1
|
Ebrahim Z, Feyzabadi G, Asghari Moghaddam N, Mohammadgholi A. Biogenic Ag-Cu Nanoparticles Synthesized with Extract of Eryngium Billardieri L. and Evaluation of their Anticancer Potential on PC-3 and LNCaP Cancer Cell Lines. Adv Biomed Res 2025; 14:43. [PMID: 40519578 PMCID: PMC12165295 DOI: 10.4103/abr.abr_255_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 06/18/2025] Open
Abstract
Background The anticancer action of biogenic Ag-Cu nanoparticles (NPs) using Eryngium billardieri against PC-3 and LNCaP cell lines in prostate malignancy was investigated. Materials and Methods XRD, FTIR, EDAX, FESEM, and TEM were used to illustrate the Ag-Cu NPs. The PC-3 and LNCaP cell lines were used to test the anticancer ability of Ag-Cu NPs. The cytotoxicity was assessed by MMT and flow cytometry. Apoptotic and metastatic-promoting gene expressions were evaluated by real-time PCR. ROS generation was measured. Results NPs are spherical and their average size was 12 ± 9.7 nanometers. The EDAX result indicated the presence of Ag, Cu, and C. The XRD results revealed the NPs' crystalline structure. The results demonstrated a remarkable antiproliferative effect of the nanoparticles, with IC50 values of 15.43 μg/mL for PC-3 and 7.64 μg/mL for LNCaP. The Ag-Cu NPs exhibited a tendency to trigger apoptosis. This was confirmed by analyzing apoptosis-related gene expression. The apoptotic influence of Ag-Cu NPs was suggested to be critical when compared to the control and extract-treated groups by the up-regulation of Bcl2-related X (Bax), caspase3, and caspase9, and the down-regulation of Bcl2. Furthermore, Annexin V-FITC/propidium iodide presented a 23.15% and 22.3% apoptotic ratio of PC-3 and LNCaP cells, respectively. Vascular endothelial growth factor (VEGF), and metalloproteinases (MMPs) down-regulation showed that Ag-Cu NPs were hostile to metastasis. Also, ROS generation was estimated at 1261 and 1366 RFU in LNCaP and PC-3 cells treated with green-synthesized Ag-Cu NPs, respectively. Conclusions The study suggested E. billardieri synthesized Ag-Cu as a potential candidate in prostate cancer therapeutic management.
Collapse
Affiliation(s)
- Zahra Ebrahim
- Department of Biology, CT. C., Islamic Azad University, Tehran, Iran
| | | | | | | |
Collapse
|
2
|
Yanamadala Y, Roy R, Williams AA, Uppu N, Kim AY, DeCoster MA, Kim P, Murray TA. Intranasal Delivery of Cell-Penetrating Therapeutic Peptide Enhances Brain Delivery, Reduces Inflammation, and Improves Neurologic Function in Moderate Traumatic Brain Injury. Pharmaceutics 2024; 16:774. [PMID: 38931895 PMCID: PMC11206831 DOI: 10.3390/pharmaceutics16060774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Following traumatic brain injury (TBI), secondary brain damage due to chronic inflammation is the most predominant cause of the delayed onset of mood and memory disorders. Currently no therapeutic approach is available to effectively mitigate secondary brain injury after TBI. One reason is the blood-brain barrier (BBB), which prevents the passage of most therapeutic agents into the brain. Peptides have been among the leading candidates for CNS therapy due to their low immunogenicity and toxicity, bioavailability, and ease of modification. In this study, we demonstrated that non-invasive intranasal (IN) administration of KAFAK, a cell penetrating anti-inflammatory peptide, traversed the BBB in a murine model of diffuse, moderate TBI. Notably, KAFAK treatment reduced the production of proinflammatory cytokines that contribute to secondary injury. Furthermore, behavioral tests showed improved or restored neurological, memory, and locomotor performance after TBI in KAFAK-treated mice. This study demonstrates KAFAK's ability to cross the blood-brain barrier, to lower proinflammatory cytokines in vivo, and to restore function after a moderate TBI.
