1
|
Hou Y, Chen X, Shi Q, Zhang M, Yang S, Pan L, Liu Q, Fan Y, Qiu R, Liao A. Physicochemical and Antioxidative Properties of Protein Hydrolysates from Residual Goat Placenta Extract by Two Different Methods. Foods 2024; 13:3263. [PMID: 39456325 PMCID: PMC11507216 DOI: 10.3390/foods13203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Protein hydrolysates from the goat placenta provide multiple benefits, such as immune system enhancement, antioxidant activities, and reductions in uric acid levels. Despite these benefits, their industrial applications have been underexplored. This study aimed to prepare extract protein hydrolysates (GPERPs) from residual goat placenta extract (GPER) and assess their functional properties, focusing on how different drying methods influence these properties. The essential amino acid contents were 30.94% for the GPER and 34.11% for the GPERPs. Moreover, all the essential amino acids were present, and the amino acid score (AAS) for each exceeded 1.0 in the GPERPs. The foaming properties of the spray-dried GPERPs (95.56 ± 5.89%) were significantly greater than those of the freeze-dried GPERPs (49.13 ± 4.17%) at pH values of 4.0~10.0. The emulsion stability (ES) of the spray-dried GPERPs (453.44 ± 8.13 min) was notably greater than that of the freeze-dried GPERPs (245.58 ± 7.12 min). Furthermore, the water retention capacity (WRC) of the freeze-dried GPERPs (201.49 ± 6.12%) was significantly greater than that of the spray-dried GPERPs (103.35 ± 7.13%), except at pH 10.0 (101.44 ± 8.13%). Similarly, at pH values of 6.0, 8.0, and 10.0, the oil retention capacity (ORC) of the freeze-dried GPERPs (715.58 ± 12.15%) was significantly greater than that of the spray-dried GPERPs (560.56 ± 11.15%), although the opposite trend was noted under acidic conditions. In terms of the antioxidant activity, the ability of the goat placenta extract residual protein hydrolysates (GPERPs) to scavenge DPPH radicals and superoxide anion radicals increased with the increasing peptide powder concentration, and the maximum scavenging rates of the DPPH radicals (39.5 ± 0.56%) and superoxide anions (81.2 ± 0.54%) in the freeze-dried peptide powder were greater than those in the spray-dried peptide powder. These findings contribute to the understanding of the physicochemical and antioxidant properties of GPERPs under various drying methods and provide fundamental data for the development of functional foods based on GPERPs.
Collapse
Affiliation(s)
- Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xinyang Chen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qihui Shi
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mingyi Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shengru Yang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China
| | - Long Pan
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Quanping Liu
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China
| | - Yongchao Fan
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China
| | - Rongchao Qiu
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China
| | - Aimei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
2
|
Elbira A, Hafiz M, Hernández-Álvarez AJ, Zulyniak MA, Boesch C. Protein Hydrolysates and Bioactive Peptides as Mediators of Blood Glucose-A Systematic Review and Meta-Analysis of Acute and Long-Term Studies. Nutrients 2024; 16:323. [PMID: 38276562 PMCID: PMC10818427 DOI: 10.3390/nu16020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major public health concern associated with high mortality and reduced life expectancy. Since diabetes is closely linked with lifestyle, not surprisingly, nutritional intervention and increased physical activity could play a vital role in attenuating the problems related to diabetes. Protein hydrolysates (PHs) and their bioactive peptides (BP) have been shown to exert a wide range of biological effects, including antioxidative, antihypertensive, and in particular, hypoglycaemic activities. To better understand the efficacy of such interventions, a systematic review and meta-analysis of randomised controlled trials (RCTs) were performed concerning the influence of protein hydrolysates on glycaemic biomarkers in subjects with and without hyperglycaemia. Five different databases were used to search for RCTs. In total, 37 RCTs were included in the systematic review and 29 RCTs in the meta-analysis. The meta-analysis revealed a significant reduction in postprandial blood glucose response (PPGR) in normoglycaemic (-0.22 mmol/L; 95% CI -0.43, -0.01; p ≤ 0.05) and in hyperglycaemic adults (-0.88 mmol/L; 95% CI -1.37, -0.39; p ≤ 0.001) compared with the respective control groups. A meta-regression analysis revealed a dose-dependent response for PPGR following PH consumption in normoglycaemic adults, specifically for doses ≤ 30 g. The postprandial blood insulin responses (PPIR) were significantly higher after the ingestion of PHs in both the group with and the group without hyperglycaemia, respectively (23.05 mIU/L; 95% CI 7.53, 38.57; p ≤ 0.01 and 12.57 mIU/L; 95% CI 2.72, 22.41; p ≤ 0.01), compared with controls. In terms of long-term responses, there was a small but significant reduction in both fasting blood glucose (FBG) and fasting glycated haemoglobin (HbA1c) in response to PH compared with the control group (p < 0.05). The PHs significantly improved the parameters of glycaemia in adults and, hence, it may contribute to the management and regulation of the future risk of developing T2DM.
