1
|
Lu MC, Yang YC, Lee CJ, Chiu CW. Helicobacter pylori Detection Based on Synergistic Electromagnetic and Chemical Enhancement of Surface-Enhanced Raman Scattering in 3D Hotspot-Activated Gold Nanorods/Nano Mica Platelets/ZnO Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503562. [PMID: 40265978 DOI: 10.1002/advs.202503562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Indexed: 04/24/2025]
Abstract
Gold nanorods (AuNRs) with a controllable aspect ratio are anchored on the surface of delaminated nano mica platelets (NMPs) in the presence of a cationic interfacial activator and protective agent enabling the positive charging of the AuNR and nanohybrid surfaces. The high anionic charge and specific surface area of NMPs stabilize AuNR growth and benefit the adsorption of anionic analytes. The nanohybrids (AuNRs/NMPs) exhibit a 3D hotspot effect due to self-assembly and feature regularly arranged AuNRs, thus enabling Raman signal enhancement and sensitive (limit of detection (LOD) = 10-9 m, Raman enhancement factor (EF) = 2.0 × 108) and reproducible (relative standard deviation (RSD) = 8.82%) adenine detection based on surface-enhanced Raman scattering (SERS). The further incorporation of ZnO quantum dots (QDs) affords nanohybrids (AuNRs/NMPs/ZnO QDs) that exhibit electromagnetic and chemical signal enhancement mechanisms and enable more sensitive and reproducible adenine detection (LOD = 10-10 m, EF = 1.6 × 109, RSD = 7.66%). AuNRs/NMPs/ZnO QDs are subsequently used for the selective and sensitive SERS-based detection of Helicobacter pylori (LOD = 90 CFU mL-1). Thus, this work paves the way for the noninvasive, nonfluorescent labeling, rapid, sensitive, selective, and reproducible detection of H. pylori.
Collapse
Affiliation(s)
- Ming-Chang Lu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yung-Chi Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
2
|
Chen YF, Lu MC, Lee CJ, Chiu CW. Flexible nanohybrid substrates utilizing gold nanocubes/nano mica platelets with 3D lightning-rod effect for highly efficient bacterial biosensors based on surface-enhanced Raman scattering. J Mater Chem B 2024; 12:3226-3239. [PMID: 38451239 DOI: 10.1039/d3tb02897f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In this study, gold nanocubes (AuNCs) were quickly synthesized using the seed-mediated growth method and reduced onto the surface of two-dimensional (2D) delaminated nano mica platelets (NMPs), enabling the development of AuNCs/NMPs nanohybrids with a 3D lightning-rod effect. First, the growth-solution amount can be changed to easily adjust the AuNCs average-particle size within a range of 30-70 nm. The use of the cationic surfactant cetyltrimethylammonium chloride as a protective agent allowed the surface of AuNCs and nanohybrids to be positively charged. Positively charged nanohybrid surfaces presented a good adsorption effect for detecting molecules with negative charges on the surface. Additionally, the NMP surfaces were rich in ionic charges and provided a large specific surface area for stabilizing the growth of AuNCs. Delaminated AuNCs/NMPs nanohybrids can generate a 3D hotspot effect through self-assembly to enhance the Raman signal. Surface-enhanced Raman scattering (SERS) is highly sensitive in detecting adenine biomolecules. Its limit of detection (LOD) and Raman enhancement factor reached 10-9 M and 3.6 × 108, respectively. Excellent reproducibility was obtained owing to the relatively regular arrangement of AuNC particles, and the relative standard deviation (RSD) was 10.7%. Finally, the surface of NMPs was modified by adding the hydrophilic poly(oxyethylene)-diamine (POE2000) and amphiphilic PIB-POE-PIB copolymer at different weight ratios. The adjustment of the surface hydrophilicity and hydrophobicity of AuNCs/NMPs nanohybrids led to better adsorption and selectivity for bacteria. AuNCs/POE/NMPs and AuNCs/PIB-POE-PIB/NMPs were further applied to the SERS detection of hydrophilic Staphylococcus aureus and hydrophobic Escherichia coli, respectively. The SERS-detection results suggest that the LOD of hydrophilic Staphylococcus aureus and hydrophobic Escherichia coli reached 92 CFU mL-1 and 1.6 × 102 CFU mL-1, respectively. The AuNCs/POE/NMPs and AuNCs/PIB-POE-PIB/NMPs nanohybrids had different hydrophilic-hydrophobic affinities, which greatly improved the selectivity and sensitivity for detecting bacteria with different hydrophilicity and hydrophobicity. Therefore, fast, highly selective, and highly sensitive SERS biological-detection results were obtained.