Collapse
Affiliation(s)
- Yaswanthi Yanamadala
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| | - Ritika Roy
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| | - Afrika Alake Williams
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| | - Navya Uppu
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| | - Audrey Yoonsun Kim
- Department of Biological Sciences, Grambling State University, Grambling, LA 71245, USA; (A.Y.K.); (P.K.)
| | - Mark A. DeCoster
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| | - Paul Kim
- Department of Biological Sciences, Grambling State University, Grambling, LA 71245, USA; (A.Y.K.); (P.K.)
| | - Teresa Ann Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| |
Collapse
|
3
|
Karan A, Sharma NS, Darder M, Su Y, Andrabi SM, Shahriar SMS, John JV, Luo Z, DeCoster MA, Zhang YS, Xie J. Copper-Cystine Biohybrid-Embedded Nanofiber Aerogels Show Antibacterial and Angiogenic Properties. ACS OMEGA 2024; 9:9765-9781. [PMID: 38434900 PMCID: PMC10905775 DOI: 10.1021/acsomega.3c10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Copper-cystine-based high aspect ratio structures (CuHARS) possess exceptional physical and chemical properties and exhibit remarkable biodegradability in human physiological conditions. Extensive testing has confirmed the biocompatibility and biodegradability of CuHARS under diverse biological conditions, making them a viable source of essential Cu2+. These ions are vital for catalyzing the production of nitric oxide (NO) from the decomposition of S-nitrosothiols (RSNOs) found in human blood. The ability of CuHARS to act as a Cu2+ donor under specific concentrations has been demonstrated in this study, resulting in the generation of elevated levels of NO. Consequently, this dual function makes CuHARS effective as both a bactericidal agent and a promoter of angiogenesis. In vitro experiments have shown that CuHARS actively promotes the migration and formation of complete lumens by redirecting microvascular endothelial cells. To maximize the benefits of CuHARS, they have been incorporated into biomimetic electrospun poly(ε-caprolactone)/gelatin nanofiber aerogels. Through the regulated release of Cu2+ and NO production, these channeled aerogels not only provide antibacterial support but also promote angiogenesis. Taken together, the inclusion of CuHARS in biomimetic scaffolds could hold great promise in revolutionizing tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Anik Karan
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Navatha Shree Sharma
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Margarita Darder
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain
| | - Yajuan Su
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Syed Muntazir Andrabi
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - S M Shatil Shahriar
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Johnson V. John
- Terasaki
Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Zeyu Luo
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Mark A. DeCoster
- Biomedical
Engineering, Louisiana Tech University, Ruston, Louisiana 71272, United States
- Institute
for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Yu Shrike Zhang
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Jingwei Xie
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
4
|
Cazzoli R, Zamborlin A, Ermini ML, Salerno A, Curcio M, Nicoletta FP, Iemma F, Vittorio O, Voliani V, Cirillo G. Evolving approaches in glioma treatment: harnessing the potential of copper metabolism modulation. RSC Adv 2023; 13:34045-34056. [PMID: 38020008 PMCID: PMC10661684 DOI: 10.1039/d3ra06434d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
The key properties and high versatility of metal nanoparticles have shed new perspectives on cancer therapy, with copper nanoparticles gaining great interest because of the ability to couple the intrinsic properties of metal nanoparticles with the biological activities of copper ions in cancer cells. Copper, indeed, is a cofactor involved in different metabolic pathways of many physiological and pathological processes. Literature data report on the use of copper in preclinical protocols for cancer treatment based on chemo-, photothermal-, or copper chelating-therapies. Copper nanoparticles exhibit anticancer activity via multiple routes, mainly involving the targeting of mitochondria, the modulation of oxidative stress, the induction of apoptosis and autophagy, and the modulation of immune response. Moreover, compared to other metal nanoparticles (e.g. gold, silver, palladium, and platinum), copper nanoparticles are rapidly cleared from organs with low systemic toxicity and benefit from the copper's low cost and wide availability. Within this review, we aim to explore the impact of copper in cancer research, focusing on glioma, the most common primary brain tumour. Glioma accounts for about 80% of all malignant brain tumours and shows a poor prognosis with the five-year survival rate being less than 5%. After introducing the glioma pathogenesis and the limitation of current therapeutic strategies, we will discuss the potential impact of copper therapy and present the key results of the most relevant literature to establish a reliable foundation for future development of copper-based approaches.
