1
|
Park S, Kim JG, Cho Y, Pak C. Mesoporous Nitrogen-Doped Carbon Support from ZIF-8 for Pt Catalysts in Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:128. [PMID: 39852743 PMCID: PMC11767951 DOI: 10.3390/nano15020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) has been extensively studied as a precursor for nitrogen-doped carbon (NC) materials due to its high surface area, tunable porosity, and adjustable nitrogen content. However, the intrinsic microporous structure of the ZIF-8 limits mass transport and accessibility of reactants to active sites, reducing its effectiveness in electrochemical applications. In this study, a soft templating approach using a triblock copolymer was used to prepare mesoporous ZIF-8-derived NC (Meso-ZIF-NC) samples. The hierarchical porous structure was investigated by varying the ratios of Pluronic F-127, NaClO4, and toluene. The resulting Meso-ZIF-NC exhibited widespread pore size distribution with an enhanced mesopore (2-50 nm) volume according to the composition of the reaction mixtures. Pt nanoparticles were uniformly dispersed on the Meso-ZIF-NC to form Pt/Meso-ZIF-NC catalysts, which presented a high electrochemical surface area and improved oxygen reduction reaction activity. The study highlights the important role of mesopore structure and nitrogen doping in enhancing catalytic performance, providing a pathway for advanced fuel cell catalyst design.
Collapse
Affiliation(s)
| | | | | | - Chanho Pak
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (S.P.); (J.G.K.); (Y.C.)
| |
Collapse
|
2
|
Qian F, Deng J, Xu C, Dong Y, Hu L, Fu G, Xie Y, Chang P, Sun J. Graphene-silicon-graphene Schottky junction photodetector with field effect structure. OPTICS EXPRESS 2022; 30:38503-38512. [PMID: 36258414 DOI: 10.1364/oe.469963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Graphene has unique advantages in ultrabroadband detection. However, nowadays graphene-based photodetectors cannot meet the requirements for practical applications due to their poor performance. Here, we report a graphene-silicon-graphene Schottky junction photodetector assisted by field effect. Two separate graphene sheets are located on both sides of the n-doped silicon to form two opposite lateral series heterojunctions with silicon, and a transparent top gate is designed to modulate the Schottky barrier. Low doping concentration of silicon and negative gate bias can significantly raise the barrier height. Under the combined action of these two measures, the barrier height increases from 0.39 eV to 0.77 eV. Accordingly, the performance of the photodetector has been greatly improved. The photoresponsivity of the optimized device is 2.6 A/W at 792 nm, 1.8 A/W at 1064 nm, and 0.42 A/W at 1550 nm, and the on/off photo-switching ratio reaches 104. Our work provides a feasible solution for the development of graphene-based optoelectronic devices.
Collapse
|
3
|
Chattopadhyay J, Pathak TS, Pak D. Heteroatom-Doped Metal-Free Carbon Nanomaterials as Potential Electrocatalysts. Molecules 2022; 27:670. [PMID: 35163935 PMCID: PMC8838211 DOI: 10.3390/molecules27030670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, heteroatom-incorporated specially structured metal-free carbon nanomaterials have drawn huge attention among researchers. In comparison to the undoped carbon nanomaterials, heteroatoms such as nitrogen-, sulphur-, boron-, phosphorous-, etc., incorporated nanomaterials have become well-accepted as potential electrocatalysts in water splitting, supercapacitors and dye-sensitized solar cells. This review puts special emphasis on the most popular synthetic strategies of heteroatom-doped and co-doped metal-free carbon nanomaterials, viz., chemical vapor deposition, pyrolysis, solvothermal process, etc., utilized in last two decades. These specially structured nanomaterials' extensive applications as potential electrocatalysts are taken into consideration in this article. Their comparative enhancement of electrocatalytic performance with incorporation of heteroatoms has also been discussed.