Collapse
Affiliation(s)
- Yan-Feng Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Ming-Chang Lu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
3
|
Chen YF, Lee YC, Lin WW, Lu MC, Yang YC, Chiu CW. Application of Nanohybrid Substrates with Layer-by-Layer Self-Assembling Properties to High-Sensitivity Surface-Enhanced Raman Scattering Detection. ACS OMEGA 2024; 9:1894-1903. [PMID: 38222643 PMCID: PMC10785305 DOI: 10.1021/acsomega.3c08608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
The present study was conducted to prepare and investigate large-area, high-sensitivity surface-enhanced Raman scattering (SERS) substrates. Organic/inorganic nanohybrid dispersants consisting of an amphiphilic triblock copolymer (hereafter referred to simply as "copolymer") and graphene oxide (GO) were used to stabilize the growth and size of gold nanoparticles (AuNPs). Ion-dipole forces were present between the AuNPs and copolymer dispersants, while the hydrogen bonds between GO and the copolymer prevented the aggregation of GO, thereby stabilizing the AuNP/GO nanohybrids. Transmission electron microscopy (TEM) revealed that the AuNPs had particle sizes of 25-35 nm and a relatively uniform size distribution. The AuNP/GO nanohybrids were deposited onto the glass substrate by using the solution drop-casting method and employed for SERS detection. The self-assembling properties of two-dimensional sheet-like GO led to a regular lamellar arrangement of AuNP/GO nanohybrids, which could be used for the preparation of large-area SERS substrates. Following removal of the copolymer by annealing at 300 °C for 2 h, measurements were obtained under scanning electron microscopy. The results confirmed that 2D GO nanosheets were capable of stabilizing AuNPs, with the final size reaching approximately 40 nm. These AuNPs were adsorbed on both sides of the GO nanosheets. Because the GO nanosheets were merely 5 nm-thick, a good three-dimensional hot-junction effect was generated along the z-axis of the AuNPs. Lastly, the prepared material was used for the SERS detection of rhodamine 6G (R6G), a commonly used highly fluorescent dye. An enhancement factor (EF) of up to 3.5 × 106 was achieved, and the limit of detection was approximately 10-10 M. Detection limits of 10-10 M and < 10-10 M were also observed with the detection of Direct Blue 200 and the biological molecule adenine. It is therefore evident that AuNP/copolymer/GO nanohybrids are large-area flexible SERS substrates that hold great potential in environmental monitoring and biological system detection applications.
Collapse
Affiliation(s)
| | | | - Wen-Wei Lin
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Ming-Chang Lu
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Yung-Chi Yang
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
4
|
Talaikis M, Mikoliunaite L, Gkouzi AM, Petrikaitė V, Stankevičius E, Drabavičius A, Selskis A, Juškėnas R, Niaura G. Multiwavelength SERS of Magneto-Plasmonic Nanoparticles Obtained by Combined Laser Ablation and Solvothermal Methods. ACS OMEGA 2023; 8:49396-49405. [PMID: 38162725 PMCID: PMC10753541 DOI: 10.1021/acsomega.3c08007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
The present study introduces a novel method for the synthesis of magneto-plasmonic nanoparticles (MPNPs) with enhanced functionality for surface-enhanced Raman scattering (SERS) applications. By employing pulsed laser ablation in liquid (PLAL) to synthesize plasmonic nanoparticles and wet chemistry to synthesize magnetic nanoparticles, we successfully fabricated chemically pure hybrid Fe3O4@Au and Fe3O4@Ag nanoparticles. We demonstrated a straightforward approach of an electrostatic attachment of the plasmonic and magnetic parts using positively charged polyethylenimine. The MPNPs displayed high SERS sensitivity and reproducibility, and the magnetic part allowed for the controlled separation of the nanoparticles from the reaction mixture, their subsequent concentration, and their precise deposition onto a specified surface area. Additionally, we fabricated alloy based MPNPs from AgxAu100-x (x = 50 and 80 wt %) targets with distinct localized surface plasmon resonance (LSPR) wavelengths. The compositions, morphologies, and optical properties of the nanoparticles were characterized by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy, and multiwavelength Raman spectroscopy. A standard SERS marker, 4-mercaptobenzoic acid (4-MBA), validated the enhancement properties of the MPNPs and found an enhancement factor of 2 × 108 for the Fe3O4@Ag nanoparticles at 633 nm excitation. Lastly, we applied MPNP-enhanced Raman spectroscopy for the analysis of the biologically relevant molecule adenine and found a limit of detection of 10-7 M at 785 nm excitation. The integration of PLAL and wet chemical methods enabled the relatively fast and cost-effective production of MPNPs characterized by high SERS sensitivity and signal reproducibility that are required in various fields, including biomedicine, food safety, materials science, security, and defense.