Collapse
Affiliation(s)
- Arig Elbira
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| | - Maryam Hafiz
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdul-Aziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia
| | - Alan Javier Hernández-Álvarez
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| | - Michael A. Zulyniak
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| |
Collapse
|
3
|
Jin A, Kan Z, Tan Q, Shao J, Han Q, Chang Y, An N, Yi M. Supplementation with food-derived oligopeptides promotes lipid metabolism in young male cyclists: a randomized controlled crossover trial. J Int Soc Sports Nutr 2023; 20:2254741. [PMID: 37674290 PMCID: PMC10486287 DOI: 10.1080/15502783.2023.2254741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Accumulation of body fat and dyslipidemia are associated with the development of obesity and cardiometabolic diseases. Moreover, the degree to which lipids can be metabolized has been cited as a determinant of cardiometabolic health and prolonged endurance capacity. In the backdrop of increasing obesity and cardiometabolic diseases, lipid metabolism and its modulation by physical activity, dietary adjustments, and supplementation play a significant role in maintaining health and endurance. Food-derived oligopeptides, such as rice and soybean peptides, have been shown to directly regulate abnormal lipid metabolism or promote hypolipidemia and fat oxidation in cell culture models, animal models, and human studies. However, whether supplementation with oligopeptides derived from multiple food sources can promote lipid degradation and fat oxidation in athletes remains unclear. Therefore, in a randomized controlled crossover trial, we investigated the impact of food-derived oligopeptide supplementation before and during exercise on lipid metabolism in young male cyclists. METHODS Sixteen young male cyclists (age: 17.0 ± 1.0 years; height: 178.4 ± 6.9 cm; body mass: 68.7 ± 12.7 kg, body mass index: 21.5 ± 3.4 kg/m2; maximum oxygen uptake: 56.3 ± 5.8 mL/min/kg) participated in this randomized controlled crossover trial. Each participant drank two beverages, one containing a blend of three food-derived oligopeptides (treatment, 0.5 g/kg body weight in total) and the other without (control), with a 2-week washout period between two experiments. The cyclists completed a one-day pattern protocol that consisted of intraday fasting, 30 min of sitting still, 85 min of prolonged exercise plus a 5-min sprint (PE), a short recovery period of 60 min, a 20-min time trial (TT), and recovery till next morning. Blood samples were collected for biochemical analyses of serum lipids and other biomarkers. We analyzed plasma triglyceride species (TGs), free amino acids (FAAs), and tricarboxylic acid (TCA) cycle intermediates using omics methods. In addition, exhaled gas was collected to assess the fat oxidation rate. RESULTS Five of 20 plasma FAAs were elevated pre-exercise (pre-Ex) only 20 min after oligopeptide ingestion, and most FAAs were markedly increased post PE and TT. Serum levels of TG and non-esterified fatty acids were lower in the experimental condition than in the control condition at the post PE and TT assessments, respectively. Further, the omics analysis of plasma TGs for the experimental condition demonstrated that most TGs were lower post PE and at the next fasting when compared with control levels. Simultaneously, the fat oxidation rate began to increase only 20 min after ingestion and during the preceding 85 min of PE. Levels of TCA cycle intermediates did not differ between the conditions. CONCLUSIONS The study noted that continuous ingestion of food-derived oligopeptides accelerated total body triglyceride breakdown, non-esterified fatty acid uptake, and fat oxidation during both sedentary and exercise states. Elevated circulating and intracellular FAA flux may modulate the selection of substrates for metabolic pathways in conjunction with the release of neuroendocrinological factors that slow down carbohydrate metabolism via acetyl coenzyme A feedback inhibition. This may increase the availability of fatty acids for energy production, with FAAs supplying more substrates for the TCA cycle. The findings of this study provide novel insight into strategies for promoting lipid metabolism in populations with dyslipidemia-related metabolic disorders such as obesity and for improving physiological functioning during endurance training. However, the absence of a non-exercising control group and verification of long-term supplementation effects was a limitation. Future studies will emphasize the impacts of whole protein supplementation as a control and of combined food-derived peptides or oligopeptides with probiotics and healthy food components on lipid metabolism in individuals who exercise.
