1
|
Hwang J, Sim DY, Ahn CH, Park SY, Koo JS, Shim BS, Kim B, Kim SH. Inhibition of LGR5/β-Catenin Axis and Activation of miR134 Are Critically Involved in Apoptotic Effect of Sanggenol L in Hepatocellular Carcinoma. Biol Pharm Bull 2025; 48:126-131. [PMID: 39956588 DOI: 10.1248/bpb.b24-00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Although Sanggenol L (SL), derived from the root bark of Morus alba, has hepatoprotective, neuroprotective, and antitumor effects, the antitumor mechanism of SL remains unclear to date. Thus, in the current work, the apoptotic mechanisms of SL were investigated in HepG2 and Huh hepatocellular carcinoma (HCC) cells in relation to leucine-rich repeat containing G protein-coupled receptor 5 (LGR5)/β-catenin and miR134 signaling axis. Herein, SL significantly incremented cytotoxicity, sub-G1 population, and the number of terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) positive apoptotic bodies and also inhibited proliferation in HCCs. Consistently, SL activated pro-Caspase7 and pro-Caspase3 and induced the cleavage of Poly ADP-ribose polymerase (PARP) in HCCs. Of note, the pivotal role of LGR5/β-catenin signaling was verified in SL-induced apoptosis in LGR5 overexpressed AML-12 cells and LGR5 depleted HepG2 cells. Furthermore, SL upregulated miR134 expression levels in HepG2 cells, while miR134 inhibitors disturbed the capacity of SL to cleave PARP and pro-Caspase3 in HepG2 cells. Taken together, our findings highlight evidence that inhibition of the LGR5/β-catenin axis and upregulation of miR134 play critical roles in SL-induced apoptosis in HCCs.
Collapse
Affiliation(s)
- Jisung Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin-Suk Koo
- Department of Forest Science, Andong National University, Andong, North Gyeongsang 36729, Republic of Korea
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Schiefer JL, Wergen NM, Grieb G, Bagheri M, Seyhan H, Badra M, Kopp M, Fuchs PC, Windolf J, Suschek CV. Experimental evidence for Parthanatos-like mode of cell death of heat-damaged human skin fibroblasts in a cell culture-based in vitro burn model. Burns 2024; 50:1562-1577. [PMID: 38570249 DOI: 10.1016/j.burns.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
The cellular mechanisms of burn conversion of heat damaged tissue are center of many studies. Even if the molecular mechanisms of heat-induced cell death are controversially discussed in the current literature, it is widely accepted that caspase-mediated apoptosis plays a central role. In the current study we wanted to develop further information on the nature of the mechanism of heat-induced cell death of fibroblasts in vitro. We found that heating of human fibroblast cultures (a 10 s rise from 37 °C to 67 °C followed by a 13 s cool down to 37 °C) resulted in the death of about 50% of the cells. However, the increase in cell death started with a delay, about one hour after exposure to heat, and reached the maximum after about five hours. The lack of clear evidence for an active involvement of effector caspase in the observed cell death mechanism and the lack of observation of the occurrence of hypodiploid nuclei contradict heat-induced cell death by caspase-mediated apoptosis. Moreover, a dominant heat-induced increase in PARP1 protein expression, which correlated with a time-delayed ATP synthesis inhibition, appearance of double-strand breaks and secondary necrosis, indicate a different type of cell death than apoptosis. Indeed, increased translocation of Apoptosis Inducing Factor (AIF) and Macrophage Migration Inhibitory Factor (MIF) into cell nuclei, which correlates with the mentioned enhanced PARP1 protein expression, indicate PARP1-induced, AIF-mediated and MIF-activated cell death. With regard to the molecular actors involved, the cellular processes and temporal sequences, the mode of cell death observed in our model is very similar to the cell death mechanism via Parthanatos described in the literature.
