1
|
Morganti D, Longo V, Leonardi AA, Irrera A, Colombo P, Fazio B. First Vibrational Fingerprint of Parietaria judaica Protein via Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2025; 15:182. [PMID: 40136979 PMCID: PMC11940344 DOI: 10.3390/bios15030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Accurate identification and characterization of allergenic proteins at the molecular level are essential for pinpointing the specific protein structures responsible for allergic reactions, thus advancing the development of precise diagnostic tests. Significant efforts have been focused on novel experimental techniques aimed at deepening the understanding of the underlying molecular mechanisms of these reactions. In this work, we show, for the first time to our knowledge, the unique Raman fingerprint of three Parietaria judaica (Par j) allergenic proteins. These proteins are typically present in pollen and are known to trigger severe respiratory diseases. In our research, we further exploited the surface-enhanced Raman scattering (SERS) effect from an Ag dendrite substrate. This approach provided better discrimination and a comprehensive analysis of the proteins Par j 1, 2, and 4 in hydration conditions, enabling rapid differentiation between them through a spectroscopic study.
Collapse
Affiliation(s)
- Dario Morganti
- CNR IMM-ME, Institute for Microelectronics and Microsystems, Viale F.S. d’Alcontres 31, I-98166 Messina, Italy; (D.M.); (A.I.)
- CNR DSFTM, Department of Physical Sciences and Technologies of Matter, Piazzale Aldo Moro, 7, I-00185 Roma, Italy
| | - Valeria Longo
- CNR IRIB-PA, Institute for Biomedical Research and Innovation, Via U. La Malfa 153, I-90146 Palermo, Italy;
| | - Antonio Alessio Leonardi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F.S. d’Alcontres 31, I-98166 Messina, Italy;
| | - Alessia Irrera
- CNR IMM-ME, Institute for Microelectronics and Microsystems, Viale F.S. d’Alcontres 31, I-98166 Messina, Italy; (D.M.); (A.I.)
| | - Paolo Colombo
- CNR IRIB-PA, Institute for Biomedical Research and Innovation, Via U. La Malfa 153, I-90146 Palermo, Italy;
| | - Barbara Fazio
- CNR IMM-ME, Institute for Microelectronics and Microsystems, Viale F.S. d’Alcontres 31, I-98166 Messina, Italy; (D.M.); (A.I.)
| |
Collapse
|
2
|
Papale M, Fazi S, Severini M, Scarinci R, Dell'Acqua O, Azzaro M, Venuti V, Fazio B, Fazio E, Crupi V, Irrera A, Rizzo C, Giudice AL, Caruso G. Structural properties and microbial diversity of the biofilm colonizing plastic substrates in Terra Nova Bay (Antarctica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173773. [PMID: 38844237 DOI: 10.1016/j.scitotenv.2024.173773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Microbial colonization on plastic polymers has been extensively explored, however the temporal dynamics of biofilm community in Antarctic environments are almost unknown. As a contribute to fill this knowledge gap, the structural characteristics and microbial diversity of the biofilm associated with polyvinyl chloride (PVC) and polyethylene (PE) panels submerged at 5 m of depth and collected after 3, 9 and 12 months were investigated in four coastal sites of the Ross Sea. Additional panels placed at 5 and 20 m were retrieved after 12 months. Chemical characterization was performed by FTIR-ATR and Raman (through Surface-Enhanced Raman Scattering, SERS) spectroscopy. Bacterial community composition was quantified at a single cell level by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and Confocal Laser Scanning Microscopy (CLSM); microbial diversity was assessed by 16S rRNA gene sequencing. This multidisciplinary approach has provided new insights into microbial community dynamics during biofouling process, shedding light on the biofilm diversity and temporal succession on plastic substrates in the Ross Sea. Significant differences between free-living and microbial biofilm communities were found, with a more consolidated and structured community composition on PVC compared to PE. Spectral features ascribable to tyrosine, polysaccharides, nucleic acids and lipids characterized the PVC-associated biofilms. Pseudomonadota (among Gamma-proteobacteria) and Alpha-proteobacteria dominated the microbial biofilm community. Interestingly, in Road Bay, close to the Italian "Mario Zucchelli" research station, the biofilm growth - already observed during summer season, after 3 months of submersion - continued afterwards leading to a massive microbial abundance at the end of winter (after 12 months). After 3 months, higher percentages of Gamma-proteobacteria in Road Bay than in the not-impacted site were found. These observations lead us to hypothesize that in this site microbial fouling developed during the first 3 months could serve as a starter pioneering community stimulating the successive growth during winter.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Stefano Fazi