Collapse
Affiliation(s)
- Riccardo Cazzoli
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Agata Zamborlin
- NEST-Scuola Normale Superiore Piazza San Silvestro 12 - 56127 Pisa Italy
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Antonietta Salerno
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Orazio Vittorio
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
- School of Biomedical Sciences, University of New South Wales Sydney NSW Australia
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa Viale Cembrano 4 - 16148 Genoa Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| |
Collapse
|
5
|
Ni Z, Wan M, Tang G, Sun L. Synthesis of CuO and PAA-Regulated Silver-Carried CuO Nanosheet Composites and Their Antibacterial Properties. Polymers (Basel) 2022; 14:polym14245422. [PMID: 36559789 PMCID: PMC9787518 DOI: 10.3390/polym14245422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
With the aid of a facile and green aqueous solution approach, a variety of copper oxide (CuO) with different shapes and polyacrylic-acid (PAA)-regulated silver-carried CuO (CuO@Ag) nanosheet composites have been successfully produced. The point of this article was to propose a common synergy using Ag-carried CuO nanosheet composites for their potential antibacterial efficiency against three types of bacteria such as E. coli, P. aeruginosa, and S. aureus. By using various technical means such as XRD, SEM, and TEM, the morphology and composition of CuO and CuO@Ag were characterized. It was shown that both CuO and CuO@Ag have a laminar structure and exhibit good crystallization, and that the copper source and reaction duration have a sizable impact on the morphology and size distribution of the product. In the process of synthesizing CuO@Ag, the appropriate amount of polyacrylic acid (PAA) can inhibit the agglomeration of Ag NPs and regulate the size of Ag at about ten nanometers. In addition, broth dilution, optical density (OD 600), and electron microscopy analysis were used to assess the antimicrobial activity of CuO@Ag against the above three types of bacteria. CuO@Ag exhibits excellent synergistic and antibacterial action, particularly against S. aureus. The antimicrobial mechanism of the CuO@Ag nanosheet composites can be attributed to the destruction of the bacterial cell membrane and the consequent leakage of the cytoplasm by the release of Ag+ and Cu2+. The breakdown of the bacterial cell membrane and subsequent leakage of cytoplasm caused by Ag+ and Cu2+ released from antimicrobial agents may be the cause of the CuO@Ag nanosheet composites' antibacterial action. This study shows that CuO@Ag nanosheet composites have good antibacterial properties, which also provides the basis and ideas for the application research of other silver nanocomposites.
Collapse
Affiliation(s)
- Zhihui Ni
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
- Correspondence: (Z.N.); (L.S.)
| | - Menghui Wan
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Gongming Tang
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Lei Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
- Correspondence: (Z.N.); (L.S.)
| |
Collapse
|
6
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
7
|
Shen Q, Qi Y, Kong Y, Bao H, Wang Y, Dong A, Wu H, Xu Y. Advances in Copper-Based Biomaterials With Antibacterial and Osteogenic Properties for Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 9:795425. [PMID: 35127670 PMCID: PMC8811349 DOI: 10.3389/fbioe.2021.795425] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Treating bone defects coupled with pathogen infections poses a formidable challenge to clinical medicine. Thus, there is an urgent need to develop orthopedic implants that provide excellent antibacterial and osteogenic properties. Of the various types, copper-based biomaterials capable of both regenerating bone and fighting infections are an effective therapeutic strategy for bone tissue engineering and therefore have attracted significant research interest. This review examines the advantages of copper-based biomaterials for biological functions and introduces these materials’ antibacterial mechanisms. We summarize current knowledge about the application of copper-based biomaterials with antimicrobial and osteogenic properties in the prevention and treatment of bone infection and discuss their potential uses in the field of orthopedics. By examining both broad and in-depth research, this review functions as a practical guide to developing copper-based biomaterials and offers directions for possible future work.