Collapse
Affiliation(s)
| | - Tara Sankar Pathak
- Department of Science and Humanities, Surendra Institute of Engineering and Management, Siliguri, Darjeeling 734009, India;
| | - Daewon Pak
- Department of Environmental Engineering, Seoul National University of Science and Technology, Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| |
Collapse
|
4
|
Chandrasekaran S, Zhang C, Shu Y, Wang H, Chen S, Nesakumar Jebakumar Immanuel Edison T, Liu Y, Karthik N, Misra R, Deng L, Yin P, Ge Y, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zhang P, Bowen C, Han Z. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Kamedulski P, Lukaszewicz JP, Witczak L, Szroeder P, Ziolkowski P. The Importance of Structural Factors for the Electrochemical Performance of Graphene/Carbon Nanotube/Melamine Powders towards the Catalytic Activity of Oxygen Reduction Reaction. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2448. [PMID: 34065055 PMCID: PMC8125890 DOI: 10.3390/ma14092448] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 01/29/2023]
Abstract
In this paper, we show the carbonization of binary composites consisting of graphene nanoplatelets and melamine (GNP/MM), multi-walled carbon nanotubes and melamine (CNT/MM) and trinary composites containing GNP, CNT, and MM. Additionally, the manuscript presents results on the influence of structural factors for the electrochemical performance of carbon composites on their catalytic activity. This study contributes to the wide search and design of novel hybrid carbon composites for electrochemical applications. We demonstrate that intensive nitrogen atom insertion is not the governing factor since hybrid system modifications and porous structure sometimes play a more crucial role in the tailoring of electrochemical properties of the carbon hybrids seen as a noble metal-free alternative to traditional electrode materials. Additionally, HRTEM and Raman spectra study allowed for the evaluation of the quality of the obtained hybrid materials.
Collapse
Affiliation(s)
- Piotr Kamedulski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
| | - Jerzy P. Lukaszewicz
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Lukasz Witczak
- Institute of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland; (L.W.); (P.S.)
| | - Pawel Szroeder
- Institute of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland; (L.W.); (P.S.)
| | | |
Collapse
|
6
|
Mohd Firdaus R, Berrada N, Desforges A, Mohamed AR, Vigolo B. From 2D Graphene Nanosheets to 3D Graphene-based Macrostructures. Chem Asian J 2020; 15:2902-2924. [PMID: 32779360 DOI: 10.1002/asia.202000747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/09/2020] [Indexed: 12/29/2022]
Abstract
The combination of exceptional functionalities offered by 3D graphene-based macrostructures (GBMs) has attracted tremendous interest. 2D graphene nanosheets have a high chemical stability, high surface area and customizable porosity, which was extensively researched for a variety of applications including CO2 adsorption, water treatment, batteries, sensors, catalysis, etc. Recently, 3D GBMs have been successfully achieved through few approaches, including direct and non-direct self-assembly methods. In this review, the possible routes used to prepare both 2D graphene and interconnected 3D GBMs are described and analyzed regarding the involved chemistry of each 2D/3D graphene system. Improvement of the accessible surface of 3D GBMs where the interface exchanges are occurring is of great importance. A better control of the chemical mechanisms involved in the self-assembly mechanism itself at the nanometer scale is certainly the key for a future research breakthrough regarding 3D GBMs.
Collapse
Affiliation(s)
- Rabita Mohd Firdaus
- School of Chemical Engineering, Engineering Campus Universiti Sains, Malaysia, 14300, Nibong Tebal, Seberang, Perai Selatan, P., Pinang, Malaysia.,Université de Lorraine, CNRS, IJL, F-54000, Nancy, France
| | - Nawal Berrada
- Université de Lorraine, CNRS, IJL, F-54000, Nancy, France
| | | | - Abdul Rahman Mohamed
- School of Chemical Engineering, Engineering Campus Universiti Sains, Malaysia, 14300, Nibong Tebal, Seberang, Perai Selatan, P., Pinang, Malaysia
| | | |
Collapse
|
7
|
Sun Z, Fang S, Hu YH. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chem Rev 2020; 120:10336-10453. [PMID: 32852197 DOI: 10.1021/acs.chemrev.0c00083] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon materials, with their diverse allotropes, have played significant roles in our daily life and the development of material science. Following 0D C60 and 1D carbon nanotube, 2D graphene materials, with their distinctively fascinating properties, have been receiving tremendous attention since 2004. To fulfill the efficient utilization of 2D graphene sheets in applications such as energy storage and conversion, electrochemical catalysis, and environmental remediation, 3D structures constructed by graphene sheets have been attempted over the past decade, giving birth to a new generation of graphene materials called 3D graphene materials. This review starts with the definition, classifications, brief history, and basic synthesis chemistries of 3D graphene materials. Then a critical discussion on the design considerations of 3D graphene materials for diverse applications is provided. Subsequently, after emphasizing the importance of normalized property characterization for the 3D structures, approaches for 3D graphene material synthesis from three major types of carbon sources (GO, hydrocarbons and inorganic carbon compounds) based on GO chemistry, hydrocarbon chemistry, and new alkali-metal chemistry, respectively, are comprehensively reviewed with a focus on their synthesis mechanisms, controllable aspects, and scalability. At last, current challenges and future perspectives for the development of 3D graphene materials are addressed.