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy; National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Maila Severini
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy
| | - Roberta Scarinci
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy
| | - Ombretta Dell'Acqua
- DISTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Barbara Fazio
- URT "LabSens of Beyond Nano" of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR- DSFTM-ME), Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy; Institute for Chemical and Physical Processes, National Research Council (CNR-IPCF), Viale Ferdinando Stagno d'Alcontres, 37, 98158 Messina, Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Vincenza Crupi
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Alessia Irrera
- URT "LabSens of Beyond Nano" of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR- DSFTM-ME), Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy; Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy; National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy.
| |
Collapse
|
3
|
Zeng P, Zhang H, Guan Q, Zhang Q, Yan X, Yu L, Duan L, Wang C. Constructing a 3D interconnected network of Ag nanostructures for high-performance SERS detection of food coloring agents. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6088-6096. [PMID: 37933465 DOI: 10.1039/d3ay01515g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The design and preparation of various effective three-dimensional (3D) silver nanostructures is a frontier area of research in the field of surface-enhanced Raman scattering (SERS). This paper demonstrates a simple and novel method for the preparation of a substrate, whose surface was covered by a 3D interconnected network of Ag nanostructures, and the resulting network structure surface is free of organic contaminants. The EDS measurements confirm the metallic nature of the formed 3D Ag nanonetwork substrate. Additionally, the influence of experimental parameters on the morphology of the 3D Ag nanonetwork was also investigated, such as reaction time, hydrofluoric acid concentration, silver nitrate concentration and sodium citrate concentration. The 3D Ag nanonetwork has good uniformity. Importantly, the 3D Ag nanonetwork substrate was used to accurately and reliably detect amaranth (AR) and sunset yellow (SY) in beverages, with the lowest detection limit of 3 and 0.1 μg L-1, respectively. Therefore, this substrate is expected to be a promising candidate for SERS detection and offers attractive potential for a wider range of applications.
Collapse
Affiliation(s)
- Pei Zeng
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Huan Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Qi Guan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Qianqian Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Xianzai Yan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Lili Yu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Luying Duan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Chunrong Wang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
4
|
Franco D, Leonardi AA, Rizzo MG, Palermo N, Irrera A, Calabrese G, Conoci S. Biological Response Evaluation of Human Fetal Osteoblast Cells and Bacterial Cells on Fractal Silver Dendrites for Bone Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1107. [PMID: 36986001 PMCID: PMC10054653 DOI: 10.3390/nano13061107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Prosthetic joint replacement is the most widely used surgical approach to repair large bone defects, although it is often associated with prosthetic joint infection (PJI), caused by biofilm formation. To solve the PJI problem, various approaches have been proposed, including the coating of implantable devices with nanomaterials that exhibit antibacterial activity. Among these, silver nanoparticles (AgNPs) are the most used for biomedical applications, even though their use has been limited by their cytotoxicity. Therefore, several studies have been performed to evaluate the most appropriate AgNPs concentration, size, and shape to avoid cytotoxic effects. Great attention has been focused on Ag nanodendrites, due to their interesting chemical, optical, and biological properties. In this study, we evaluated the biological response of human fetal osteoblastic cells (hFOB) and P. aeruginosa and S. aureus bacteria on fractal silver dendrite substrates produced by silicon-based technology (Si_Ag). In vitro results indicated that hFOB cells cultured for 72 h on the Si_Ag surface display a good cytocompatibility. Investigations using both Gram-positive (S. aureus) and Gram-negative (P. aeruginosa) bacterial strains incubated on Si_Ag for 24 h show a significant decrease in pathogen viability, more evident for P. aeruginosa than for S. aureus. These findings taken together suggest that fractal silver dendrite could represent an eligible nanomaterial for the coating of implantable medical devices.
