1
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
2
|
Habra K, Morris RH, McArdle SEB, Cave GWV. Controlled release of carnosine from poly(lactic- co-glycolic acid) beads using nanomechanical magnetic trigger towards the treatment of glioblastoma. NANOSCALE ADVANCES 2022; 4:2242-2249. [PMID: 36133698 PMCID: PMC9418447 DOI: 10.1039/d2na00032f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/25/2022] [Indexed: 06/16/2023]
Abstract
Nanometer scale rods of superparamagnetic iron oxide have been encapsulated, along with the anti-cancer therapeutic carnosine, inside porous poly(lactic-co-glycolic acid) microbeads with a uniform morphology, synthesised using microfluidic arrays. The sustained and externally triggered controlled release from these vehicles was demonstrated using a rotating Halbach magnet array, quantified via liquid chromatography, and imaged in situ using magnetic resonance imaging (MRI) and scanning electron microscopy (SEM). In the absence of the external magnetic trigger, the carnosine was found to be released from the polymer in a linear profile; however, over 50% of the drug could be released within 30 minutes of exposure to the rotating magnetic field. In addition, the release of carnosine embedded on the surface of the nano-rods was delayed if it was mixed with the iron oxide nano rods before the encapsulation. These new drug delivery vesicles have the potential to pave the way towards the safe and triggered release of onsite drug delivery, as part of a theragnostic treatment for glioblastoma.
Collapse
Affiliation(s)
- Kinana Habra
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK +44(0)-115-848-3242
| | - Robert H Morris
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK +44(0)-115-848-3242
| | - Stéphanie E B McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK
| | - Gareth W V Cave
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK +44(0)-115-848-3242
| |
Collapse
|
3
|
Kermanizadeh A, Jacobsen NR, Murphy F, Powell L, Parry L, Zhang H, Møller P. A Review of the Current State of Nanomedicines for Targeting and Treatment of Cancers: Achievements and Future Challenges. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Fiona Murphy
- Heriot Watt University School of Engineering and Physical Sciences Edinburgh EH14 4AS UK
| | - Leagh Powell
- Heriot Watt University School of Engineering and Physical Sciences Edinburgh EH14 4AS UK
| | - Lee Parry
- Cardiff University European Cancer Stem Cell Research Institute, School of Biosciences Cardiff CF24 4HQ UK
| | - Haiyuan Zhang
- Changchun Institute of Applied Chemistry Laboratory of Chemical Biology Changchun 130022 China
| | - Peter Møller
- University of Copenhagen Department of Public Health Copenhagen DK1014 Denmark
| |
Collapse
|
4
|
Brero F, Albino M, Antoccia A, Arosio P, Avolio M, Berardinelli F, Bettega D, Calzolari P, Ciocca M, Corti M, Facoetti A, Gallo S, Groppi F, Guerrini A, Innocenti C, Lenardi C, Locarno S, Manenti S, Marchesini R, Mariani M, Orsini F, Pignoli E, Sangregorio C, Veronese I, Lascialfari A. Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment. NANOMATERIALS 2020; 10:nano10101919. [PMID: 32993001 PMCID: PMC7600442 DOI: 10.3390/nano10101919] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022]
Abstract
A combination of carbon ions/photons irradiation and hyperthermia as a novel therapeutic approach for the in-vitro treatment of pancreatic cancer BxPC3 cells is presented. The radiation doses used are 0–2 Gy for carbon ions and 0–7 Gy for 6 MV photons. Hyperthermia is realized via a standard heating bath, assisted by magnetic fluid hyperthermia (MFH) that utilizes magnetic nanoparticles (MNPs) exposed to an alternating magnetic field of amplitude 19.5 mTesla and frequency 109.8 kHz. Starting from 37 °C, the temperature is gradually increased and the sample is kept at 42 °C for 30 min. For MFH, MNPs with a mean diameter of 19 nm and specific absorption rate of 110 ± 30 W/gFe3o4 coated with a biocompatible ligand to ensure stability in physiological media are used. Irradiation diminishes the clonogenic survival at an extent that depends on the radiation type, and its decrease is amplified both by the MNPs cellular uptake and the hyperthermia protocol. Significant increases in DNA double-strand breaks at 6 h are observed in samples exposed to MNP uptake, treated with 0.75 Gy carbon-ion irradiation and hyperthermia. The proposed experimental protocol, based on the combination of hadron irradiation and hyperthermia, represents a first step towards an innovative clinical option for pancreatic cancer.
Collapse
Affiliation(s)
- Francesca Brero
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
- Correspondence: (F.B.); (A.L.); Tel.: +39-0382-987-483 (F.B. & A.L.)
| | - Martin Albino
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
| | - Antonio Antoccia
- Dipartimento di Scienze and INFN, Università Roma Tre, 00146 Roma, Italy; (A.A.); (F.B.)
| | - Paolo Arosio
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Matteo Avolio
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | - Francesco Berardinelli
- Dipartimento di Scienze and INFN, Università Roma Tre, 00146 Roma, Italy; (A.A.); (F.B.)
| | - Daniela Bettega
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Paola Calzolari
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Mario Ciocca
- Fondazione CNAO, 27100 Pavia, Italy; (M.C.); (A.F.)
| | - Maurizio Corti
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | | | - Salvatore Gallo
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Flavia Groppi
- Dipartimento di Fisica, Università degli Studi di Milano and INFN, Lab. LASA, 20090 Segrate (MI), Italy; (F.G.); (S.M.)
| | - Andrea Guerrini
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
| | - Claudia Innocenti
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Cristina Lenardi
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
- C.I.Ma.I.Na., Centro Interdisciplinare Materiali e Interfacce Nanostrutturati, 20133 Milano, Italy
| | - Silvia Locarno
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Simone Manenti
- Dipartimento di Fisica, Università degli Studi di Milano and INFN, Lab. LASA, 20090 Segrate (MI), Italy; (F.G.); (S.M.)
| | - Renato Marchesini
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Manuel Mariani
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | - Francesco Orsini
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Emanuele Pignoli
- Fondazione IRCSS Istituto Nazionale dei tumori, 20133 Milano, Italy;
| | - Claudio Sangregorio
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
- INFN, Sezione di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Ivan Veronese
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Alessandro Lascialfari
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
- Correspondence: (F.B.); (A.L.); Tel.: +39-0382-987-483 (F.B. & A.L.)
| |
Collapse
|