Collapse
Affiliation(s)
- Zhuxing Sun
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States
| | - Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States.,School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Tavakkoli M, Flahaut E, Peljo P, Sainio J, Davodi F, Lobiak EV, Mustonen K, Kauppinen EI. Mesoporous Single-Atom-Doped Graphene–Carbon Nanotube Hybrid: Synthesis and Tunable Electrocatalytic Activity for Oxygen Evolution and Reduction Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00352] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohammad Tavakkoli
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP No 5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse cedex 9, France
| | - Pekka Peljo
- Research Group of Physical Electrochemistry and Electrochemical Physics, Department of Chemistry and Material Sciences, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Jani Sainio
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Fatemeh Davodi
- Department of Chemistry and Material Sciences, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Egor V. Lobiak
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 630090 Novosibirsk, Russia
| | - Kimmo Mustonen
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| | - Esko I. Kauppinen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| |
Collapse
|
9
|
Synthesis and Characterization of Nitrogen-doped Carbon Nanotubes Derived from g-C 3N 4. MATERIALS 2020; 13:ma13061349. [PMID: 32192006 PMCID: PMC7142548 DOI: 10.3390/ma13061349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/07/2023]
Abstract
Here, nitrogen-doped carbon nanotubes (CNT-N) were synthesized using exfoliated graphitic carbon nitride functionalized with nickel oxides (ex-g-C3N4-NixOy). CNT-N were produced at 900 °C in two steps: (1) ex-g-C3N4-NixOy reduction with hydrogen and (2) ethylene assisted chemical vapor deposition (CVD). The detailed characterization of the produced materials was performed via atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The possible mechanism of nanotubes formation is also proposed.
Collapse
|
10
|
Controlled synthesis of N-doped carbon microspheres from melamine-based carbon by chemical vapor deposition. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Zhuo Q, Mao Y, Lu S, Cui B, Yu L, Tang J, Sun J, Yan C. Seed-Assisted Synthesis of Graphene Films on Insulating Substrate. MATERIALS 2019; 12:ma12091376. [PMID: 31035332 PMCID: PMC6539927 DOI: 10.3390/ma12091376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Synthesizing graphene at a large-scale and of high quality on insulating substrate is a prerequisite for graphene applications in electronic devices. Typically, graphene is synthesized and then transferred to the proper substrate for subsequent device preparation. However, the complicated and skilled transfer process involves some issues such as wrinkles, residual contamination and breakage of graphene films, which will greatly degrade its performance. Direct synthesis of graphene on insulating substrates without a transfer process is highly desirable for device preparation. Here, we report a simple, transfer-free method to synthesize graphene directly on insulating substrates (SiO2/Si, quartz) by using a Cu layer, graphene oxide and Poly (vinyl alcohol) as the catalyst, seeds and carbon sources, respectively. Atomic force microscope (AFM), scanning electronic microscope (SEM) and Raman spectroscopy are used to characterize the interface of insulating substrate and graphene. The graphene films directly grown on quartz glass can attain a high transmittance of 92.8% and a low sheet resistance of 620 Ω/square. The growth mechanism is also revealed. This approach provides a highly efficient method for the direct production of graphene on insulating substrates.
Collapse
Affiliation(s)
- Qiqi Zhuo
- College of Material Science & Engineering, Jiangsu University of Science and Technology, 2 Meng-Xi Road, Zhenjiang 212003, Jiangsu, China.
| | - Yipeng Mao
- College of Material Science & Engineering, Jiangsu University of Science and Technology, 2 Meng-Xi Road, Zhenjiang 212003, Jiangsu, China.
| | - Suwei Lu
- College of Material Science & Engineering, Jiangsu University of Science and Technology, 2 Meng-Xi Road, Zhenjiang 212003, Jiangsu, China.
| | - Bolu Cui
- College of Material Science & Engineering, Jiangsu University of Science and Technology, 2 Meng-Xi Road, Zhenjiang 212003, Jiangsu, China.
| | - Li Yu
- College of Material Science & Engineering, Jiangsu University of Science and Technology, 2 Meng-Xi Road, Zhenjiang 212003, Jiangsu, China.
| | - Jijun Tang
- College of Material Science & Engineering, Jiangsu University of Science and Technology, 2 Meng-Xi Road, Zhenjiang 212003, Jiangsu, China.
| | - Jun Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, China.
| | - Chao Yan
- College of Material Science & Engineering, Jiangsu University of Science and Technology, 2 Meng-Xi Road, Zhenjiang 212003, Jiangsu, China.
| |
Collapse
|