Collapse
Affiliation(s)
- Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Antonio Alessio Leonardi
- Department of Physic and Astronomy, University of Catania (Italy), Via Santa Sofia 64, 95123 Catania, Italy
- CNR IMM, Catania Università, Via Santa Sofia 64, 95123 Catania, Italy
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Nicoletta Palermo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Alessia Irrera
- CNR URT Lab SENS, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
- CNR URT Lab SENS, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
5
|
Ding Z, Wang Y, Zhou W, Shui Y, Zhu Z, Zhang M, Huang Y, Jiang C, Li J, Wu Y. TiO 2 compact layer induced charge transfer enhancement in a three-dimensional TiO 2-Ag array SERS substrate for quantitative and multiplex analysis. RSC Adv 2023; 13:8270-8280. [PMID: 36926018 PMCID: PMC10012413 DOI: 10.1039/d3ra00094j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
A highly sensitive and uniform surface-enhanced Raman scattering (SERS) substrate is the guarantee for reliable quantitative analysis. Herein, a three-dimensional TiO2-Ag SERS substrate was prepared by growing a TiO2 nanorods (NRs) array on a TiO2 compact layer (c-TiO2), followed by modification with Ag nanoparticles (AgNPs). The synergy between the c-TiO2, semiconductor TiO2 NRs and the plasmonic AgNPs collaboratively endowed it with high sensitivity, in which c-TiO2 effectively blocked the recombination of electrons and holes, and the charge transfer enhancement contributed 10-fold improvement over that without the c-TiO2 substrate. Besides the high sensitivity, the TiO2-Ag hybrid array SERS substrate also showed quantitative and multi-component detecting capability. The limit of detection (LOD) for crystal violet (CV) was determined to be 10-9 M even with a portable Raman instrument. The TiO2-Ag composite structure was extended to detect organic pesticides (thiram, triazophos and fonofos), and the LODs for thiram, triazophos and fonofos were measured to be 10-7 M, 10-7 M and 10-6 M, respectively. In addition, the realistic simulation detecting pesticide residues for a real sample of dendrobium was demonstrated. The sensitive, quantitative and multiplex analysis of the TiO2-Ag hybrid array substrate indicated its great potential in the rapid detection of pesticide residues in real samples.
Collapse
Affiliation(s)
- Zhuang Ding
- School of Chemistry and Chemical Engineering, Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Yaru Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Wanpeng Zhou
- School of Chemistry and Chemical Engineering, Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Yanna Shui
- School of Chemistry and Chemical Engineering, Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Zhengdong Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Maofeng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Youju Huang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei Anhui 230031 China
| | - Jianhua Li
- Anhui Topway Testing Services Co. Ltd. 18 Rixin Road, Xuancheng Economic and Technological Development Zone 242000 China
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| |
Collapse
|
6
|
An N, Bi C, Liu H, Zhao L, Chen X, Chen M, Chen J, Yang S. Shape-Preserving Transformation of Electrodeposited Macroporous Microparticles for Single-Particle SERS Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8286-8297. [PMID: 36719779 DOI: 10.1021/acsami.2c18314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microparticles composed of bicontinuous and ordered macropores are important in many applications. However, rational integration of ordered macropores into a single crystalline microparticle remains a challenge. Here, we report a method to prepare three-dimensionally ordered macroporous (3DOM) Ag7O8NO3 micropyramids via selectively cementing the colloidal crystal templates via an electrochemical method and their shape-preserving transformation into 3DOM Ag micropryamids formed by Ag nanoparticles via a chemical reduction process. The interconnected macropores facilitated the transportation and enrichment of the analyte molecules into the 3DOM Ag micropyramids. The dense Ag nanoparticles on the skeletons of the 3DOM Ag micropyramids provided strong electromagnetic fields. Taken together, a 3DOM Ag micropyramid as a kind of single-particle surface-enhanced Raman scattering (SERS) sensing substrate demonstrated high SERS sensitivity and outstanding SERS signal reproducibility. We explored the application of 3DOM Ag micropyramids in SERS detection of biomolecules (e.g., adenosine, adenine, hemoglobin bovine, and lysozyme) and proved their potentials in distinguishing exosomes from tumor and non-tumor cells. The method can be extended to prepared 3DOM structures of other materials with promising applications in sensing, separation, and catalytic fields.
