1
|
Prangthip P, Panbangred W, Reamtong O. Potential antihypertensive activity of novel peptides from green basil leaves. BMC Complement Med Ther 2023; 23:282. [PMID: 37553559 PMCID: PMC10410819 DOI: 10.1186/s12906-023-04098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Hypertension is among the risk factors of death globally. Novel antihypertensive peptides are alternative choices of antihypertensive assistance. This study aimed to discover novel antihypertensive peptides from green basil leaves. Two bioactive peptides with high angiotensin-converting enzyme inhibition (Asp-Leu-Ser-Ser-Ala-Pro; peptide 1) and antioxidant (Asp-Ser-Val-Ser-Ala-Ser-Pro; peptide 2) activities were gavaged to male Wistar rats induced with NG-nitro-l-arginine methyl-ester (L-NAME). L-NAME-treated rats (HT) had decreased body weights and levels of nitrite and nitrate, which are metabolites of nitric oxide. The levels of their glucose and liver function indicators increased as compared to normal rats. HT rats receiving antihypertensive drugs (HTD) showed higher low-density lipoprotein and low-density lipoprotein/high-density lipoprotein levels than HT rats. Peptide 1 seems to benefit the rat lipid profiles, liver functions, antioxidant, nitrite, nitrate, and angiotensin II peptide levels but not peptide 2. In conclusion, our findings indicate the antihypertensive potential related to vasodilation of peptides from green basil leaves.
Collapse
Affiliation(s)
- Pattaneeya Prangthip
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Bravo FI, Calvo E, López-Villalba RA, Torres-Fuentes C, Muguerza B, García-Ruiz A, Morales D. Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides. Nutrients 2023; 15:457. [PMID: 36678328 PMCID: PMC9864718 DOI: 10.3390/nu15020457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Hypertension (HTN) is the leading cause of premature deaths worldwide and the main preventable risk factor for cardiovascular diseases. Therefore, there is a current need for new therapeutics to manage this condition. In this regard, protein hydrolysates containing antihypertensive bioactive peptides are of increasing interest. Thus, agri-food industry byproducts have emerged as a valuable source to obtain these hydrolysates as they are rich in proteins and inexpensive. Among these, byproducts from animal origin stand out as they are abundantly generated worldwide. Hence, this review is focused on evaluating the potential role of chicken slaughterhouse byproducts as a source of peptides for managing HTN. Several of these byproducts such as blood, bones, skins, and especially, chicken feet have been used to obtain protein hydrolysates with angiotensin-converting enzyme (ACE)-inhibitory activity and blood pressure-lowering effects. An increase in levels of endogenous antioxidant compounds, a reduction in ACE activity, and an improvement of HTN-associated endothelial dysfunction were the mechanisms underlying their effects. However, most of these studies were carried out in animal models, and further clinical studies are needed in order to confirm these antihypertensive properties. This would increase the value of these byproducts, contributing to the circular economy model of slaughterhouses.
Collapse
Affiliation(s)
| | | | | | | | | | - Almudena García-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | |
Collapse
|
3
|
Garzón AG, Ferreira MDR, Cian RE, Oliva ME, D'Alessandro ME, Drago SR. Microencapsulated bioactive peptides from brewer's spent grain promotes antihypertensive and antidiabetogenic effects on a hypertensive and insulin-resistant rat model. J Food Biochem 2022; 46:e14283. [PMID: 35746832 DOI: 10.1111/jfbc.14283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
The effects of microcapsules containing brewer's spent grain (BSG) peptides were evaluated on a hypertensive/insulin-resistant rat model induced by a sucrose-rich diet (SRD) administration. Animals received for 100 days the control diet (CD), SRD, and CD and SRD diets supplemented with microencapsulated peptides (CD-P and SRD-P). During the experimental period, blood pressure was monitored. Glycemia, tissue glycogen content, nitric oxide, and the activity of enzymes related to hypertensive and diabetogenic mechanisms were determined. The consumption of SRD caused hypertensive and hyperglycemic effects compared to CD. However, the SRD-P group presented lower systolic pressure at the middle of ingestion, achieving similar values than the CD. The SRD-P rats decreased all enzymes' activities compared to the SRD reaching the values of CD, except for those of α-amylase in cecal content and DPP-IV in serum. It was possible to corroborate potential antihypertensive and antidiabetogenic in vivo effects of the microencapsulated BSG peptides. PRACTICAL APPLICATIONS: Brewer's spent grain (BSG) is the main waste obtained from brewing industry. Bioactive peptides obtained after an enzymatic hydrolysis of proteins with in vitro antihypertensive and antidiabetogenic activity have been described. However, to corroborate the action of these bioactive peptides, in vivo studies are necessary. In the present work, microcapsules containing bioactive peptides from BSG were administered on the rat model with induced hypertension and insulin-resistance, corroborating an in vivo antihypertensive and antidiabetogenic effects by inhibition of enzymes related with blood pressure regulation and glucose metabolism. This work demonstrated that microcapsules of BSG peptides could be included into functional foods formulations, or used as dietary supplement for improving health and the prevention of non-communicable diseases, adding value to the brewing process by-product.