Collapse
Affiliation(s)
- Aina Jin
- Beijing Sport University, Exercise Biochemistry, Beijing, China
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Zhaobo Kan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qiushi Tan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Jing Shao
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qi Han
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Yashan Chang
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Nan An
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Muqing Yi
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| |
Collapse
|
4
|
Rattanachaiwong S, Siritientong T, Pisprasert V, Hongsprabhas P, Deawtrakulchai P, Williams S, Suebsoh N, Samuksaman S, Bunsut P, Pramyothin P, Khumkhana N, Tipsung P, Vattanapongpisan M, Promsin P. A high-protein peptide-based enteral formula improves diarrhea in tube-fed patients: A prospective multicenter study. Nutr Health 2022:2601060221136918. [PMID: 36445065 DOI: 10.1177/02601060221136918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Diarrhea is a common problem in tube-fed patients. The relevant guidelines suggest using a peptide-based enteral formula in patients with diarrhea; however, sufficient evidence to support this recommendation is currently lacking. AIM This study aimed to evaluate the effects of a high-protein peptide-based formula on gastrointestinal intolerance, mainly focusing on diarrhea symptoms in patients who were intolerant to polymeric formula feeding. METHODS This prospective, single-arm, open-label, multicenter study was conducted from March 2021 to March 2022 at two tertiary-care hospitals. Patients who presented with diarrhea during tube feeding with polymeric formula were assigned to receive a high-protein peptide-based formula for ≤7 days. Stool weight and frequency were monitored at baseline, on day 3, and on day 7 (or end of the study) as the primary outcomes. RESULTS Twenty-eight tube-fed patients with diarrhea were recruited. After switching their feeding formula from polymeric to peptide based, significant improvements in stool frequency and stool weight were observed on day 3 and day 7 compared with the baseline (median [IQR] stool frequency: 5 (2), 2.5 (3.5), and 3 (3) times/day, respectively, p <0.001; median stool weight: 500 (370), 170 (285), and 275 (385) gram/day, respectively, p = 0.015). Stool consistency was assessed using the Bristol Stool Score and showed significant improvement with time. No serious adverse events were reported. CONCLUSION A high-protein peptide-based enteral formula was effective in reducing stool weight and frequency in patients who experienced diarrhea during tube feeding with a polymeric formula.Trial registration: TCTR20210302006.