Collapse
Affiliation(s)
- Ning An
- School of Materials Science and Engineering, Institute for Composites Science Innovation, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Chao Bi
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Hong Liu
- School of Materials Science and Engineering, Institute for Composites Science Innovation, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Liyan Zhao
- School of Materials Science and Engineering, Institute for Composites Science Innovation, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Xueyan Chen
- School of Materials Science and Engineering, Institute for Composites Science Innovation, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Ming Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Jing Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Shikuan Yang
- School of Materials Science and Engineering, Institute for Composites Science Innovation, Zhejiang University, Hangzhou, Zhejiang310027, China
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang310027, China
| |
Collapse
|
7
|
Kochylas I, Dimitriou A, Apostolaki MA, Skoulikidou MC, Likodimos V, Gardelis S, Papanikolaou N. Enhanced Photoluminescence of R6G Dyes from Metal Decorated Silicon Nanowires Fabricated through Metal Assisted Chemical Etching. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041386. [PMID: 36837016 PMCID: PMC9963757 DOI: 10.3390/ma16041386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 05/17/2023]
Abstract
In this study, we developed active substrates consisting of Ag-decorated silicon nanowires on a Si substrate using a single-step Metal Assisted Chemical Etching (MACE) process, and evaluated their performance in the identification of low concentrations of Rhodamine 6G using surface-enhanced photoluminescence spectroscopy. Different structures with Ag-aggregates as well as Ag-dendrites were fabricated and studied depending on the etching parameters. Moreover, the addition of Au nanoparticles by simple drop-casting on the MACE-treated surfaces can enhance the photoluminescence significantly, and the structures have shown a Limit of Detection of Rhodamine 6G down to 10-12 M for the case of the Ag-dendrites enriched with Au nanoparticles.
Collapse
Affiliation(s)
- Ioannis Kochylas
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Anastasios Dimitriou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece
| | - Maria-Athina Apostolaki
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | | | - Vlassios Likodimos
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Spiros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Nikolaos Papanikolaou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece
- Correspondence:
| |
Collapse
|
8
|
Hossain MK. Silver-Decorated Silicon Nanostructures: Fabrication and Characterization of Nanoscale Terraces as an Efficient SERS-Active Substrate. Int J Mol Sci 2022; 24:ijms24010106. [PMID: 36613545 PMCID: PMC9820282 DOI: 10.3390/ijms24010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Rich and highly dense surface-enhanced Raman (SERS) hotspots available in the SERS-active platform are highly anticipated in SERS measurements. In this work, conventional silicon wafer was treated to have wide exposure to terraces available within the silicon nanostructures (Si-NSs). High-resolution field emission scanning electron microscopic (FESEM) investigations confirmed that the terraces were several microns wide and spread over different steps. These terraces were further decorated with silver nanoparticles (Ag-NPs) of different shapes and sizes to achieve SERS-active hotspots. Based on more than 150 events, a histogram of the size distribution of Ag-NPs indicated a relatively narrow size distribution, 29.64 ± 4.66 nm. The coverage density was estimated to be ~4 × 1010 cm-2. The SERS-activity of Ag-NPs -decorated Si-NSs was found to be enhanced with reference to those obtained in pristine Si-NSs. Finite difference time domain models were developed to support experimental observations in view of electromagnetic (EM) near-field distributions. Three archetype models; (i) dimer of same constituent Ag-NPs, (ii) dimer of different constituent Ag-NPs, and (iii) linear trimer of different constituent Ag-NPs were developed. EM near-field distributions were extracted at different incident polarizations. Si-NSs are well-known to facilitate light confinement, and such confinement can be cascaded within different Ag-NPs-decorated terraces of Si-NSs.
