1
|
Jiang Y, Xie J, Wang X, Wang Z, Han S. Chemiluminescence of silver and nitrogen doped carbon dots induced by potassium ferricyanide/hydrogen peroxide and its analytical application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125791. [PMID: 39864184 DOI: 10.1016/j.saa.2025.125791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
In this study, carbon dots doped with silver and nitrogen (Ag,N-CDs) were synthesized and their application in chemiluminescence (CL) was investigated using the potassium ferricyanide/hydrogen peroxide (K3Fe(CN)6/H2O2) reaction. Theoretical calculations reveal that Ag doping facilitates a lower excitation energy. The experimental conditions influencing the CL reaction were examined and optimized. The resulting Ag,N-CDs-based CL method demonstrated impressive capabilities in detection of Cu(II) within a linear calibration range of 40.0 nM-8.0 μM, with a commendable detection limit of 3.1 nM. In extensive validation experiments, recoveries and relative standard deviations for water, plasma, and tea samples consistently fell within the range of 97.0-103.0 % and 1.03-4.19 %, respectively. These outcomes underscore that the CL method based Ag,N-CDs is an excellent tool for the detection of Cu(II).
Collapse
Affiliation(s)
- Yamei Jiang
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, PR China
| | - Jiaoyan Xie
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, PR China
| | - Xiaowei Wang
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, PR China
| | - Zixuan Wang
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, PR China
| | - Suqin Han
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, PR China.
| |
Collapse
|
2
|
Qin N, Liu J, Li F, Liu J. Recent Advances in Aptasensors for Rapid Pesticide Residues Detection. Crit Rev Anal Chem 2023; 54:3592-3613. [PMID: 37708008 DOI: 10.1080/10408347.2023.2257795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Pesticides are applied widely to increase agricultural output and quality, however, this practice results in residual issues that not only harm the environment but also put people and animals' lives and health at risk. As a result, it is critical to find pesticide residues in a variety of sources, including crops, water supplies, and soil. Aptamers are more flexible in their synthesis and modification, have a high level of specificity, are inexpensive, and have good stability compared to conventional detection methods. They have therefore attracted a lot of interest in the industry. This study reviews the most recent aptasensor advancements in the detection of pesticide residues. Firstly, aptamers specifically binding to many pesticides are summarized. Secondly, the combination of aptasensors with colorimetric, fluorescent, surface enhanced Raman spectroscopy (SERS), resonance Light Scattering (RLS), chemiluminescence (CL), electrochemical, and electrochemiluminescence (ECL) technologies are systematically introduced, and their advantages and disadvantages are expounded. Importantly, the aptasensors for the detection of various pesticides (organochlorine, organophosphorus, neonicotinoids, carbamates, and pyrethroids) that have been developed so far are systematically analyzed and discussed. Finally, the furture prospects and challenges of the aptasensors are highlighted. It is expected to offer suggestions for the later creation of novel, highly effective and sensitive aptasensors for the detection of pesticide residues.
Collapse
Affiliation(s)
- Na Qin
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Jinfeng Liu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengyun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
3
|
Pourmadadi M, Rahmani E, Rajabzadeh-Khosroshahi M, Samadi A, Behzadmehr R, Rahdar A, Ferreira LFR. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Gedda G, Balaji Gupta Tiruveedhi V, Ganesh G, Suribabu J. Recent advancements of carbon dots in analytical techniques. CARBON DOTS IN ANALYTICAL CHEMISTRY 2023:137-147. [DOI: 10.1016/b978-0-323-98350-1.00017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Dong S, He K, Yang J, Shi Q, Guan L, Chen Z, Feng J. A simple mesoporous silica Nanoparticle-based aptamers SERS sensor for the detection of acetamiprid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121725. [PMID: 35985229 DOI: 10.1016/j.saa.2022.121725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, we developed a novel, rapid, simple, and sensitive nano sensor based on the controlled release of 4-Aminothiophenol (4-ATP) signal molecules from aptamers (Apts) modified aminated mesoporous silica nanoparticles (MSNs-NH2) for the quantitative detection of acetamiprid (ACE). Firstly, we synthesized the positively charged MSNs-NH2 by one-pot method, then loaded 4-ATP signal molecules into the pore, and finally electrostatically adsorbed the Apts onto the MSNs-NH2, which acts as a gate to control the release of signal molecules. When ACE is added to the system, ACE preferentially and specifically binds to Apts, so the gate opens and 4-ATP signal molecules are released from the pore. Meanwhile, the silver-loaded mesoporous silica nanoparticles (Ag@SiO2) were prepared by one-pot method as surface-enhanced Raman spectroscopy (SERS) substrate to amplify the signal. The intensity of 4-ATP signal molecules at 1433 cm-1 position was observed to has a linear relationship with the concentration of ACE by SERS detection. Under the optimized detection conditions, a linear correlation was observed in the range of 5-60 ng/mL (R2 = 0.99749), and the limit of detection (LOD) was 2.66 ng/mL. The method has high sensitivity, good selectivity and reproducibility, and can be used for actual sample analysis with the recovery rate of 96.24-103.6 %. This study provides a reference for the rapid and convenient detection of ACE in agricultural products.