Collapse
Affiliation(s)
- Martynas Talaikis
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Lina Mikoliunaite
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department
of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Aikaterini-Maria Gkouzi
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Vita Petrikaitė
- Department
of Laser Technologies, Center for Physical
Sciences and Technology (FTMC), Savanorių Av. 231, LT-02300 Vilnius, Lithuania
| | - Evaldas Stankevičius
- Department
of Laser Technologies, Center for Physical
Sciences and Technology (FTMC), Savanorių Av. 231, LT-02300 Vilnius, Lithuania
| | - Audrius Drabavičius
- Department
of Characterization of Materials Structure, Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Algirdas Selskis
- Department
of Characterization of Materials Structure, Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Remigijus Juškėnas
- Department
of Characterization of Materials Structure, Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
5
|
Chen YF, Chang WR, Lee CJ, Chiu CW. Triangular gold nanoplates/two-dimensional nano mica platelets with a 3D lightning-rod effect as flexible nanohybrid substrates for SERS bacterial detection. J Mater Chem B 2022; 10:9974-9983. [PMID: 36398620 DOI: 10.1039/d2tb02049a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Triangular gold nanoplates (TAuNPs) were prepared by a one-step rapid growth method and then reduced and stabilized on two-dimensional nano mica nanoplatelets (NMPs). We also prepared TAuNP/NMP nanohybrids with a three-dimensional lightning-rod effect by oxidative etching. The surface of the delaminated NMPs (only 1 nm thick) is highly charged and can provide a large specific surface area; thus, it can be used as a substrate for the stable growth of gold nanoplates. In addition, by controlling relevant synthesis parameters, the edge length of the TAuNPs can be easily adjusted in the range of 30-90 nm. During reduction of the TAuNPs, the cationic surfactant cetyltrimethylammonium chloride was added as a protective agent to surround the TAuNPs; consequently, the surface was positively charged, which facilitates adsorption for detecting molecules with negative charges. When nanohybrids were used in surface-enhanced Raman spectroscopy (SERS) to detect adenine molecules, the limit of detection concentration was 10-9 M. The Raman enhancement factor was 5.7 × 107, and the relative standard deviation (RSD) was 9.8%. Finally, this method was applied to the biological detection of Staphylococcus aureus, and the surface charge and hydrophilic properties of the material significantly improved the SERS signal of S. aureus. The limit of detection concentration was 102 CFU mL-1, and the RSD was 11.2%. The TAuNP/NMP nanohybrids can provide very rapid and sensitive SERS detection of biomolecules.