Collapse
Affiliation(s)
- Mohammad Kamal Hossain
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
9
|
Lo Faro MJ, Leonardi AA, Priolo F, Fazio B, Irrera A. Future Prospects of Luminescent Silicon Nanowires Biosensors. BIOSENSORS 2022; 12:1052. [PMID: 36421170 PMCID: PMC9688548 DOI: 10.3390/bios12111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we exploit the perspective of luminescent Si nanowires (NWs) in the growing field of commercial biosensing nanodevices for the selective recognition of proteins and pathogen genomes. We fabricated quantum confined fractal arrays of Si NWs with room temperature emission at 700 nm obtained by thin-film, metal-assisted, chemical etching with high production output at low cost. The fascinating optical features arising from multiple scattering and weak localization of light promote the use of Si NWs as optical biosensing platforms with high sensitivity and selectivity. In this work, label-free Si NW optical sensors are surface modified for the selective detection of C-reactive protein through antigen-gene interaction. In this case, we report the lowest limit of detection (LOD) of 1.6 fM, fostering the flexibility of different dynamic ranges for detection either in saliva or for serum analyses. By varying the NW surface functionalization with the specific antigen, the luminescence quenching of NW biosensors is used to measure the hepatitis B-virus pathogen genome without PCR-amplification, with an LOD of about 20 copies in real samples or blood matrix. The promising results show that NW optical biosensors can detect and isolate extracellular vesicles (EV) marked with CD81 protein with unprecedented sensitivity (LOD 2 × 105 sEV/mL), thus enabling their measurement even in a small amount of blastocoel fluid.
Collapse
Affiliation(s)
- Maria Josè Lo Faro
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Antonio Alessio Leonardi
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Priolo
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Barbara Fazio
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
| | - Alessia Irrera
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
| |
Collapse
|
10
|
Vendamani V, Beeram R, Neethish M, Rao SN, Rao SV. Wafer-scale Silver Nanodendrites with Homogeneous Distribution of Gold Nanoparticles for Biomolecules Detection. iScience 2022; 25:104849. [PMID: 35996576 PMCID: PMC9391580 DOI: 10.1016/j.isci.2022.104849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
We report the fabrication and demonstrate the superior performance of robust, cost-effective, and biocompatible hierarchical Au nanoparticles (AuNPs) decorated Ag nanodendrites (AgNDs) on a Silicon platform for the trace-level detection of antibiotics (penicillin, kanamycin, and ampicillin) and DNA bases (adenine, cytosine). The hot-spot density dependence studies were explored by varying the AuNPs deposition time. These substrates’ potential and versatility were explored further through the detection of crystal violet, ammonium nitrate, and thiram. The calculated limits of detection for CV, adenine, cytosine, penicillin G, kanamycin, ampicillin, AN, and thiram were 348 pM, 2, 28, 2, 56, 4, 5, and 2 nM, respectively. The analytical enhancement factors were estimated to be ∼107 for CV, ∼106 for the biomolecules, ∼106 for the explosive molecule, and ∼106 for thiram. Furthermore, the stability of these substrates at different time intervals is being reported here with surface-enhanced Raman spectroscopy/scattering (SERS) data obtained over 120 days. Wafer-scale surface-enhanced Raman spectroscopy/scattering (SERS) substrate of Ag nanodendrites decorated with Au nanoparticles prepared Trace level detection of antibiotics achieved Versatility of these substrates demonstrated by detecting explosive, dye molecules Typical enhancement factors achieved were 105–107
Collapse
Affiliation(s)
- V.S. Vendamani
- Advanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| | - Reshma Beeram
- Advanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| | - M.M. Neethish
- Department of Physics, Pondicherry University, Puducherry 605014, Puducherry, India
| | - S.V.S. Nageswara Rao
- Centre for Advanced Studies in Electronics Science and Technology (CASEST), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - S. Venugopal Rao
- Advanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