Collapse
Affiliation(s)
- Antonela G Garzón
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| | - María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, CONICET, Facultad de Bioquímica y Ciencias Biológicas, UNL, Santa Fe, Argentina
| | - Raul E Cian
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| | - Maria Eugenia Oliva
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, CONICET, Facultad de Bioquímica y Ciencias Biológicas, UNL, Santa Fe, Argentina
| | - Maria Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, CONICET, Facultad de Bioquímica y Ciencias Biológicas, UNL, Santa Fe, Argentina
| | - Silvina R Drago
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| |
Collapse
|
4
|
Ibarz-Blanch N, Morales D, Calvo E, Ros-Medina L, Muguerza B, Bravo FI, Suárez M. Role of Chrononutrition in the Antihypertensive Effects of Natural Bioactive Compounds. Nutrients 2022; 14:nu14091920. [PMID: 35565887 PMCID: PMC9103085 DOI: 10.3390/nu14091920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is one of the main cardiovascular risk factors and is considered a major public health problem. Numerous approaches have been developed to lower blood pressure (BP) in hypertensive patients, most of them involving pharmacological treatments. Within this context, natural bioactive compounds have emerged as a promising alternative to drugs in HTN prevention. This work reviews not only the mechanisms of BP regulation by these antihypertensive compounds, but also their efficacy depending on consumption time. Although a plethora of studies has investigated food-derived compounds, such as phenolic compounds or peptides and their impact on BP, only a few addressed the relevance of time consumption. However, it is known that BP and its main regulatory mechanisms show a 24-h oscillation. Moreover, evidence shows that phenolic compounds can interact with clock genes, which regulate the biological rhythm followed by many physiological processes. Therefore, further research might be carried out to completely elucidate the interactions along the time–nutrition–hypertension axis within the framework of chrononutrition.
Collapse
Affiliation(s)
| | | | - Enrique Calvo
- Correspondence: (E.C.); (F.I.B.); Tel.: +34-977558837 (E.C.)
| | | | | | | | | |
Collapse
|
5
|
Romero-Garay MG, Montalvo-González E, Hernández-González C, Soto-Domínguez A, Becerra-Verdín EM, De Lourdes García-Magaña M. Bioactivity of peptides obtained from poultry by-products: A review. Food Chem X 2022; 13:100181. [PMID: 35498958 PMCID: PMC9039914 DOI: 10.1016/j.fochx.2021.100181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/26/2022] Open
Abstract
The production and consumption of poultry products (chicken, duck, and turkey) are continually growing throughout the world, leading to the generation of thousands of tons of organic by-products, which may be important sources of bioactive peptides. The bioactive peptides isolated from poultry by-products have biological properties that can be useful in the prevention of different metabolic diseases and hence, their consumption could be beneficial for human health. Such peptides can be used as nutraceuticals, and their inclusion as active components of functional food products is increasingly gaining attention. The aim of this review was to present the investigations of the biological effect of the peptides obtained from different poultry by-products and the possible mechanisms of action underlying these effects.
Collapse
Affiliation(s)
- Martha Guillermina Romero-Garay
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| | - Crisantema Hernández-González
- Centro de Investigación en Alimentación y Desarrollo, A. C., Unidad Mazatlán, Av. Sábalo Cerritos s/n. Mazatlán, Sinaloa 89010, Mexico
| | - Adolfo Soto-Domínguez
- Histology Department, Facultad de Medicina, Universidad Autónoma de Nuevo León, Madero y E. Aguirre Pequeño SN, C.P. 64460. Monterrey, Nuevo León, Mexico
| | - Eduardo Mendeleev Becerra-Verdín
- Clinical Research and Histology Laboratory, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo S/N, 63155 Tepic, Nayarit, Mexico
| | - María De Lourdes García-Magaña
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| |
Collapse
|
6
|
Isolation of Immunomodulatory Biopeptides from Atlantic Mackerel (Scomber scombrus) Protein Hydrolysate based on Molecular Weight, Charge, and Hydrophobicity. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Fan H, Liao W, Spaans F, Pasha M, Davidge ST, Wu J. Chicken muscle hydrolysate reduces blood pressure in spontaneously hypertensive rats, upregulates ACE2, and ameliorates vascular inflammation, fibrosis, and oxidative stress. J Food Sci 2022; 87:1292-1305. [PMID: 35166385 DOI: 10.1111/1750-3841.16077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Spent hens are egg-laying chicken reaching the end of their egg-laying cycle and are seen as a by-product to the egg industry. A spent hen muscle protein hydrolysate prepared by food-grade thermoase PC10F (SPH-T) has previously shown antihypertensive potential. In the present work, we further investigated its antihypertensive effect and underlying mechanisms in spontaneously hypertensive rats. There are three groups: untreated, low dose (250 mg SPH-T/kg/day body weight), and high dose (1,000 mg SPH-T/kg/day body weight). Oral administration of SPH-T over a period of 20 days reduced systolic blood pressure by 25.7 mm Hg (p < 0.001) and 11.9 mm Hg (p < 0.05), respectively, for the high- and low-dose groups. The high-dose treatment decreased the circulating level of angiotensin II (from 25.0 to 5.7 pg/ml) while increased angiotensin-converting