Collapse
Affiliation(s)
- Yan-Feng Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Wen-Ru Chang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
6
|
Premachandran S, Haldavnekar R, Das S, Venkatakrishnan K, Tan B. DEEP Surveillance of Brain Cancer Using Self-Functionalized 3D Nanoprobes for Noninvasive Liquid Biopsy. ACS NANO 2022; 16:17948-17964. [PMID: 36112671 DOI: 10.1021/acsnano.2c04187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brain cancers, one of the most fatal malignancies, require accurate diagnosis for guided therapeutic intervention. However, conventional methods for brain cancer prognosis (imaging and tissue biopsy) face challenges due to the complex nature and inaccessible anatomy of the brain. Therefore, deep analysis of brain cancer is necessary to (i) detect the presence of a malignant tumor, (ii) identify primary or secondary origin, and (iii) find where the tumor is housed. In order to provide a diagnostic technique with such exhaustive information here, we attempted a liquid biopsy-based deep surveillance of brain cancer using a very minimal amount of blood serum (5 μL) in real time. We hypothesize that holistic analysis of serum can act as a reliable source for deep brain cancer surveillance. To identify minute amounts of tumor-derived material in circulation, we synthesized an ultrasensitive 3D nanosensor, adopted SERS as a diagnostic methodology, and undertook a DEEP neural network-based brain cancer surveillance. Detection of primary and secondary tumor achieved 100% accuracy. Prediction of intracranial tumor location achieved 96% accuracy. This modality of using patient sera for deep surveillance is a promising noninvasive liquid biopsy tool with the potential to complement current brain cancer diagnostic methodologies.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Sunit Das
- Scientist, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
7
|
Chang WR, Hsiao C, Chen YF, Kuo CFJ, Chiu CW. Au Nanorods on Carbon-Based Nanomaterials as Nanohybrid Substrates for High-Efficiency Dynamic Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:41815-41826. [PMID: 36406539 PMCID: PMC9670688 DOI: 10.1021/acsomega.2c06485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 05/26/2023]
Abstract
Gold nanorods (AuNRs) with different aspect ratios were prepared by the seed-mediated growth method and combined with three carbon-based nanomaterials of multiple dimensions (i.e., zero-dimensional (0D) carbon black (CB), one-dimensional (1D) carbon nanotubes (CNTs), and two-dimensional (2D) graphene oxide (GO)). The AuNR/carbon-based nanomaterial hybrids were utilized in dynamic surface-enhanced Raman scattering (D-SERS). First, cetyltrimethylammonium bromide (CTAB) was used to stabilize and coat the AuNRs, enabling them to be dispersed in water and conferring a positive charge to the surface. AuNR/carbon-based nanomaterial hybrids were then formed via electrostatic attraction with the negatively charged carbon-based nanomaterials. Subsequently, the AuNR/carbon-based nanomaterial hybrids were utilized as large-area and highly sensitive Raman spectroscopy substrates. The AuNR/GO hybrids afforded the best signal enhancement because the thickness of GO was less than 5 nm, which enabled the AuNRs adsorbed on GO to produce a good three-dimensional hotspot effect. The enhancement factor (EF) of the AuNR/GO hybrids for the dye molecule Rhodamine 6G (R6G) reached 1 × 107, where the limit of detection (LOD) was 10-8 M. The hybrids were further applied in D-SERS (detecting samples transitioning from the wet state to the dry state). During solvent evaporation, the system spontaneously formed many hotspots, which greatly enhanced the SERS signal. The final experimental results demonstrated that the AuNR/GO hybrids afforded the best D-SERS signal enhancement. The EF value for R6G reached 1.1 × 108 after 27 min, with a limit of detection of 10-9 M at 27 min. Therefore, the AuNR/GO nanohybrids have extremely high sensitivity as molecular sensing elements for SERS and are also very suitable for the rapid detection of single molecules in water quality and environmental management.
Collapse
|
8
|
Recyclable surface enhanced Raman scattering monitoring of nucleotides and their metabolites based on Au nanoflowers modified g-C3N4 nanosheets. Colloids Surf B Biointerfaces 2022; 218:112735. [DOI: 10.1016/j.colsurfb.2022.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
|
9
|
Ponlamuangdee K, Rattanabut C, Viriyakitpattana N, Roeksrungruang P, Karn-Orachai K, Pimalai D, Bamrungsap S. Fabrication of paper-based SERS substrate using a simple vacuum filtration system for pesticides detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1765-1773. [PMID: 35470360 DOI: 10.1039/d2ay00236a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we describe a simple and cost-effective fabrication of a paper-based SERS substrate by coating poly(diallyldimethylammonium chloride) (PDADMAC) and gold nanostars (AuNSs) on the filter paper using a vacuum filtration system. The paper-based SERS substrates were fabricated and ready to be used within an hour without any complicated equipment or processes. The cationic polymer, PDADAMAC, was pretreated on the filter paper to improve the absorbability of negatively charged AuNSs through electrostatic interaction. The PDADMAC/AuNS paper significantly intensified the SERS signal of 4-mercaptobenzoic acid (4-MBA) compared to that of pure AuNS-coated paper due to the high density of AuNSs absorbed on the SERS substrate. The PDADMAC/AuNS paper substrate provided a SERS enhancement factor (EF) of 1.08 × 107 with a low detection limit of 1 nM 4-MBA. The substrate shows excellent spot-to-spot reproducibility with a relative standard deviation (RSD) of 5.03%, and substrate-to-substrate reproducibility with an RSD of 3.20% for the Raman shift at 1080 cm-1. The paper substrate was then applied for the rapid detection of pesticides with a low detection limit of 0.51 μM (0.13 ppm) for paraquat, and 0.38 μM (0.09 ppm) for thiram, using a handheld Raman spectrometer. The development of this simple and cost-effective paper-based SERS substrate, and its applications for on-site monitoring of pesticides, could be beneficial for food security and environmental safety.