- Corresponding author
| |
Collapse
|
11
|
Lo Faro MJ, Leonardi AA, Morganti D, Conoci S, Fazio B, Irrera A. Hybrid Platforms of Silicon Nanowires and Carbon Nanotubes in an Ionic Liquid Bucky Gel. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144412. [PMID: 35889284 PMCID: PMC9320466 DOI: 10.3390/molecules27144412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
Silicon nanowires (NWs) are appealing building blocks for low-cost novel concept devices with improved performances. In this research paper, we realized a hybrid platform combining an array of vertically oriented Si NWs with different types of bucky gels, obtained from carbon nanotubes (CNT) dispersed into an ionic liquid (IL) matrix. Three types of CNT bucky gels were obtained from imidazolium-based ionic liquids (BMIM-I, BIMI-BF4, and BMIM-Tf2N) and semiconductive CNTs, whose structural and optical responses to the hybrid platforms were analyzed and compared. We investigated the electrical response of the IL-CNT/NW hybrid junctions in dark and under illumination for each platform and its correlation to the ionic liquid characteristics and charge mobility. The reported results confirm the attractiveness of such IL-CNT/NW hybrid platforms as novel light-responsive materials for photovoltaic applications. In particular, our best performing cell reported a short-circuit current density of 5.6 mA/cm2 and an open-circuit voltage of 0.53 V.
Collapse
Affiliation(s)
- Maria José Lo Faro
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (A.A.L.)
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy;
| | - Antonio Alessio Leonardi
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (A.A.L.)
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy;
| | - Dario Morganti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 5, 98166 Messina, Italy;
| | - Sabrina Conoci
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy;
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 5, 98166 Messina, Italy;
- URT LAB SENS, Beyond Nano—CNR, Viale Ferdinando Stagno D’Alcontres 5, 98166 Messina, Italy
| | - Barbara Fazio
- URT LAB SENS, Beyond Nano—CNR, Viale Ferdinando Stagno D’Alcontres 5, 98166 Messina, Italy
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
- Correspondence: (B.F.); (A.I.)
| | - Alessia Irrera
- URT LAB SENS, Beyond Nano—CNR, Viale Ferdinando Stagno D’Alcontres 5, 98166 Messina, Italy
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
- Correspondence: (B.F.); (A.I.)
| |
Collapse
|
12
|
Leonardi AA, Sciuto EL, Lo Faro MJ, Morganti D, Midiri A, Spinella C, Conoci S, Irrera A, Fazio B. Molecular Fingerprinting of the Omicron Variant Genome of SARS-CoV-2 by SERS Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2134. [PMID: 35807972 PMCID: PMC9268696 DOI: 10.3390/nano12132134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023]
Abstract
The continuing accumulation of mutations in the RNA genome of the SARS-CoV-2 virus generates an endless succession of highly contagious variants that cause concern around the world due to their antibody resistance and the failure of current diagnostic techniques to detect them in a timely manner. Raman spectroscopy represents a promising alternative to variants detection and recognition techniques, thanks to its ability to provide a characteristic spectral fingerprint of the biological samples examined under all circumstances. In this work we exploit the surface-enhanced Raman scattering (SERS) properties of a silver dendrite layer to explore, for the first time to our knowledge, the distinctive features of the Omicron variant genome. We obtain a complex spectral signal of the Omicron variant genome where the fingerprints of nucleobases in nucleosides are clearly unveiled and assigned in detail. Furthermore, the fractal SERS layer offers the presence of confined spatial regions in which the analyte remains trapped under hydration conditions. This opens up the prospects for a prompt spectral identification of the genome in its physiological habitat and for a study on its activity and variability.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- CNR-IMM Catania University, Istituto per la Microelettronica e Microsistemi, Via S. Sofia 64, 95123 Catania, Italy
| | - Emanuele Luigi Sciuto
- Lab SENS CNR, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.L.S.); (C.S.); (S.C.)