Collapse
Affiliation(s)
- Sa Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Kangli He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qiuyun Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lingjun Guan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Zhao Y, Chen Q, Zhang C, Li C, Jiang Z, Liang A. Aptamer Trimode Biosensor for Trace Glyphosate Based on FeMOF Catalytic Oxidation of Tetramethylbenzidine. BIOSENSORS 2022; 12:920. [PMID: 36354430 PMCID: PMC9688084 DOI: 10.3390/bios12110920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The stable and highly catalytic Fe metal-organic framework (FeMOF) nanosol was prepared and characterized by electron microscopy, and energy and molecular spectral analysis. It was found that FeMOF strongly catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce TMBox, which had a fluorescence (FL) peak at 410 nm. When silver nanoparticles were added, it exhibited strong resonance Rayleigh scattering (RRS) activity and surface-enhanced Raman scattering (SERS) effect. This new FeMOF nanocatalytic trimode indicator reaction was combined with the glyphosate aptamer reaction to establish a new SERS/RRS/FL trimode biosensor for glyphosate. The sensor can be used for the analysis of environmental wastewater, and a new method for detecting glyphosate content in wastewater is proposed. The linear range of the sensor is 0.1-14 nmol/L, the detection limit is 0.05 nmol/L, the recovery is 92.1-97.5%, and the relative standard deviation is 3.6-8.7%.
Collapse
Affiliation(s)
- Yuxiang Zhao
- School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Qianmiao Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Chi Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Chongning Li
- School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Aihui Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| |
Collapse
|
7
|
Gu Y, Li Q, Yin M, Yang D, Yang Y. A super-hydrophobic perfluoropolyether coated polytetrafluoroethylene sheets substrate for detection of acetamiprid surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121373. [PMID: 35576838 DOI: 10.1016/j.saa.2022.121373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
In this paper, a hydrophobic substrate as concentrators including an inner layer of polytetrafluoroethylene (PTFE) and an outer layer covered a thin layer of perfluoropolyether (PFPE) was constructed to achieve a higher sensitivity for acetamiprid (AC) SERS detection. The condensation effect of the PTFE-PFPE hydrophobic substrate-induced aggregation of gold nanoparticles (Au NPs) result ''hot spots'' for SERS. The hydrophobic substrate is better reproducibility (RSD < 5%) compared with that on a conventional silicon wafer. A further application of the hydrophobic substrate was demonstrated by the detection of AC in tea samples within a detection range of 0.03 mg/L to 3 mg/L. The hydrophobic substrate eliminates the problem of solution diffusion to avoid the "coffee ring" effect (When a droplet adheres to a solid surface, the suspended molecular particles usually deposit on the edge of the droplet to form a ring).
Collapse
Affiliation(s)
- Yi Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Mengjia Yin
- Yunnan Lunyang Technology Co., Ltd, Kunming 650032, Yunnan Province, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
8
|
Jiang G, Li Y, Liu J, Liu L, Pi F. Progress on aptamer-based SERS sensors for food safety and quality assessment: methodology, current applications and future trends. Crit Rev Food Sci Nutr 2022; 64:783-800. [PMID: 35943403 DOI: 10.1080/10408398.2022.2108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that food safety has aroused extensive attentions from governments to researchers and to food industries. As a versatile technology based on molecular interactions, aptamer sensors which could specifically identify a wide range of food contaminants have been extensively studied in recent years. Surface-enhanced Raman spectroscopy integrated aptamer combines the advantages of both technologies, not only in the ability to specifically identify a wide range of food contaminants, but also in the ultra-high sensitivity, simplicity, portable and speed. To provide beneficial insights into the evaluation techniques in the field of food safety, we offer a comprehensive review on the design strategies for aptamer-SERS sensors in different scenarios, including non-nucleic acid amplification methods ("on/off" mode, sandwich mode, competition model and catalytic model) and nucleic acid amplification methods (hybridization chain reaction, rolling circle amplification, catalytic hairpin assembly). Meanwhile, a special attention is paid to the application of aptamer-SERS sensors in biological (foodborne pathogenic, bacteria and mycotoxins) and chemical contamination (drug residues, metal ions, and food additives) of food matrix. Finally, the challenges and prospects of developing reliable aptamer-SERS sensors for food safety were discussed, which are expected to offer a strong guidance for further development and extended applications.