Collapse
Affiliation(s)
- Sornwichate Rattanachaiwong
- Division of Clinical Nutrition, Department of Medicine, Faculty of Medicine, 37690Khon Kaen University, Khon Kaen, Thailand
| | - Tippawan Siritientong
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, 54772Chulalongkorn University, Bangkok, Thailand
| | - Veeradej Pisprasert
- Division of Clinical Nutrition, Department of Medicine, Faculty of Medicine, 37690Khon Kaen University, Khon Kaen, Thailand
| | - Pranithi Hongsprabhas
- Division of Clinical Nutrition, Department of Medicine, Faculty of Medicine, 37690Khon Kaen University, Khon Kaen, Thailand
| | - Phitphiboon Deawtrakulchai
- Division of Intensive Care Medicine, Department of Medicine, Faculty of Medicine, 37690Khon Kaen University, Khon Kaen, Thailand
| | - Somkit Williams
- Division of Nursing, Department of Intensive Care Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Naluttaporn Suebsoh
- Division of Nursing, Department of Intensive Care Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sidarut Samuksaman
- Division of Nursing, Department of Intensive Care Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phayom Bunsut
- Division of Nursing, Department of Intensive Care Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Pornpoj Pramyothin
- Division of Nutrition, Department of Medicine, Faculty of Medicine Siriraj Hospital, 65106Mahidol University, Bangkok, Thailand
| | - Nanta Khumkhana
- Division of Nutrition, Department of Medicine, Faculty of Medicine Siriraj Hospital, 65106Mahidol University, Bangkok, Thailand
| | - Pennapa Tipsung
- Division of Medical Nursing, Department of Nursing, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mayura Vattanapongpisan
- Division of Medical Nursing, Department of Nursing, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panuwat Promsin
- Division of Critical Care, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Martinez Galan BS, Giolo De Carvalho F, Carvalho SCS, Cunha Brandao CF, Morhy Terrazas SI, Abud GF, Meirelles MSS, Sakagute S, Ueta Ortiz G, Marchini JS, Aristizabal JC, Cristini de Freitas E. Casein and Whey Protein in the Breast Milk Ratio: Could It Promote Protein Metabolism Enhancement in Physically Active Adults? Nutrients 2021; 13:nu13072153. [PMID: 34201617 PMCID: PMC8308344 DOI: 10.3390/nu13072153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022] Open
Abstract
Due to the utilization of milk proteins such as whey protein (WP) and casein as sports nutrition ergogenic aids, the present study investigated the effects of the association of WP and casein in a ratio of 80:20, a similar ratio of human breast milk, on blood branched-chain amino acid (BCAA) profiles, markers of protein metabolism and delayed onset muscle soreness (DOMS), after a single bout of resistance exercise. A double-blind, crossover and acute study was carried out with ten men (age 29 ± 8 years; BMI: 25.4 ± 2.9 kg/m2; 77 ± 12 kg; 1.74 ± 0.09 m); each one consumed the following supplements randomly, one per session: WP, CAS (casein), WP/CAS (80% WP/20% CAS), CAS/WP (80% CAS/20% WP) and PLA (placebo). They were also subjected to the following evaluations: the one repetition maximum (1RM) test; resistance training session; blood extraction during each session to determine the BCAA profile; two food records; 3-day evaluation of DOMS (24 h, 48 h and 72 h) and nitrogen balance in each treatment. The intervention resulted in similar nitrogen urinary, creatinine and urea plasma levels and showed a positive nitrogen balance in all the trials. Regarding the BCAAs, the peak occurred at 60 min post-ingestion and remained higher until 120 min for WP, WP/CAS and CAS/WP. The DOMS was significantly lower for WP, WP/CAS and CAS/WP compared to the CAS and PLA treatments. There were no advantages in the association of WP and CAS in the BCAAs profile when compared to WP itself, but it induced a lower DOMS compared to CAS and PLA (Clinical Trial registration number: clinicaltrials.gov, NCT04648384).
Collapse
Affiliation(s)
- Bryan S. Martinez Galan
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo–FCFAR/UNESP, Araraquara 14800-903, Brazil; (B.S.M.G.); (S.I.M.T.); (G.F.A.)
| | - Flavia Giolo De Carvalho
- School of Physical Education and Sports of Ribeirao Preto, Laboratory of Exercise Physiology and Metabolism, University of Sao Paulo (EEFERP-USP), Ribeirao Preto 14040-907, Brazil; (F.G.D.C.); (M.S.S.M.); (S.S.)
| | - Simone C. S. Carvalho
- Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| | - Camila F. Cunha Brandao
- Internal Medicine Department, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil; (C.F.C.B.); (J.S.M.)
- Faculty of Physical Education, State University of Minas Gerais, Divinopolis 35501-170, Brazil
| | - Sara I. Morhy Terrazas
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo–FCFAR/UNESP, Araraquara 14800-903, Brazil; (B.S.M.G.); (S.I.M.T.); (G.F.A.)
| | - Gabriela Ferreira Abud
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo–FCFAR/UNESP, Araraquara 14800-903, Brazil; (B.S.M.G.); (S.I.M.T.); (G.F.A.)
| | - Monica S. S. Meirelles
- School of Physical Education and Sports of Ribeirao Preto, Laboratory of Exercise Physiology and Metabolism, University of Sao Paulo (EEFERP-USP), Ribeirao Preto 14040-907, Brazil; (F.G.D.C.); (M.S.S.M.); (S.S.)