Collapse
Affiliation(s)
- Kanyawan Ponlamuangdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Chanoknan Rattanabut
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Nopparat Viriyakitpattana
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Pimporn Roeksrungruang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Kullavadee Karn-Orachai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Dechnarong Pimalai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
10
|
Zhao X, Sun D, Yu M, Xu Y, Xie H. Label-free and ultrasensitive SERS detection of pesticide residues using 3D hot-junction of a Raman enhancing montmorillonite/silver nanoparticles nanocomposite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1134-1139. [PMID: 35224591 DOI: 10.1039/d2ay00090c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Montmorillonite (MMT) coated with roughened noble metal nanoparticles are novel hybrid nanocomposite with a wide range of applications including agriculture, materials science and biomedical engineering. Herein, we developed a hybrid nanocomposite (MMT/AgNPs) based on MMT coated with silver nanoparticles (AgNPs), which can be used as a cost-effective and efficient surface-enhanced Raman spectroscopy (SERS) substrate for the detection of pesticides in fruits and vegetables. MMT itself is negatively charged and can be assembled with positively charged AgNPs through electrostatic interactions. Moreover, MMT has a layered 2D structure that possesses a large surface area, which can load a large number of AgNPs to form more SERS hotspots for the ultrasensitive measurement. SERS performance of the MMT/AgNPs nanocomposite was tested by 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and the substrate can obtain the strongest SERS enhancement effect with the volume ratio of MMT/AgNPs of 1 : 10. These substrates were applied in the measurement of thiram in apples and spinach samples by SERS. Detection limits of pesticide molecules of 5.0 × 10-8 M and 1.0 × 10-7 M in apples and spinach, respectively, were obtained. Most importantly, MMT nanosheets are a robust platform that allowed AgNPs to be evenly and thoroughly distributed and stabilized over the substrate, improving the repeatability and stability of SERS detection. These results reveal that the MMT/AgNPs nanocomposites are suitable substrates for the real-world SERS analysis of pesticide and other contaminants in complex food matrices.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China.
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Man Yu
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China.
| | - Yan Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hui Xie
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China.
| |
Collapse
|
11
|
Chen YF, Wang CH, Chang WR, Li JW, Hsu MF, Sun YS, Liu TY, Chiu CW. Hydrophilic-Hydrophobic Nanohybrids of AuNP-Immobilized Two-Dimensional Nanomica Platelets as Flexible Substrates for High-Efficiency and High-Selectivity Surface-Enhanced Raman Scattering Microbe Detection. ACS APPLIED BIO MATERIALS 2022; 5:1073-1083. [PMID: 35195391 DOI: 10.1021/acsabm.1c01151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A flexible hybrid substrate was developed by affixing gold nanoparticles (AuNPs) onto the surface of two-dimensional nanomica platelets (NMPs). The substrate was successfully used in biosensors with high efficiency and high selectivity through surface-enhanced Raman scattering (SERS). By controlling the amphiphilicity of the hybrid substrate, the flexible substrate was made highly selective toward biomolecules. Four different SERS substrate systems were constructed, including intercalated mica, exfoliated NMPs, hydrophilic exfoliated NMPs, and hydrophobic exfoliated NMPs. NMPs were only 1 nm thick. AuNPs adsorbed on both sides of NMPs and thus created excellent three-dimensional hot junction effects in the z-axis direction. For the detection of adenine in DNA, a satisfactory Raman enhancement factor (EF) of up to 8.9 × 106 was achieved with the detection limit as low as 10-8 M. Subsequently, the AuNP/NMP hybrids were adopted to rapidly detect hydrophilic Staphylococcus hominis and hydrophobic Escherichia coli. The AuNP/PIB-POE-PIB/NMP nanohybrid was concurrently hydrophilic and hydrophobic. This amphiphilic property greatly enhanced the detection selectivity and signal intensity for hydrophilic or hydrophobic bacteria. Overall, AuNPs/PIB-POE-PIB/NMPs developed as SERS substrates enable rapid, sensitive biodetection.