Collapse
Affiliation(s)
- Jennifer Lynn Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany.
| | - Niklas M Wergen
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mahsa Bagheri
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Harun Seyhan
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Maria Badra
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Marco Kopp
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Paul C Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Christoph V Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
3
|
Wang Y, Ai Q, Gu M, Guan H, Yang W, Zhang M, Mao J, Lin Z, Liu Q, Liu J. Comprehensive overview of different medicinal parts from Morus alba L.: chemical compositions and pharmacological activities. Front Pharmacol 2024; 15:1364948. [PMID: 38694910 PMCID: PMC11061381 DOI: 10.3389/fphar.2024.1364948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Morus alba L., a common traditional Chinese medicine (TCM) with a centuries-old medicinal history, owned various medicinal parts like Mori folium, Mori ramulus, Mori cortex and Mori fructus. Different medical parts exhibit distinct modern pharmacological effects. Mori folium exhibited analgesic, anti-inflammatory, hypoglycemic action and lipid-regulation effects. Mori ramulus owned anti-bacterial, anti-asthmatic and diuretic activities. Mori cortex showed counteraction action of pain, inflammatory, bacterial, and platelet aggregation. Mori fructus could decompose fat, lower blood lipids and prevent vascular sclerosis. The main chemical components in Morus alba L. covered flavonoids, phenolic compounds, alkaloids, and amino acids. This article comprehensively analyzed the recent literature related to chemical components and pharmacological actions of M. alba L., summarizing 198 of ingredients and described the modern activities of different extracts and the bioactive constituents in the four parts from M. alba L. These results fully demonstrated the medicinal value of M. alba L., provided valuable references for further comprehensive development, and layed the foundation for the utilization of M. alba L.
Collapse
Affiliation(s)
- Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qing Ai
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Meiling Gu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Hong Guan
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Wenqin Yang
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Meng Zhang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jialin Mao
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhao Lin
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
4
|
Wei Y, Zhu M, Chen Y, Ji Q, Wang J, Shen L, Yang X, Hu H, Zhou X, Zhu Q. Network pharmacology and experimental evaluation strategies to decipher the underlying pharmacological mechanism of Traditional Chinese Medicine CFF-1 against prostate cancer. Aging (Albany NY) 2024; 16:5387-5411. [PMID: 38484140 PMCID: PMC11006490 DOI: 10.18632/aging.205654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024]
Abstract
Prostate cancer (PCa) is a common malignancy in elderly men. We have applied Traditional Chinese Medicine CFF-1 in clinical treatments for PCa for several years. Here, we aimed to identify the underlying mechanism of CFF-1 on PCa using network pharmacology and experimental validation. Active ingredients, potential targets of CFF-1 were acquired from the public databases. Subsequently, protein-protein interaction (PPI) and the herbs-active ingredients-target network was constructed. A prognostic model for PCa was also constructed based on key targets. In vitro experiments using PCa cell lines CWR22Rv1 and PC-3 were carried out to validate the potential mechanism of CFF-1 on PCa. A total of 112 bioactive compounds and 359 key targets were screened from public databases. PPI and herbs-active ingredients-target network analysis determined 12 genes as the main targets of CFF-1 on PCa. Molecular docking studies indicated that the primary active ingredients of CFF-1 possess strong binding affinity to the top five hub targets. DNMT3B, RXRB and HPRT1 were found to be involved in immune regulation of PCa. In vitro, CFF-1 was found to inhibit PCa cell proliferation, migration, invasion and induce apoptosis via PI3K-Akt, HIF-1, TNF, EGFR-TKI resistance and PD-1 checkpoint signaling pathways. This study comprehensively elucidates the underlying molecular mechanism of CFF-1 against PCa, offering a strong rationale for clinical application of CFF-1 in PCa treatment.