| | - Simone Sakagute
- School of Physical Education and Sports of Ribeirao Preto, Laboratory of Exercise Physiology and Metabolism, University of Sao Paulo (EEFERP-USP), Ribeirao Preto 14040-907, Brazil; (F.G.D.C.); (M.S.S.M.); (S.S.)
| | - Gabriela Ueta Ortiz
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| | - Julio S. Marchini
- Internal Medicine Department, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil; (C.F.C.B.); (J.S.M.)
| | - Juan C. Aristizabal
- Nutrition and Dietetics School, Physiology and Biochemistry Research Group, Universidad de Antioquia, Medellin 050010, Colombia;
| | - Ellen Cristini de Freitas
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo–FCFAR/UNESP, Araraquara 14800-903, Brazil; (B.S.M.G.); (S.I.M.T.); (G.F.A.)
- School of Physical Education and Sports of Ribeirao Preto, Laboratory of Exercise Physiology and Metabolism, University of Sao Paulo (EEFERP-USP), Ribeirao Preto 14040-907, Brazil; (F.G.D.C.); (M.S.S.M.); (S.S.)
- Correspondence: ; Tel.: +55-16-3315-0345
| |
Collapse
|
6
|
Comparison of the acute metabolic effect of different infant formulas and human milk in healthy adults: a randomized trial. Nutr Diabetes 2021; 11:13. [PMID: 33859173 PMCID: PMC8050262 DOI: 10.1038/s41387-021-00154-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
Background/Objectives Different infant formulas, varying in protein type and quantity, are available for infants who are not breastfed or are partially breastfed. Postprandial insulinemic and glycemic responses to intact vs partially hydrolyzed protein in infant formula are unclear. To compare the effect of different forms (partially hydrolyzed vs non-hydrolyzed) and levels of protein in infant formula compared with a human milk reference subgroup on insulin response in adults. Subjects/Methods In a randomized, double-blinded, cross-over study, 35 healthy adults consumed 600 ml of three different infant formulas: Intact protein-based formula (INTACT) (1.87 g protein/100 kcal; whey/casein ratio of 70/30; 63 kcal/100 ml), partially hydrolyzed whey-based formula (PHw) (1.96 g protein/100 kcal; 100% whey; 63 kcal/100 ml), a high-protein partially hydrolyzed whey-based formula (HPPHw) (2.79 g protein/100 kcal; 100%whey; 73 kcal/100 ml) and a subgroup also consumed human milk (HM) (n = 11). Lipid and carbohydrate (lactose) contents were similar (5.1–5.5 and 10.5–11.6 g/100 kcal, respectively). Venous blood samples were taken after overnight fasting and at different intervals for 180 min post-drink for insulin, glucose, blood lipids, GLP-1, glucagon, and C-peptide. Results Twenty-nine subjects (eight consuming HM) adhered to the protocol. INTACT and PHw groups had similar postprandial insulinemia and glycaemia (Cmax and iAUC) that were not different from those of the HM subgroup. HPPHw resulted in higher postprandial insulin responses (iAUC) relative to all other groups (p < 0.001, p < 0.001, p = 0.002 for the comparison with INTACT, PHw, HM, respectively). HPPHw resulted in a higher glucose response compared to INTACT and PHw (iAUC: p = 0.003, p = 0.001, respectively), but was not different from HM (p = 0.41). Conclusion This study in adults demonstrates similar postprandial insulinemia and glycaemia between INTACT and PHw, close to that of HM, but lower than HPPHw, which had a higher protein content compared to the other test milks. The findings remain to be confirmed in infants. Clinical trial registration This study is registered at clinicaltrials.gov, identifier NCT04332510.