Collapse
Affiliation(s)
- Yan-Feng Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chih-Hao Wang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wen-Ru Chang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Wun Li
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Mao-Feng Hsu
- Research & Development Division, Zhen Ding Technology Holding Limited, Taoyuan 33754, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
12
|
Immobilization of Air-Stable Copper Nanoparticles on Graphene Oxide Flexible Hybrid Films for Smart Clothes. Polymers (Basel) 2022; 14:polym14020237. [PMID: 35054646 PMCID: PMC8781742 DOI: 10.3390/polym14020237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Through the use of organic/inorganic hybrid dispersants—which are composed of polymeric dispersant and two-dimension nanomaterial graphene oxide (GO)—copper nanoparticles (CuNPs) were found to exhibit nano stability, air-stable characteristics, as well as long-term conductive stability. The polymeric dispersant consists of branched poly(oxyethylene)-segmented esters of trimellitic anhydride adduct (polyethylene glycol−trimethylolpropane−trimellitic anhydride, designated as PTT). PTT acts as a stabilizer for CuNPs, which are synthesized via in situ polymerization and redox reaction of the precursor Cu(CH3COO)2 within an aqueous system, and use graphene oxide to avoid the reduction reaction of CuNPs. The results show that after 30 days of storage the CuNPs/PTT/GO composite film maintains a highly conductive network (9.06 × 10−1 Ω/sq). These results indicate that organic/inorganic PTT/GO hybrid dispersants can effectively maintain the conductivity stability of CuNPs and address the problem of CuNP oxidation. Finally, the new CuNPs/PTT/GO composite film was applied to the electrocardiogram (ECG) smart clothes. This way, a stable and antioxidant-sensing electrode can be produced, which is expected to serve as a long-term ECG monitoring device.
Collapse
|
13
|
Enhanced Efficiency of Dye-Sensitized Solar Cells Based on Polymer-Assisted Dispersion of Platinum Nanoparticles/Carbon Nanotubes Nanohybrid Films as FTO-Free Counter Electrodes. Polymers (Basel) 2021; 13:polym13183103. [PMID: 34578004 PMCID: PMC8469940 DOI: 10.3390/polym13183103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
In this study, polymer-assisted dispersants are used to stabilize the nanohybrids of platinum nanoparticles (PtNPs)/carbon nanotubes (CNTs) through non-covalent bond forces. These dispersants aim to replace the florine-doped tin oxide (FTO) glass in traditional dye-sensitized solar cells (DSSCs) as counter electrodes. The large specific surface area, high conductivity, and redox potential of PtNPs/CNT nanohybrids are used as the basis to utilize them as the counter electrode material to fabricate a dye-sensitized solar cell. The conductivity results indicate that the resistance of the PtNP/CNT nanohybrid film can be reduced to 7.25 Ω/sq. When carbon nanotubes are mixed with platinum nanoparticles at a weight ratio of 5/1, the photoelectric conversion efficiency of DSSCs can reach 6.28%. When using the FTO-containing substrate as the counter electrode, its conversion efficiency indicates that the micro-/nano-hybrid material formed by PtNPs/CNTs also exhibits an excellent photoelectric conversion efficiency (8.45%) on the traditional FTO substrate. Further, a large-area dye-sensitive cell is fabricated, showing that an 8 cm × 8 cm cell has a conversion efficiency of 7.95%. Therefore, the traditional Pt counter electrode can be replaced with a PtNP/CNT nanohybrid film, which both provides dye-sensitive cells with a high photoelectric conversion efficiency and reduces costs.