enzyme 2 (ACE2) (from 1.3 to 3.3 IU/ml) and angiotensin (1-7) (from 37.0 to 70.1 pg/ml) significantly (p < 0.05). Furthermore, the high-dose group doubled the aortic expression of ACE2 while reduced the expression of angiotensin (Ang) II type 1 receptor (by 35%). Circulating inflammatory cytokines including tumor necrosis factor alpha and monocyte chemoattractant protein-1 as well as vascular inflammatory proteins including inducible nitric oxide synthase and vascular cell adhesion molecule-1 were attenuated by ∼15%-50% by the treatment; nitrosative stress (35%) and type I collagen synthesis (50%) in the aorta were also attenuated significantly (p < 0.05). Moreover, SPH-T possessed an umami taste (no obvious bitter taste) as analyzed by electronic tongue. PRACTICAL APPLICATION: Hypertension is a global health concern, afflicting more than 20% of adults worldwide. Uncovering the antihypertensive effect of spent hen protein hydrolysate underpinned its functional food nutraceutical applications for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Wang Liao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mazhar Pasha
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Song Y, Song J, Zhu Z, Peng H, Ding X, Yang F, Li K, Yu X, Yang G, Tao Y, Bu D, Tang C, Huang Y, Du J, Jin H. Compensatory role of endogenous sulfur dioxide in nitric oxide deficiency-induced hypertension. Redox Biol 2021; 48:102192. [PMID: 34818607 PMCID: PMC8626683 DOI: 10.1016/j.redox.2021.102192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE This study aimed to determine the communicational pattern of gaseous signaling molecules sulfur dioxide (SO2) and nitric oxide (NO) between vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs), and elucidate the compensatory role and significance of endogenous SO2 in the development of hypertension due to NO deficiency. APPROACH AND RESULTS Blood pressure was monitored by the tail-cuff and implantable physiological signal telemetry in L-nitro-arginine methyl ester (l-NAME)-induced hypertensive mice, and structural alterations of mouse aortic vessels were detected by the elastic fiber staining method. l-NAME-treated mice showed decreased plasma NO levels, increased SO2 levels, vascular remodeling, and increased blood pressure, and application of l-aspartate-β-hydroxamate, which inhibits SO2 production, further aggravated vascular structural remodeling and increased blood pressure. Moreover, in a co-culture system of HAECs and HASMCs, NO from HAECs did not influence aspartate aminotransferase (AAT)1 protein expression but decreased AAT1 activity in HASMCs, thereby resulting in the inhibition of endogenous SO2 production. Furthermore, NO promoted S-nitrosylation of AAT1 protein in HASMCs and purified AAT1 protein. Liquid chromatography with tandem mass spectrometry showed that the Cys192 site of AAT1 purified protein was modified by S-nitrosylation. In contrast, dithiothreitol or C192S mutations in HASMCs blocked NO-induced AAT1 S-nitrosylation and restored AAT1 enzyme activity. CONCLUSION Endothelium-derived NO inhibits AAT activity by nitrosylating AAT1 at the Cys192 site and reduces SO2 production in HASMCs. Our findings suggest that SO2 acts as a compensatory defense system to antagonize vascular structural remodeling and hypertension when the endogenous NO pathway is disturbed.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiaru Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhigang Zhu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Guosheng Yang
- Laboratory Animal Facility, Peking University First Hospital, Beijing, 100034, China
| | - Yinghong Tao
- Laboratory Animal Facility, Peking University First Hospital, Beijing, 100034, China
| | - Dingfang Bu
- Central Laboratory, Peking University First Hospital, Beijing, 100034, China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
9
|
Molecular mechanism of Chuanxiong Rhizoma in treating coronary artery diseases. CHINESE HERBAL MEDICINES 2021; 13:396-402. [PMID: 36118926 PMCID: PMC9476474 DOI: 10.1016/j.chmed.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Most of the studies on the herb Chuanxiong Rhizoma (CR) have focused on the l-arginine-nitric oxide (NO) pathway, but the nitrate-nitrite-NO (NO3−–NO2−–NO) pathway was rarely investigated. Therefore, the aim of this study was to evaluate the effects and mechanisms of action of CR in coronary artery disease (CAD). Methods The NO3−, NO2− and NO levels were examined in the NO3−–NO2−–NO pathway. High-performance ion chromatography was used to quantify NO3− and NO2− levels. Then, NO was quantified using a multifunctional enzyme marker with a fluorescent probe. The tension of aortic rings was measured using a multi myograph system. Results High content of NO3− and low content of NO2− was found in CR, and which could potently convert NO3− to NO2− in the presence of endogenous reductase enzyme. Incubating human coronary artery endothelial cells (HCAECs) with CR-containing serum showed that CR significantly decreased the NO3− content and increased the levels of NO2− and NO in the cells under hypoxic conditions. In addition, CR significantly relaxed isolated aortic rings when the l-arginine –NO pathway was blocked. The optimal concentration of CR for relaxation was 200 mg/mL. Conclusion CR supplements large amounts of NO in cells and vessels to achieve relaxation via the NO3−–NO2−–NO pathway, thereby making up for the deficiency caused by the lack of NO after the l-arginine-NO pathway is suppressed. This study also supports the potential use of a traditional Chinese herb for future drug development.