Collapse
Affiliation(s)
- Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Ling Liu
- Wuxi Institute of Technology, Wuxi, Jiangsu, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Dao AQ, Thi Thanh Nhi L, Mai Nguyen D, Thanh Tam Toan T. A REVIEW ON DETERMINATION OF THE VETERINARY DRUG RESIDUES IN FOOD PRODUCTS. Biomed Chromatogr 2022; 36:e5364. [PMID: 35274322 DOI: 10.1002/bmc.5364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
In this paper, we discuss veterinary medicine and its applications in the food field as well as its risk to the health of humans and animals by the residues. We review how the veterinary residues enter and cause some detrimental effects. We also mention two techniques to determine the residue of veterinary medication that existed in food originating from animals, including classic and advanced techniques. Finally, we discuss the potential of various developed methods compared to some traditional techniques.
Collapse
Affiliation(s)
- Anh Quang Dao
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Le Thi Thanh Nhi
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Vietnam
| | - Do Mai Nguyen
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Tran Thanh Tam Toan
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| |
Collapse
|
10
|
Abstract
Recent global warming has resulted in shifting of weather patterns and led to intensification of natural disasters and upsurges in pests and diseases. As a result, global food systems are under pressure and need adjustments to meet the change—often by pesticides. Unfortunately, such agrochemicals are harmful for humans and the environment, and consequently need to be monitored. Traditional detection methods currently used are time consuming in terms of sample preparation, are high cost, and devices are typically not portable. Recently, Surface Enhanced Raman Scattering (SERS) has emerged as an attractive candidate for rapid, high sensitivity and high selectivity detection of contaminants relevant to the food industry and environmental monitoring. In this review, the principles of SERS as well as recent SERS substrate fabrication methods are first discussed. Following this, their development and applications for agrifood safety is reviewed, with focus on detection of dye molecules, melamine in food products, and the detection of different classes of pesticides such as organophosphate and neonicotinoids.
Collapse
|
11
|
Pan TT, Guo W, Lu P, Hu D. In situ and rapid determination of acetamiprid residue on cabbage leaf using surface-enhanced Raman scattering. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3595-3604. [PMID: 33275280 DOI: 10.1002/jsfa.10988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pesticide residues in agricultural products and foods pose a serious threat to human health, and therefore a simple, rapid and direct method is urgently needed for pesticide residue detection. In addition to realizing the detection of acetamiprid in cabbage extract solution, the main target of this study was to establish an in situ surface-enhanced Raman scattering (SERS) method, which could directly detect acetamiprid residue on cabbage leaf without the need for extraction. Acetamiprid was first used to contaminate the surface of fresh cabbage leaf, and then bimetallic silver-coated gold nanoparticles (Au@AgNPs) were added on the contaminated spots and dried for SERS measurement. RESULTS Results suggested that acetamiprid can be detected in cabbage extract and on cabbage leaf surface in situ using the SERS method based on the Au@AgNPs substrate. The limit of detection was 0.08 μg mL-1 in cabbage extract and 0.14 mg kg-1 on cabbage leaf, the recovery ranged from 80.5% to 105.5% and the relative standard deviation was in the range 4.37-10.63%. CONCLUSIONS The proposed SERS method provides an in situ, nondestructive and rapid way to detect acetamiprid residue on the surface of fruits and vegetables, which could serve as an auxiliary approach for early screening of contaminated produce in field or on site in the future. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting-Tiao Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Biological Sciences and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Wang Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Wang H, Zhang Z, Chen C, Liang A, Jiang Z. Fullerene carbon dot catalytic amplification-aptamer assay platform for ultratrace As +3 utilizing SERS/RRS/Abs trifunctional Au nanoprobes. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123633. [PMID: 32827860 DOI: 10.1016/j.jhazmat.2020.123633] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/05/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Under microwave conditions, Au-doped carbon dots (CDAu) were prepared using fullerene as a precursor, and characterized in details. It is found that CDAu can strongly catalyze the reaction of HAuCl4-fructose to generate gold nanoparticles (AuNPs). The new nanocatalytic reaction was studied by surface-enhanced Raman scattering (SERS), resonance Rayleigh scattering (RRS) and absorption (Abs) spectrometry. Based on the specific aptamer (AptAs)-As+3 reaction mediated the CDAu-HAuCl4-fructose nanoreaction, and the products of AuNPs as SERS/RRS/Abs trifunctional indicator nanoprobes, a new trimode Apt assay strategy was developed for detection of ultratrace As+3. A 0.07-0.70, 0.10-0.60 and 0.20-0.70 μg L-1 were determined by SERS, RRS and Abs, with detection limits (DL) of 0.04, 0.06, 0.10 μg L-1 respectively. The aptamer-regulation CDAu catalytic amplification platform can be also used to assay 1.7-13.3 nmol L-1 Pb2+ and 2.0-12 μmol L-1 Hg2+, with DL of 0.80 nmol L-1 and 0.90 μmol L-1 respectively.