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Maria Josè Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- CNR-IMM Catania University, Istituto per la Microelettronica e Microsistemi, Via S. Sofia 64, 95123 Catania, Italy
| | - Dario Morganti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Angelina Midiri
- Dipartimento di Patologia Umana, Università di Messina, Via Consolare Valeria 1, (Azienda Ospedaliera Universitaria Policlinico “G. Martino”), 98125 Messina, Italy;
| | - Corrado Spinella
- Lab SENS CNR, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.L.S.); (C.S.); (S.C.)
- CNR-IMM Istituto per la Microelettronica e Microsistemi, Zona Industriale, VIII Strada 5, 95121 Catania, Italy
| | - Sabrina Conoci
- Lab SENS CNR, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.L.S.); (C.S.); (S.C.)
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
- CNR-IMM Istituto per la Microelettronica e Microsistemi, Zona Industriale, VIII Strada 5, 95121 Catania, Italy
| | - Alessia Irrera
- Lab SENS CNR, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.L.S.); (C.S.); (S.C.)
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
| | - Barbara Fazio
- Lab SENS CNR, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.L.S.); (C.S.); (S.C.)
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
13
|
Li S, Wang Z, Shao Y, Zhang K, Mei L, Wang J. In situ detection of fluid media based on a three-dimensional dendritic silver surface-enhanced Raman scattering substrate. NEW J CHEM 2022. [DOI: 10.1039/d1nj05451a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A simple substitution reaction was used to grow 3D dendritic silver structures in microfluidic channels, and a highly active SERS detection platform was formed. The system can realize in situ detection of 10−10 mol L−1 R6G solution.
Collapse
Affiliation(s)
- Sha Li
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Zezhou Wang
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Yunpeng Shao
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Kai Zhang
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Linyu Mei
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Junyuan Wang
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| |
Collapse
|
14
|
Hu W, Xia L, Hu Y, Li G. Recent progress on three-dimensional substrates for surface-enhanced Raman spectroscopic analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Leonardi AA, Battaglia R, Morganti D, Lo Faro MJ, Fazio B, De Pascali C, Francioso L, Palazzo G, Mallardi A, Purrello M, Priolo F, Musumeci P, Di Pietro C, Irrera A. A Novel Silicon Platform for Selective Isolation, Quantification, and Molecular Analysis of Small Extracellular Vesicles. Int J Nanomedicine 2021; 16:5153-5165. [PMID: 34611399 PMCID: PMC8487288 DOI: 10.2147/ijn.s310896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Small extracellular vesicles (sEVs), thanks to their cargo, are involved in cellular communication and play important roles in cell proliferation, growth, differentiation, apoptosis, stemness and embryo development. Their contribution to human pathology has been widely demonstrated and they are emerging as strategic biomarkers of cancer, neurodegenerative and cardiovascular diseases, and as potential targets for therapeutic intervention. However, the use of sEVs for medical applications is still limited due to the selectivity and sensitivity limits of the commonly applied approaches. Methods Novel sensing solutions based on nanomaterials are arising as strategic tools able to surpass traditional sensor limits. Among these, Si nanowires (Si NWs), realized with cost-effective industrially compatible metal-assisted chemical etching, are perfect candidates for sEV detection. Results In this paper, the realization of a selective sensor able to isolate, concentrate and quantify specific vesicle populations, from minimal volumes of biofluid, is presented. In particular, this Si NW platform has a detection limit of about 2×105 sEVs/mL and was tested with follicular fluid and blastocoel samples. Moreover, the possibility to detach the selectively isolated sEVs allowing further analyses with other approaches was demonstrated by SEM analysis and several PCRs performed on the RNA content of the detached sEVs. Discussion This platform overcomes the limit of detection of traditional methods and, most importantly, preserves the biological content of sEVs, opening the route toward a reliable liquid biopsy analysis.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy.,CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy.,CNR-IMM UoS Catania, Istituto per la Microelettronica e Microsistemi, Catania, 95123, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Dario Morganti