Collapse
Affiliation(s)
- Yong Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Mingxia Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ye Chen
- The First Medicine College, Taizhou Campus of Nanjing University of Traditional Chinese Medicine, Taizhou 225300, China
| | - Qianying Ji
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jun Wang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Luming Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xin Yang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Haibin Hu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xin Zhou
- Department of Oncology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian 223812, China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qingyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
5
|
Wang Y, Xie L, Liu F, Ding D, Wei W, Han F. Research progress on traditional Chinese medicine-induced apoptosis signaling pathways in ovarian cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117299. [PMID: 37816474 DOI: 10.1016/j.jep.2023.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a "silent killer" that threatens women's lives and health, ovarian cancer (OC) has the clinical characteristics of being difficult to detect, difficult to treat, and high recurrence. Traditional Chinese medicine (TCM) can be utilized as a long-term complementary and alternative therapy since it has shown benefits in alleviating clinical symptoms of OC, decreasing toxic side effects of radiation and chemotherapy, as well as enhancing patients' quality of life. AIM OF THE REVIEW This paper reviews how TCM contributes to the apoptosis of OC cells through signaling pathways, including active constituents, extracts, and herbal formulas, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in OC. METHODS The search was conducted from scientific databases PubMed, Embase, Web of Science, CNKI, Wanfang, VIP, and SinoMed databases aiming to elucidate the apoptosis signaling pathways in OC cells by TCM. The articles were searched by the keywords "ovarian cancer", "apoptosis", "signaling pathway", "traditional Chinese medicine", "Chinese herbal monomer", "Chinese herbal extract", and "herbal formula". The search was conducted from January 2013 to June 2023. A total of 97 potentially relevant articles were included, including 93 articles on Chinese medicine active constituents or extracts and 4 articles on Chinese herbal compound prescriptions. RESULTS TCM can induce apoptosis in OC cells by regulating signaling pathways with obvious advantages, including STAT3, PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB, Nrf2, HIF-1α, Fas/Fas L signaling pathway, etc. CONCLUSION: Chinese medicine can induce apoptosis in OC cells through multiple pathways, targets, and routes. TCM has special advantages for treating OC, providing more reasonable evidence for the research and development of new apoptosis inducers.
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Liangzhen Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Danni Ding
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Wei Wei
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
6
|
Zhang K, Hu X, Su J, Li D, Thakur A, Gujar V, Cui H. Gastrointestinal Cancer Therapeutics via Triggering Unfolded Protein Response and Endoplasmic Reticulum Stress by 2-Arylbenzofuran. Int J Mol Sci 2024; 25:999. [PMID: 38256073 PMCID: PMC10816499 DOI: 10.3390/ijms25020999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Gastrointestinal cancers are a major global health challenge, with high mortality rates. This study investigated the anti-cancer activities of 30 monomers extracted from Morus alba L. (mulberry) against gastrointestinal cancers. Toxicological assessments revealed that most of the compounds, particularly immunotoxicity, exhibit some level of toxicity, but it is generally not life-threatening under normal conditions. Among these components, Sanggenol L, Sanggenon C, Kuwanon H, 3'-Geranyl-3-prenyl-5,7,2',4'-tetrahydroxyflavone, Morusinol, Mulberrin, Moracin P, Kuwanon E, and Kuwanon A demonstrate significant anti-cancer properties against various gastrointestinal cancers, including colon, pancreatic, and gastric cancers. The anti-cancer mechanism of these chemical components was explored in gastric cancer cells, revealing that they inhibit cell cycle and DNA replication-related gene expression, leading to the effective suppression of tumor cell growth. Additionally, they induced unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, potentially resulting in DNA damage, autophagy, and cell death. Moracin P, an active monomer characterized as a 2-arylbenzofuran, was found to induce ER stress and promote apoptosis in gastric cancer cells, confirming its potential to inhibit tumor cell growth in vitro and in vivo. These findings highlight the therapeutic potential of Morus alba L. monomers in gastrointestinal cancers, especially focusing on Moracin P as a potent inducer of ER stress and apoptosis.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Jingjing Su
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dong Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Okhlahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Fu Q, Zhang F, Vijayalakshmi A. The Protective Effect of Sanggenol L Against DMBA-induced Hamster Buccal Pouch Carcinogenesis Induces Apoptosis and Inhibits Cell Proliferative Signalling Pathway. Comb Chem High Throughput Screen 2024; 27:885-893. [PMID: 37496247 DOI: 10.2174/1386207326666230726140706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) has a poor prognosis when treated with surgery and chemotherapy. Therefore, a new therapy and preventative strategy for OSCC and its underlying mechanisms are desperately needed. The purpose of this study was to examine the chemopreventive effects of sanggenol L on oral squamous cell carcinoma (OSCC). The research focused on molecular signalling pathways in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. AIM The purpose of this study was to look at the biochemical and chemopreventive effects of sanggenol L on 7,12-dimethylbenz(a)anthracene (DMBA)-induced HBP (hamster buccal pouch) carcinogenesis via cell proliferation and the apoptotic pathway. METHODS After developing squamous cell carcinoma, oral tumours continued to progress leftward into the pouch 3 times per week for 10 weeks while being exposed to 0.5 % reactive DMBA three times per week. Tumour growth was caused by biochemical abnormalities that induced inflammation, increased cell proliferation, and decreased apoptosis. RESULTS Oral sanggenol L (10 mg/kg bw) supplementation with cancer-induced model DMBApainted hamsters prevented tumour occurrences, improved biochemistry, inhibited inflammatory markers, decreased cell proliferation marker expression of tumour necrosis factor-alpha (TNF- α), nuclear factor (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and induced apoptosis. CONCLUSION Sanggenol L could be developed into a new medicine for the treatment of oral carcinogenesis.