Collapse
|
7
|
Lees MJ, Nolan D, Amigo-Benavent M, Raleigh CJ, Khatib N, Harnedy-Rothwell P, FitzGerald RJ, Egan B, Carson BP. A Fish-Derived Protein Hydrolysate Induces Postprandial Aminoacidaemia and Skeletal Muscle Anabolism in an In Vitro Cell Model Using Ex Vivo Human Serum. Nutrients 2021; 13:nu13020647. [PMID: 33671235 PMCID: PMC7922518 DOI: 10.3390/nu13020647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Fish-derived proteins, particularly fish protein hydrolysates (FPH), offer potential as high-quality sources of dietary protein, whilst enhancing economic and environmental sustainability. This study investigated the impact of a blue whiting-derived protein hydrolysate (BWPH) on aminoacidaemia in vivo and skeletal muscle anabolism in vitro compared with whey protein isolate (WPI) and an isonitrogenous, non-essential amino acid (NEAA) control (0.33 g·kg−1·body mass−1) in an ex vivo, in vitro experimental design. Blood was obtained from seven healthy older adults (two males, five females; age: 72 ± 5 years, body mass index: 24.9 ± 1.6 kg·m2) in three separate trials in a randomised, counterbalanced, double-blind design. C2C12 myotubes were treated with ex vivo human serum-conditioned media (20%) for 4 h. Anabolic signalling (phosphorylation of mTOR, p70S6K, and 4E-BP1) and puromycin incorporation were determined by immunoblotting. Although BWPH and WPI both induced postprandial essential aminoacidaemia in older adults above the NEAA control, peak and area under the curve (AUC) leucine and essential amino acids were more pronounced following WPI ingestion. Insulin was elevated above baseline in WPI and BWPH only, a finding reinforced by higher peak and AUC values compared with NEAA. Muscle protein synthesis, as measured by puromycin incorporation, was greater after incubation with WPI-fed serum compared with fasted serum (P = 0.042), and delta change was greater in WPI (P = 0.028) and BWPH (P = 0.030) compared with NEAA. Myotube hypertrophy was greater in WPI and BWPH compared with NEAA (both P = 0.045), but was similar between bioactive conditions (P = 0.853). Taken together, these preliminary findings demonstrate the anabolic potential of BWPH in vivo and ex vivo, thus providing justification for larger studies in older adults using gold-standard measures of acute and chronic MPS in vivo.
Collapse
Affiliation(s)
- Matthew J. Lees
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.J.L.); (C.J.R.)
| | - David Nolan
- School of Health and Human Performance, Dublin City University, D09 V209 Dublin, Ireland; (D.N.); (B.E.)
| | - Miryam Amigo-Benavent
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland;
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (N.K.); (P.H.-R.); (R.J.F.)
| | - Conor J. Raleigh
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.J.L.); (C.J.R.)
| | - Neda Khatib
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (N.K.); (P.H.-R.); (R.J.F.)
| | - Pádraigín Harnedy-Rothwell
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (N.K.); (P.H.-R.); (R.J.F.)
| | - Richard J. FitzGerald
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (N.K.); (P.H.-R.); (R.J.F.)
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, D09 V209 Dublin, Ireland; (D.N.); (B.E.)
| | - Brian P. Carson
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.J.L.); (C.J.R.)
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland;
- Correspondence:
| |
Collapse
|
8
|
Townsend JR, Morimune JE, Jones MD, Beuning CN, Haase AA, Boot CM, Heffington SH, Littlefield LA, Henry RN, Marshall AC, VanDusseldorp TA, Feito Y, Mangine GT. The Effect of ProHydrolase ® on the Amino Acid and Intramuscular Anabolic Signaling Response to Resistance Exercise in Trained Males. Sports (Basel) 2020; 8:sports8020013. [PMID: 31978998 PMCID: PMC7077235 DOI: 10.3390/sports8020013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
This double-blind study examined effects of a protease enzyme blend (Prohydrolase®) added to whey protein on post-resistance exercise aminoacidemia and intramuscular anabolic signaling were investigated in ten resistance-trained males. Participants completed 4 sets of 8-10 repetitions in the leg press and leg extension exercises at 75% of 1-repetition maximum. Participants then consumed either 250 mg of Prohydrolase® + 26 g of whey protein (PW), 26 g whey alone (W), or non-nutritive control (CON) in counterbalanced order. Blood samples were obtained prior to exercise (baseline) and then immediately-post (IP), 30-, 60-, 90-, 120-, and 180-min post-exercise. Muscle biopsies were taken at baseline, 1-h (1H), and 3-h (3H) post-exercise. Phosphorylation of AKTSer437 was decreased (3H only: p < 0.001), mTORSer2448 was increased (1H: p = 0.025; 3H: p = 0.009), and p70S6KThr412 remained unchanged similarly for each condition. Plasma leucine, branch-chained amino acids, and essential amino acid concentrations for PW were significantly higher than CON (p < 0.05) at 30 min and similar to W. Compared to IP, PW was the only treatment with elevated plasma leucine levels at 30 min (p = 0.007; ∆ = 57.8 mmol/L, 95% Confidence Interval (CI): 20.0, 95.6) and EAA levels at 180 min (p = 0.003; ∆ = 179.1 mmol/L, 95% CI: 77.5, 280.7). Area under the curve amino acid analysis revealed no differences between PW and W. While no different than W, these data indicate that PW was the only group to produce elevated amino acid concentrations 30-min and 180-min post-ingestion.