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy.,CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy
| | - Maria Josè Lo Faro
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy.,CNR-IMM UoS Catania, Istituto per la Microelettronica e Microsistemi, Catania, 95123, Italy
| | - Barbara Fazio
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy
| | - Chiara De Pascali
- CNR-IMM, Institute for Microelectronics and Microsystems, Via Monteroni, University Campus, Lecce, 73100, Italy
| | - Luca Francioso
- CNR-IMM, Institute for Microelectronics and Microsystems, Via Monteroni, University Campus, Lecce, 73100, Italy
| | - Gerardo Palazzo
- Chemistry Department, University of Bari 'Aldo Moro', Bari, 70125, Italy.,CSGI, Center for Colloid and Surface Science c/o Chemistry Department, Bari, 70125, Italy
| | - Antonia Mallardi
- CNR-IPCF, Institute for Chemical-Physical Processes, c/o Chemistry Department, Bari, 70125, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesco Priolo
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy
| | - Paolo Musumeci
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessia Irrera
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy
| |
Collapse
|
16
|
Kochylas I, Gardelis S, Likodimos V, Giannakopoulos KP, Falaras P, Nassiopoulou AG. Improved Surface-Enhanced-Raman Scattering Sensitivity Using Si Nanowires/Silver Nanostructures by a Single Step Metal-Assisted Chemical Etching. NANOMATERIALS 2021; 11:nano11071760. [PMID: 34361147 PMCID: PMC8308179 DOI: 10.3390/nano11071760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 01/18/2023]
Abstract
In this study, we developed highly sensitive substrates for Surface-Enhanced-Raman-Scattering (SERS) spectroscopy, consisting of silicon nanowires (SiNWs) decorated by silver nanostructures using single-step Metal Assisted Chemical Etching (MACE). One-step MACE was performed on p-type Si substrates by immersion in AgNO3/HF aqueous solutions resulting in the formation of SiNWs decorated by either silver aggregates or dendrites. Specifically, dendrites were formed during SiNWs' growth in the etchant solution, whereas aggregates were grown after the removal of the dendrites from the SiNWs in HNO3 aqueous solution and subsequent re-immersion of the specimens in a AgNO3/HF aqueous solution by adjusting the growth time to achieve the desired density of silver nanostructures. The dendrites had much larger height than the aggregates. R6G was used as analyte to test the SERS activity of the substrates prepared by the two fabrication processes. The silver aggregates showed a considerably lower limit of detection (LOD) for SERS down to a R6G concentration of 10-13 M, and much better uniformity in terms of detection in comparison with the silver dendritic structures. Enhancement factors in the range 105-1010 were calculated, demonstrating very high SERS sensitivities for analytic applications.
Collapse
Affiliation(s)
- Ioannis Kochylas
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (I.K.); (V.L.)
| | - Spiros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (I.K.); (V.L.)
- Correspondence: ; Tel.: +30-210-727-6985
| | - Vlassis Likodimos
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (I.K.); (V.L.)
| | - Konstantinos P. Giannakopoulos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (K.P.G.); (P.F.)
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (K.P.G.); (P.F.)
| | - Androula G. Nassiopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (K.P.G.); (P.F.)
| |
Collapse
|