operate with aqueous or lithium-free organic electrolytes optimized for activated carbon electrodes, there is interest in EDLCs with lithium-ion electrolyte for applications of lithium ion capacitors and hybridized battery-supercapacitor devices. We present an experimental study of symmetric EDLCs with electrolyte 1 M LiPF6 in EC:EMC 50:50 v/v and electrode coatings with 5 wt% SBR or PEDOT:PSS binder at 5 or 10 wt% concentration, where for the PEDOT:PSS containing electrodes pseudocapacitance effects were investigated in the lithium-ion electrolyte. Two different electrode coating fabrication methods were explored, doctor blade coating and spraying. It was found that EDLCs with electrodes with either binder had a stability window of 0–2 V in the lithium-ion electrolyte. EDLCs with electrodes with 10 wt% PEDOT:PSS binder yielded cyclic voltammograms with pseudocapacitance features indicating surface redox pseudocapacitance in the doctor blade coated electrodes, and intercalation and redox phenomena for the sprayed electrodes. The highest energy density in discharge was exhibited by the EDLC with doctor blade-coated electrodes and 10 wt% PEDOT:PSS binder, which combined good capacitive features with surface redox pseudocapacitance. In general, EDLCs with sprayed electrodes reached higher power density than doctor blade coated electrodes.
Graphic abstract
Collapse
|
10
|
Domga, Karnan M, Oladoyinbo F, Noumi GB, Tchatchueng JB, Sieliechi MJ, Sathish M, Pattanayak DK. A simple, economical one-pot microwave assisted synthesis of nitrogen and sulfur co-doped graphene for high energy supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
De Keersmaecker M, Reynolds JR. Simple Interface Modification of Electroactive Polymer Film Electrodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47131-47142. [PMID: 31799819 DOI: 10.1021/acsami.9b16045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the role of interface properties is crucial in the search for alternative design strategies to optimize the efficiency, performance, and lifetime of both solid-state and redox active organic semiconductor devices. Recent advances have focused on controlling and tailoring interfacial effects on the morphology and molecular structure of the active film in multilayer devices triggering new developments in the area of interface engineering. Here, we demonstrate that an inorganic electrode/organic semiconductor interface modification using PEDOT:PSS as an interfacial material influences the charge and ion transport, capacitive, morphological, and color switching properties of a solution processed purple-to-clear switching electrochromic PProDOT-(CH2OEtHx)2 polymer film. We find that the barrier to charge transport from electrode to active material is lowered when adding this PEDOT:PSS film, allowing us to present a fully roll-to-roll compatible, simple, and versatile battery-type electrochromic device (ECD) design without the need for oxidizing the charge storage film, in combination with improved processing reproducibility. In addition to producing ECDs with minimal color differences compared to devices prepared in the more traditional and complicated manner, this new ECD design strategy provides competitive performance showing a consistent optical contrast of 50-55% and switching times of 2-4 s.
Collapse
Affiliation(s)
- Michel De Keersmaecker
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
12
|
Sun C, Li X, Zhao J, Cai Z, Ge F. A freestanding polypyrrole hybrid electrode supported by conducting silk fabric coated with PEDOT:PSS and MWCNTs for high-performance supercapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Kruusma J, Tõnisoo A, Pärna R, Nõmmiste E, Lust E. in Situ X-ray Photoelectron Spectroscopic and Electrochemical Studies of the Bromide Anions Dissolved in 1-Ethyl-3-Methyl Imidazolium Tetrafluoroborate. NANOMATERIALS 2019; 9:nano9020304. [PMID: 30813376 PMCID: PMC6409973 DOI: 10.3390/nano9020304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 11/17/2022]
Abstract
Influence of electrode potential on the electrochemical behavior of a 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) solution containing 5 wt % 1-ethyl-3-methylimidazolium bromide (EMImBr) has been investigated using electrochemical and synchrotron-initiated high-resolution in situ X-ray photoelectron spectroscopy (XPS) methods. Observation of the Br 3d5/2 in situ XPS signal, collected in a 5 wt % EMImBr solution at an EMImBF4–vacuum interface, enabled the detection of the start of the electrooxidation process of the Br− anion to Br3− anion and thereafter to the Br2 at the micro-mesoporous carbon electrode, polarized continuously at the high fixed positive potentials. A new photoelectron peak, corresponding to B–O bond formation in the B 1s in situ XPS spectra at E ≤ −1.17 V, parallel to the start of the electroreduction of the residual water at the micro-mesoporous carbon electrode, was observed and is discussed. The electroreduction of the residual water caused a reduction in the absolute value of binding energy vs. potential plot slope twice to ca. dBE dE−1 = −0.5 eV V−1 at E ≤ −1.17 V for C 1s, N 1s, B 1s, F 1s, and Br 3d5/2 photoelectrons.