Collapse
|
14
|
Tegegne WA, Su WN, Beyene AB, Huang WH, Tsai MC, Hwang BJ. Flexible hydrophobic filter paper-based SERS substrate using silver nanocubes for sensitive and rapid detection of adenine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Enhanced Piezoelectric Properties of Poly(Vinylidenefluoride-Co-Trifluoroethylene)/Carbon-Based Nanomaterial Composite Films for Pressure Sensing Applications. Polymers (Basel) 2020; 12:polym12122999. [PMID: 33339168 PMCID: PMC7765614 DOI: 10.3390/polym12122999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, heat and polarization treatments were applied to poly(vinylidenefluoride-co-trifluoroethylene (PVDF-TrFE) films to improve their crystallinity and piezoelectric effect. Carbon-based nanomaterials (CBNs) of multiple dimensions (i.e., modified zero-dimensional (0D) carbon black (OCB), one-dimensional (1D) modified carbon nanotubes (CNT–COOH) and two-dimensional (2D) graphene oxide (GO)) were added to the copolymer to study the effects of different CBN dimensions on the crystallinity and piezoelectric effect of PVDF-TrFE films. Additionally, amphiphilic polymeric dispersants were added to improve the dispersibility of CBNs; the dispersant was synthesized by the amidation, and imidization reactions of styrene-maleic anhydride copolymer (SMAz) and polyoxyalkylene amine (M1000). Polymer solutions with different ratios of CBN to dispersant (z = 10:1, 5:1, 1:1, 1:5, 1:10) were prepared. The enhanced dispersibility enabled the fluorine atoms in the PVDF-TrFE molecular chain to more efficiently form hydrogen bonds with the –COOH group in the CBN, thereby increasing the content of the β crystal phase (the origin of the piezoelectric effect) of the film. Therefore, the resulting film exhibited a higher output voltage on the application side and better sensitivity on the sensing element. The addition of CNT–COOH and polymeric dispersants increased the β-phase content in PVDF-TrFE from 73.6% to 86.4%, which in turn raised the piezoelectric coefficient from 19.8 ± 1.0 to 26.4 ± 1.3 pC/N. The composite film-based pressure sensor also exhibited a high degree of sensitivity, which is expected to have commercial potential in the future.
Collapse
|
16
|
Tzeng Y, Lin BY. Silver-Based SERS Pico-Molar Adenine Sensor. BIOSENSORS-BASEL 2020; 10:bios10090122. [PMID: 32932787 PMCID: PMC7559806 DOI: 10.3390/bios10090122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
Adenine is an important molecule for biomedical and agricultural research and applications. The detection of low concentration adenine molecules is thus desirable. Surface-enhanced Raman scattering (SERS) is a promising label-free detection and fingerprinting technique for molecules of significance. A novel SERS sensor made of clusters of silver nanostructures deposited on copper bumps in valleys of an etched silicon substrate was previously reported to exhibit a low and reproducible detection limit for a 10−11 M neutral adenine aqueous solution. Reflection of laser illumination from the silicon surface surrounding a valley provides additional directions of laser excitation to adenine molecules adsorbing on a silver surface for the generation of enhanced SERS signal strength leading to a low detection limit. This paper further reports a concentration dependent shift of the ring-breathing mode SERS adenine peak towards 760 cm−1 with decreasing concentration and its pH-dependent SERS signal strength. For applications, where the pH value can vary, reproducible detection of 10−12 M adenine in a pH 9 aqueous solution is feasible, making the novel SERS structure a desirable pico-molar adenine sensor.
Collapse
|
17
|
Chiu CW, Li JW, Huang CY, Yang SS, Soong YC, Lin CL, Lee JCM, Lee Sanchez WA, Cheng CC, Suen MC. Controlling the Structures, Flexibility, Conductivity Stability of Three-Dimensional Conductive Networks of Silver Nanoparticles/Carbon-Based Nanomaterials with Nanodispersion and their Application in Wearable Electronic Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1009. [PMID: 32466225 PMCID: PMC7281189 DOI: 10.3390/nano10051009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/17/2023]
Abstract
This research has successfully synthesized highly flexible and conductive nanohybrid electrode films. Nanodispersion and stabilization of silver nanoparticles (AgNPs) were achieved via non-covalent adsorption and with an organic polymeric dispersant and inorganic carbon-based nanomaterials-nano-carbon black (CB), carbon nanotubes (CNT), and graphene oxide (GO). The new polymeric dispersant-polyisobutylene-b-poly(oxyethylene)-b-polyisobutylene (PIB-POE-PIB) triblock copolymer-could stabilize AgNPs. Simultaneously, this stabilization was conducted through the addition of mixed organic/inorganic dispersants based on zero- (0D), one- (1D), and two-dimensional (2D) nanomaterials, namely CB, CNT, and GO. Furthermore, the dispersion solution was evenly coated/mixed onto polymeric substrates, and the products were heated. As a result, highly conductive thin-film materials (with a surface electrical resistance of approximately 10-2 Ω/sq) were eventually acquired. The results indicated that 2D carbon-based nanomaterials (GO) could stabilize AgNPs more effectively during their reductNion and, hence, generate particles with the smallest sizes, as the COO- functional groups of GO are evenly distributed. The optimal AgNPs/PIB-POE-PIB/GO ratio was 20:20:1. Furthermore, the flexible electrode layers were successfully manufactured and applied in wearable electronic sensors to generate electrocardiograms (ECGs). ECGs were, thereafter, successfully obtained.