Collapse
Affiliation(s)
- Qiudi Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Yansong Qi
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yangzhi Kong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Huricha Bao
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yifan Wang
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- *Correspondence: Alideertu Dong, ; Haixia Wu, ; Yongsheng Xu,
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- *Correspondence: Alideertu Dong, ; Haixia Wu, ; Yongsheng Xu,
| | - Yongsheng Xu
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
- *Correspondence: Alideertu Dong, ; Haixia Wu, ; Yongsheng Xu,
| |
Collapse
|
8
|
Laouini SE, Bouafia A, Soldatov AV, Algarni H, Tedjani ML, Ali GAM, Barhoum A. Green Synthesized of Ag/Ag 2O Nanoparticles Using Aqueous Leaves Extracts of Phoenix dactylifera L. and Their Azo Dye Photodegradation. MEMBRANES 2021; 11:468. [PMID: 34202049 PMCID: PMC8306034 DOI: 10.3390/membranes11070468] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
In this study, silver/silver oxide nanoparticles (Ag/Ag2O NPs) were successfully biosynthesized using Phoenix dactylifera L. aqueous leaves extract. The effect of different plant extract/precursor contractions (volume ratio, v/v%) on Ag/Ag2O NP formation, their optical properties, and photocatalytic activity towards azo dye degradation, i.e., Congo red (CR) and methylene blue (MB), were investigated. X-ray diffraction confirmed the crystalline nature of Ag/Ag2O NPs with a crystallite size range from 28 to 39 nm. Scanning electron microscope images showed that the Ag/Ag2O NPs have an oval and spherical shape. UV-vis spectroscopy showed that Ag/Ag2O NPs have a direct bandgap of 2.07-2.86 eV and an indirect bandgap of 1.60-1.76 eV. Fourier transform infrared analysis suggests that the synthesized Ag/Ag2O NPs might be stabilized through the interactions of -OH and C=O groups in the carbohydrates, flavonoids, tannins, and phenolic acids present in Phoenix dactylifera L. Interestingly, the prepared Ag/Ag2O NPs showed high catalytic degradation activity for CR dye. The photocatalytic degradation of the azo dye was monitored spectrophotometrically in a wavelength range of 250-900 nm, and a high decolorization efficiency (84.50%) was obtained after 50 min of reaction. As a result, the use of Phoenix dactylifera L. aqueous leaves extract offers a cost-effective and eco-friendly method.
Collapse
Affiliation(s)
- Salah Eddine Laouini
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria; (S.E.L.); (M.L.T.)
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria; (S.E.L.); (M.L.T.)
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova Str. 178/24, Rostov-on-Don 344090, Russia;
| | - Hamed Algarni
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Physics, Faculty of Sciences, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed Laid Tedjani
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria; (S.E.L.); (M.L.T.)
| | - Gomaa A. M. Ali
- Chemistry Department, Faculty of Science, Al–Azhar University, Assiut 71524, Egypt
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
- School of Chemical Sciences, Fraunhofer Project Centre, Dublin City University, D09 V209 Dublin, Ireland
| |
Collapse
|
9
|
Prajapati N, Karan A, Khezerlou E, DeCoster MA. The Immunomodulatory Potential of Copper and Silver Based Self-Assembled Metal Organic Biohybrids Nanomaterials in Cancer Theranostics. Front Chem 2021; 8:629835. [PMID: 33585405 PMCID: PMC7873042 DOI: 10.3389/fchem.2020.629835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Copper high aspect ratio structures (CuHARS) and silver cystine nanoparticles (AgCysNPs) are two unique micro/nano particles under study here that show extensive anti-cancer effects on a glioma tumor cell line. These micro/nano particles have shown potent toxicity in the presence of inflammatory stimulus (combination of tumor necrosis factor, [TNF] and lipo-polysaccharide, LPS). CuHARS with a concentration of 20 μg/ml uniquely increased the catalytic generation of nitric oxide (NO), an important contributor in the immune system. This NO was generated in a cell culture tumor microenvironment (TME) in the presence of 25 µM S-nitrosothiol (cysteine-NO) and the inflammatory stimulus. CuHARS increased the NO production by 68.75% when compared to untreated glioma cells with CysNO and inflammatory stimulus. The production of NO was significantly higher under similar circumstances in the case of normal primary structural cells like brain microvascular endothelial cells (BMVECs). The production of NO by BMVECs went up by 181.25% compared to glioma cells. This significant increase in the NO concentration could have added up to tumorigenesis but the anti-cancer effect of CuHARS was prominent enough to lower down the viability of glioma cells by approximately 20% and increased the metabolism of structural cells, BMVECs by approximately 200%. The immunomodulatory effect of NO in the TME under these circumstances in the presence of the novel micro/nano material, CuHARS has risen up compared to the effect of inflammatory stimulus alone. The potency and specific nature of these materials toward tumor cells may make them suitable candidates for cancer treatment. Successive treatment of CuHARS to glioma cells also proved to be an effective approach considering the decrease in the total count of cells by 11.84 fold in case of three successive treatments compared to a single dose which only decreased the cell count by 2.45 fold showing the dose-dependent increasing toxicity toward glioma cells. AgCysNPs are another potent nanomaterial which also proved its significant toxic nature toward tumor cell lines as demonstrated here, but their immunomodulatory response is still unclear and needs to be explored further.