Collapse
Affiliation(s)
- Jaanus Kruusma
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia.
| | - Arvo Tõnisoo
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia.
| | - Rainer Pärna
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia.
| | - Ergo Nõmmiste
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia.
| | - Enn Lust
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia.
| |
Collapse
|
14
|
Wlaźlak E, Kalinowska-Tłuścik J, Nitek W, Klejna S, Mech K, Macyk W, Szaciłowski K. Triiodide Organic Salts: Photoelectrochemistry at the Border between Insulators and Semiconductors. ChemElectroChem 2018. [DOI: 10.1002/celc.201800975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ewelina Wlaźlak
- Faculty of Chemistry; Jagiellonian University ul. Gronostajowa 2; 30-387 Kraków Poland
- AGH University of Science and Technology; Academic Centre for Materials and Nanotechnology al. A. Mickiewicza 30; 30-059 Kraków Poland E-mails
| | | | - Wojciech Nitek
- Faculty of Chemistry; Jagiellonian University ul. Gronostajowa 2; 30-387 Kraków Poland
| | - Sylwia Klejna
- AGH University of Science and Technology; Academic Centre for Materials and Nanotechnology al. A. Mickiewicza 30; 30-059 Kraków Poland E-mails
| | - Krzysztof Mech
- AGH University of Science and Technology; Academic Centre for Materials and Nanotechnology al. A. Mickiewicza 30; 30-059 Kraków Poland E-mails
| | - Wojciech Macyk
- Faculty of Chemistry; Jagiellonian University ul. Gronostajowa 2; 30-387 Kraków Poland
| | - Konrad Szaciłowski
- AGH University of Science and Technology; Academic Centre for Materials and Nanotechnology al. A. Mickiewicza 30; 30-059 Kraków Poland E-mails
| |
Collapse
|
15
|
Zu L, Gao X, Lian H, Cai X, Li C, Zhong Y, Hao Y, Zhang Y, Gong Z, Liu Y, Wang X, Cui X. High Electrochemical Performance Phosphorus-Oxide Modified Graphene Electrode for Redox Supercapacitors Prepared by One-Step Electrochemical Exfoliation. NANOMATERIALS 2018; 8:nano8060417. [PMID: 29890742 PMCID: PMC6027329 DOI: 10.3390/nano8060417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
Phosphorus oxide modified graphene was prepared by one-step electrochemical anodic exfoliation method and utilized as electrode in a redox supercapacitor that contained potassium iodide in electrolytes. The whole preparation process was completed in a few minutes and the yield was about 37.2%. The prepared sample has better electrocatalysis activity for I−/I−3 redox reaction than graphite due to the good charge transfer performance between phosphorus oxide and iodide ions. The maximum discharge specific capacitance is 1634.2 F/g when the current density is 3.5 mA/cm2 and it can keep at 463 F/g after 500 charging–discharging cycles when the current density increased about three times.
Collapse
Affiliation(s)
- Lei Zu
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Xing Gao
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Huiqin Lian
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Xiaomin Cai
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ce Li
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ying Zhong
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Yicheng Hao
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Yifan Zhang
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Zheng Gong
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Yang Liu
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Xiaodong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiuguo Cui
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| |
Collapse
|