Collapse
Affiliation(s)
- Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (J.-W.L.); (C.-Y.H.); (S.-S.Y.); (Y.-C.S.); (C.-L.L.); (J.C.-M.L.); (W.A.L.S.)
| | - Jia-Wun Li
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (J.-W.L.); (C.-Y.H.); (S.-S.Y.); (Y.-C.S.); (C.-L.L.); (J.C.-M.L.); (W.A.L.S.)
| | - Chen-Yang Huang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (J.-W.L.); (C.-Y.H.); (S.-S.Y.); (Y.-C.S.); (C.-L.L.); (J.C.-M.L.); (W.A.L.S.)
| | - Shun-Siang Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (J.-W.L.); (C.-Y.H.); (S.-S.Y.); (Y.-C.S.); (C.-L.L.); (J.C.-M.L.); (W.A.L.S.)
| | - Yu-Chian Soong
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (J.-W.L.); (C.-Y.H.); (S.-S.Y.); (Y.-C.S.); (C.-L.L.); (J.C.-M.L.); (W.A.L.S.)
| | - Chih-Lung Lin
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (J.-W.L.); (C.-Y.H.); (S.-S.Y.); (Y.-C.S.); (C.-L.L.); (J.C.-M.L.); (W.A.L.S.)
| | - Jimmy Chi-Min Lee
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (J.-W.L.); (C.-Y.H.); (S.-S.Y.); (Y.-C.S.); (C.-L.L.); (J.C.-M.L.); (W.A.L.S.)
| | - William Anderson Lee Sanchez
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (J.-W.L.); (C.-Y.H.); (S.-S.Y.); (Y.-C.S.); (C.-L.L.); (J.C.-M.L.); (W.A.L.S.)
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Maw-Cherng Suen
- Department of Fashion Business Administration, LEE-MING Institute of Technology, New Taipei City 24305, Taiwan;
| |
Collapse
|
18
|
Tzeng Y, Lin BY. Silver SERS Adenine Sensors with a Very Low Detection Limit. BIOSENSORS-BASEL 2020; 10:bios10050053. [PMID: 32429203 PMCID: PMC7277772 DOI: 10.3390/bios10050053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/10/2023]
Abstract
The detection of adenine molecules at very low concentrations is important for biological and medical research and applications. This paper reports a silver-based surface-enhanced Raman scattering (SERS) sensor with a very low detection limit for adenine molecules. Clusters of closely packed silver nanoparticles on surfaces of discrete ball-like copper bumps partially covered with graphene are deposited by immersion in silver nitrate. These clusters of silver nanoparticles exhibit abundant nanogaps between nanoparticles, where plasmonic coupling induces very high local electromagnetic fields. Silver nanoparticles growing perpendicularly on ball-like copper bumps exhibit surfaces of large curvature, where electromagnetic field enhancement is high. Between discrete ball-like copper bumps, the local electromagnetic field is low. Silver is not deposited on the low-field surface area. Adenine molecules interact with silver by both electrostatic and functional groups and exhibit low surface diffusivity on silver surface. Adenine molecules are less likely to adsorb on low-field sensor surface without silver. Therefore, adenine molecules have a high probability of adsorbing on silver surface of high local electric fields and contribute to the measured Raman scattering signal strength. We demonstrated SERS sensors made of clusters of silver nanoparticles deposited on discrete ball-like copper bumps with very a low detection limit for detecting adenine water solution of a concentration as low as 10−11 M.
Collapse
|