Collapse
Affiliation(s)
- Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA; (J.E.M.); (M.D.J.); (S.H.H.); (L.A.L.); (R.N.H.); (A.C.M.)
- Correspondence:
| | - Jaclyn E. Morimune
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA; (J.E.M.); (M.D.J.); (S.H.H.); (L.A.L.); (R.N.H.); (A.C.M.)
| | - Megan D. Jones
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA; (J.E.M.); (M.D.J.); (S.H.H.); (L.A.L.); (R.N.H.); (A.C.M.)
| | - Cheryle N. Beuning
- Central Instrument Facility, Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.N.B.); (A.A.H.); (C.M.B.)
| | - Allison A. Haase
- Central Instrument Facility, Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.N.B.); (A.A.H.); (C.M.B.)
| | - Claudia M. Boot
- Central Instrument Facility, Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.N.B.); (A.A.H.); (C.M.B.)
| | - Stephen H. Heffington
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA; (J.E.M.); (M.D.J.); (S.H.H.); (L.A.L.); (R.N.H.); (A.C.M.)
| | - Laurel A. Littlefield
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA; (J.E.M.); (M.D.J.); (S.H.H.); (L.A.L.); (R.N.H.); (A.C.M.)
| | - Ruth N. Henry
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA; (J.E.M.); (M.D.J.); (S.H.H.); (L.A.L.); (R.N.H.); (A.C.M.)
| | - Autumn C. Marshall
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA; (J.E.M.); (M.D.J.); (S.H.H.); (L.A.L.); (R.N.H.); (A.C.M.)
| | - Trisha A. VanDusseldorp
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA; (T.A.V.); (Y.F.); (G.T.M.)
| | - Yuri Feito
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA; (T.A.V.); (Y.F.); (G.T.M.)
| | - Gerald T. Mangine
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA; (T.A.V.); (Y.F.); (G.T.M.)
| |
Collapse
|
9
|
Nakayama K, Tagawa R, Saito Y, Sanbongi C. Effects of whey protein hydrolysate ingestion on post-exercise muscle protein synthesis compared with intact whey protein in rats. Nutr Metab (Lond) 2020; 16:90. [PMID: 31889970 PMCID: PMC6935204 DOI: 10.1186/s12986-019-0417-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/18/2019] [Indexed: 01/14/2023] Open
Abstract
Background It is well known that ingestion of protein sources can stimulate muscle protein synthesis (MPS). The intake of whey protein is highly effective especially for accelerating MPS. Whey protein hydrolysate (WPH) can raise postprandial plasma concentration of amino acids, which impact stimulation of MPS more rapidly and highly than intact whey protein. However, it is unclear which is more effective for stimulating MPS, WPH or intact whey protein. The aim of the present study was to compare the effects of the WPH and whey protein on MPS in rats after exercise. Methods Rats were first subjected to a 2 h. swimming protocol. After this, in experiment 1, we evaluated time-dependent changes in the fractional synthetic rate (FSR) of the triceps muscle in Male Sprague-Dawley rats after ingestion of intact whey protein (30, 60, 90 or 120 min after ingestion). Then in experiment 2, at the time point that the results of Experiment 1 revealed postprandial FSR was highest (60 min after ingestion), we measured the FSR after ingestion of the WPH or whey protein at two different doses (0.5 or 2.0 g protein/kg body weight), or with deionized water (control), again after exercise. Plasma components and mammalian target of rapamycin (mTOR) signaling were also measured. Results In experiment 1, postprandial FSR was highest 60 min after whey protein was administered. In experiment 2, the FSR 60 min after ingestion of the WPH was higher than that of whey protein (significant treatment main effect). Moreover, at a lower dose, only the WPH ingestion caused greater MPS and phosphorylated 4E-binding protein 1 (4E-BP1) levels compared with the control group. Conclusion These results indicate that ingestion of the WPH was associated with greater post-exercise MPS compared with intact whey protein, especially at lower doses.