Collapse
Affiliation(s)
- Neela Prajapati
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States
| | - Anik Karan
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States
| | - Elnaz Khezerlou
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States
| | - Mark A DeCoster
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States.,Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States
| |
Collapse
|
10
|
Rodrigues JP, Prajapati N, DeCoster MA, Poh S, Murray TA. Efficient LRP1-Mediated Uptake and Low Cytotoxicity of Peptide L57 In Vitro Shows Its Promise as CNS Drug Delivery Vector. J Pharm Sci 2021; 110:824-832. [PMID: 33065129 PMCID: PMC7855644 DOI: 10.1016/j.xphs.2020.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
Abstract
Although an abundance of drug candidates exists which are aimed at the remediation of central nervous system (CNS) disorders, the utility of some are severely limited by their inability to cross the blood brain barrier. Potential drug delivery systems such as the Angiopep family of peptides have shown modest potential; however, there is a need for novel drug delivery candidates that incorporate peptidomimetics to enhance the efficiency of transcytosis, specificity, and biocompatibility. Here, we report on the first in vitro cellular uptake and cytotoxicity study of a peptidomimetic, cationic peptide, L57. It binds to cluster 4 of the low-density lipoprotein receptor-related protein 1 (LRP1) receptor which is expressed in numerous cell types, such as brain endothelial cells. We used early-passage-number brain microvascular endothelial cells and astrocytes harvested from rat pup brains that highly express LRP1, to study the uptake of L57 versus Angiopep-7 (A7). Uptake of L57 and A7 showed a concentration-dependent increase, with L57 being taken up to a greater degree than A7 at the same concentration. Additionally, peptide uptake in LRP1-deficient PEA 10 cells had greatly reduced uptake. Furthermore, L57 demonstrated excellent cell viability versus A7, showing promise as a potential drug delivery vector for CNS therapeutics.
Collapse
Affiliation(s)
| | - Neela Prajapati
- Biomedical Engineering, Louisiana Tech University, Ruston, LA, USA
| | - Mark A DeCoster
- Biomedical Engineering, Louisiana Tech University, Ruston, LA, USA
| | - Scott Poh
- Chemistry, Louisiana Tech University, Ruston, LA, USA.
| | - Teresa A Murray
- Biomedical Engineering, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
11
|
Moosavifard SE, Saleki F, Mohammadi A, Hafizi A, Rahimpour MR. Construction of hierarchical nanoporous bimetallic copper‑cobalt selenide hollow spheres for hybrid supercapacitor. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114295] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Darder M, Karan A, Real GD, DeCoster MA. Cellulose-based biomaterials integrated with copper-cystine hybrid structures as catalysts for nitric oxide generation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110369. [PMID: 31923961 DOI: 10.1016/j.msec.2019.110369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022]
Abstract
Bionanocomposite materials were developed from the assembly of polymer-coated copper-cystine high-aspect ratio structures (CuHARS) and cellulose fibers. The coating of the metal-organic materials with polyallylamine hydrochloride (PAH) allows their covalent linkage to TEMPO-oxidized cellulose by means of EDC/NHS. The resulting materials can be processed as films or macroporous foams by solvent casting and lyophilization, respectively. The films show good mechanical behavior with Young's moduli around 1.5 GPa as well as resistance in water, while the obtained foams show an open network of interconnected macropores with average diameters around 130 μm, depending on the concentration of the initial suspension, and compression modulus values around 450 kPa, similar to other reported freeze-dried nanocellulose-based aerogels. Based on these characteristics, the cellulose/PAH-CuHARS composites are promising for potential biomedical applications as implants or wound dressing materials. They have proved to be effective in the decomposition of low molecular weight S-nitrosothiols (RSNOs), similar to those existing in blood, releasing nitric oxide (NO). This effect is attributed to the presence of copper in the crystalline structure of the CuHARS building unit, which can be gradually released in the presence of redox species like ascorbic acid, typically found in blood. The resulting biomaterials can offer the interesting properties associated with NO, like antimicrobial activity as preliminary tests showed here with Escherichia coli and Staphylococcus epidermidis. In the presence of physiological concentration of RSNOs the amount of generated NO (around 360 nM) is not enough to show bactericidal effect on the studied bacteria, but it could provide other properties inherent to NO even at low concentration in the nM range like anti-inflammatory and anti-thrombotic effects. The cytotoxic effect recorded of the films on rat brain endothelial cells (BMVECs) is least significant and proves them to be friendly enough for further biological studies.
Collapse
Affiliation(s)
- Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049, Madrid, Spain.
| | - Anik Karan
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA
| | - Gustavo Del Real
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7,5, 28040, Madrid, Spain
| | - Mark A DeCoster
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA; Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA
| |
Collapse
|