Collapse
|
10
|
Mas-Capdevila A, Iglesias-Carres L, Arola-Arnal A, Aragonès G, Muguerza B, Bravo FI. Implication of Opioid Receptors in the Antihypertensive Effect of a Novel Chicken Foot-Derived Peptide. Biomolecules 2020; 10:E992. [PMID: 32630658 PMCID: PMC7408493 DOI: 10.3390/biom10070992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
The peptide AVFQHNCQE demonstrated to produce nitric oxide-mediated antihypertensive effect. This study investigates the bioavailability and the opioid-like activity of this peptide after its oral administration. For this purpose, in silico and in vitro approaches were used to study the peptide susceptibility to GI digestion. In addition, AVFQHNCQE absorption was studied both in vitro by using Caco-2 cell monolayers and in vivo evaluating peptide presence in plasma from Wistar rats by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and by ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Both in vivo and in vitro experiments demonstrated that peptide AVFQHNCQE was not absorbed. Thus, the potential involvement of opioid receptors in the BP-lowering effect of AVFQHNCQE was studied in the presence of opioid receptors-antagonist Naloxone. No changes in blood pressure were recorded in rats administered Naloxone, demonstrating that AVFQHNCQE antihypertensive effect is mediated through its interaction with opioid receptors. AVFQHNCQE opioid-like activity would clarify the antihypertensive properties of AVFQHNCQE despite its lack of absorption.
Collapse
Affiliation(s)
- Anna Mas-Capdevila
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
| | - Lisard Iglesias-Carres
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
- EURECAT-Technology Centre of Catalonia, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
| |
Collapse
|
11
|
González S. Dietary Bioactive Compounds and Human Health and Disease. Nutrients 2020; 12:nu12020348. [PMID: 32013067 PMCID: PMC7071229 DOI: 10.3390/nu12020348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sonia González
- Department of Functional Biology, University of Oviedo, 32762 Oviedo, Spain; ; Tel.: +34-985-104-209
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 32762 Oviedo, Spain
| |
Collapse
|
12
|
Relationship between Nutrition and Alcohol Consumption with Blood Pressure: The ESTEBAN Survey. Nutrients 2019; 11:nu11061433. [PMID: 31242675 PMCID: PMC6627946 DOI: 10.3390/nu11061433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dietary interventions are recommended for the prevention of hypertension. The aim of this study was to evaluate and quantify the relationship between alcohol consumption and the DASH (Dietary Approaches to Stop Hypertension) score with blood pressure (BP) stratified by gender. METHODS Cross-sectional analyses were performed using data from 2105 adults from the ESTEBAN survey, a representative sample of the French population. Pearson correlation analyses were used to assess the correlation between the DASH score and alcohol with BP. Regressions were adjusted by age, treatment, socio-economic level, tobacco, exercise, Body mass index (BMI), and cardiovascular risk factors and diseases. RESULTS The DASH score was negatively correlated with systolic (SBP) and diastolic BP (DBP) (p < 0.0001). Alcohol was positively associated with increased BP only in men. The worst quintile of the DASH score was associated with an 1.8 mmHg increase in SBP and an 0.6 mmHg increase in SBP compared to the greatest quintile in men and with a 1.5 mmHg increase in SBP and an 0.4 mmHg increase in SBP in women. Male participants in the worst quintile of alcohol consumption showed an increase of 3.0 mmHg in SBP and 0.8 mmHg in DBP compared to those in the greatest quintile. CONCLUSION A high DASH score and a reduction in alcohol consumption could be effective nutritional strategies for the prevention of hypertension.
Collapse
|