Collapse
Affiliation(s)
- Haolin Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Zhihao Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Chunqiang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
13
|
Walther BK, Dinu CZ, Guldi DM, Sergeyev VG, Creager SE, Cooke JP, Guiseppi-Elie A. Nanobiosensing with graphene and carbon quantum dots: Recent advances. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2020; 39:23-46. [PMID: 37974933 PMCID: PMC10653125 DOI: 10.1016/j.mattod.2020.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Graphene and carbon quantum dots (GQDs and CQDs) are relatively new nanomaterials that have demonstrated impact in multiple different fields thanks to their unique quantum properties and excellent biocompatibility. Biosensing, analyte detection and monitoring wherein a key feature is coupled molecular recognition and signal transduction, is one such field that is being greatly advanced by the use of GQDs and CQDs. In this review, recent progress on the development of biotransducers and biosensors enabled by the creative use of GQDs and CQDs is reviewed, with special emphasis on how these materials specifically interface with biomolecules to improve overall analyte detection. This review also introduces nano-enabled biotransducers and different biosensing configurations and strategies, as well as highlights key properties of GQDs and CQDs that are pertinent to functional biotransducer design. Following relevant introductory material, the literature is surveyed with emphasis on work performed over the last 5 years. General comments and suggestions to advance the direction and potential of the field are included throughout the review. The strategic purpose is to inspire and guide future investigations into biosensor design for quality and safety, as well as serve as a primer for developing GQD- and CQD-based biosensors.
Collapse
Affiliation(s)
- Brandon K. Walther
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg 91058 Erlangen, Germany
| | - Vladimir G. Sergeyev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Stephen E. Creager
- Department of Chemistry and Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - John P. Cooke
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Anthony Guiseppi-Elie
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA
| |
Collapse
|
14
|
Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z. Nanosol SERS quantitative analytical method: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115885] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Yao D, Li C, Wen G, Liang A, Jiang Z. A highly sensitive and accurate SERS/RRS dual-spectroscopic immunosensor for clenbuterol based on nitrogen/silver-codoped carbon dots catalytic amplification. Talanta 2019; 209:120529. [PMID: 31892061 DOI: 10.1016/j.talanta.2019.120529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
Preparation of multifunctional codoped carbon dots, and their new analytical applications in surface-enhanced Raman scattering (SERS) quantitative analytical method are still challenge. To overcome these problems, the nitrogen/silver-codoped carbon dots (CDN/Ag) with highly catalytic amplification are prepared by microwave method, and characterized by spectrophotometry and electron microscopy. The results show that CDN/Ag can strongly catalyze trisodium citrate-HAuCl4 reaction to generate red nanogold with resonance Rayleigh scattering (RRS) effect and SERS effect using Victoria blue B (VBB) as molecular probes. The CDN/Ag catalytic amplification and specific immunoreaction of clenbuterol (Clen) are coupled with highly sensitive SERS and accurate RRS to fabricate a new dual-spectroscopic strategy with a detection limit of 0.68 pg mL-1 Clen.
Collapse
Affiliation(s)
- Dongmei Yao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China; College of Chemistry and Biology Engineering, Hechi University, Yizhou, 546300, China
| | - Chongning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
| |
Collapse
|