Collapse
Affiliation(s)
- Kyosuke Nakayama
- Food Microbiology and Function Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919 Japan
| | - Ryoichi Tagawa
- Food Microbiology and Function Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919 Japan
| | - Yuri Saito
- Food Microbiology and Function Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919 Japan
| | - Chiaki Sanbongi
- Food Microbiology and Function Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919 Japan
| |
Collapse
|
10
|
Moro T, Brightwell CR, Velarde B, Fry CS, Nakayama K, Sanbongi C, Volpi E, Rasmussen BB. Whey Protein Hydrolysate Increases Amino Acid Uptake, mTORC1 Signaling, and Protein Synthesis in Skeletal Muscle of Healthy Young Men in a Randomized Crossover Trial. J Nutr 2019; 149:1149-1158. [PMID: 31095313 PMCID: PMC7443767 DOI: 10.1093/jn/nxz053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/12/2018] [Accepted: 03/04/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Muscle protein synthesis (MPS) can be stimulated by ingestion of protein sources, such as whey, casein, or soy. Protein supplementation can enhance muscle protein synthesis after exercise and may preserve skeletal muscle mass and function in aging adults. Therefore, identifying protein sources with higher anabolic potency is of high significance. OBJECTIVE The aim of this study was to determine the anabolic potency and efficacy of a novel whey protein hydrolysate mixture (WPH) on mechanistic target of rapamycin complex 1 (mTORC1) signaling and skeletal MPS in healthy young subjects. METHODS Ten young men (aged 28.7 ± 3.6 y, 25.2 ± 2.9 kg/m2 body mass index [BMI]) were recruited into a double-blind two-way crossover trial. Subjects were randomized to receive either 0.08 g/kg of body weight (BW) of WPH or an intact whey protein (WHEY) mixture during stable isotope infusion experiments. Fractional synthetic rate, leucine and phenylalanine kinetics, and markers of amino acid sensing were assessed as primary outcomes before and 1-3 h after protein ingestion using a repeated measures mixed model. RESULTS Blood leucine concentration, delivery of leucine to muscle, transport of leucine from blood into muscle and intracellular muscle leucine concentration significantly increased to a similar extent 1 h after ingestion of both mixtures (P < 0.05). Phosphorylation of S6K1 (i.e. a marker of mTORC1 activation) increased equally by ∼20% 1-h postingestion (P < 0.05). Ingestion of WPH and WHEY increased mixed MPS similarly in both groups by ∼43% (P < 0.05); however, phenylalanine utilization for synthesis increased in both treatments 1-h postingestion but remained elevated 3-h postingestion only in the WPH group (P < 0.05). CONCLUSIONS We conclude that a small dose of WPH effectively increases leucine transport into muscle, activating mTORC1 and stimulating MPS in young men. WPH anabolic potency and efficacy for promoting overall muscle protein anabolism is similar to WHEY, an intact protein source. This trial was registered at clinicaltrials.gov as NCT03313830.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | | | | | - Christopher S Fry
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | - Kyosuke Nakayama
- Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Tokyo, Japan
| | - Chiaki Sanbongi
- Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Tokyo, Japan
| | - Elena Volpi
- Department of Internal Medicine/Geriatrics,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | - Blake B Rasmussen
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX,Address correspondence to BBR (e-mail: )
| |
Collapse
|
11
|
Paoli A. Advances in Sport and Performance Nutrition. Nutrients 2019; 11:nu11030538. [PMID: 30832303 PMCID: PMC6471132 DOI: 10.3390/nu11030538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Faculty of Sport Sciences, UCAM, Catholic University of Murcia, 30107 Murcia, Spain.
- European Sport Nutrition Society, 43126 Parma, Italy.
| |
Collapse
|