Collapse
Affiliation(s)
- Qing Fu
- Department of Stomatology, People's Hospital of Qijiang District, Chongqing, 401420, China
| | - Fangming Zhang
- Department of Stomatology, The Fifth People's Hospital Of Wuxi, Wuxi, 214000, China
| | - Annamalai Vijayalakshmi
- Department of Biochemistry, Rabiammal Ahamed Maideen College for Women, Thiruvarur, Tamil Nadu, 610001, India
| |
Collapse
|
8
|
Qiao S, Zhang W, Jiang Y, Su Y. Sennoside A induces autophagic death of prostate cancer via inactivation of PI3K/AKT/mTOR axis. J Mol Histol 2023; 54:645-654. [PMID: 37740843 DOI: 10.1007/s10735-023-10156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Prostate cancer (PC) is the most common malignancy in male reproductive system. Sennoside A (SA) is an anthraquinone active ingredient extracted from Rheum officinale Baill., which exerts anti-tumor activity on different tumors. In the present study, the toxicity of SA on PC3 and DU 145 cells was detected via CCK-8. The effects of SA on growth, apoptosis, and autophagy were determined through CCK-8, Hoechst stain, flow cytometry, western blot, and immunofluorescence examinations. An in vivo experiment was performed in xenografted mice with intraperitoneal introduction of 10 mg/kg SA and validated via TUNEL, immunohistochemistry and western blot. The results showed that SA inhibited the cell viability with a IC50 value of 52.36 and 67.48 µM in DU 145 and PC3 cells respectively, and enhanced the apoptosis of PC3 and DU 145 cells. Additionally, SA elevated the relative LC3B expression, and the relative protein expression of LC3II/LC3I and Beclin-1, but diminished the P62 protein expression. The relative protein level of p-PI3K/PI3K, p-AKT/AKT and p-mTOR/mTOR was reduced with SA treatment, which was verified by the 740 Y-P application. The 740 Y-P treatments also restored the SA-induced the cell viability, apoptosis rate and relative LC3B expression. Meanwhile, SA inhibited the growth of PC cell and the relative protein level of PI3K/AKT/mTOR axis in vivo. Taken together, SA regulated the proliferation, apoptosis and autophagy via inactivating the PI3K/AKT/mTOR axis in PC.
Collapse
Affiliation(s)
- Shaoyi Qiao
- Department of Urology, Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an, Shaanxi, 710054, China
| | - Wuhe Zhang
- Department of Urology, Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an, Shaanxi, 710054, China.
| | - Yao Jiang
- Department of Urology, Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an, Shaanxi, 710054, China
| | - Yansheng Su
- Department of Urology, Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an, Shaanxi, 710054, China
| |
Collapse
|
9
|
Rezaie H, Alipanah-Moghadam R, Jeddi F, Clark CCT, Aghamohammadi V, Nemati A. Combined dandelion extract and all-trans retinoic acid induces cytotoxicity in human breast cancer cells. Sci Rep 2023; 13:15074. [PMID: 37700002 PMCID: PMC10497591 DOI: 10.1038/s41598-023-42177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Breast cancer is one of the most prevalent and deadly cancers among women worldwide. Recently, natural compounds have been widely used for the treatment of breast cancer. Present study evaluated antiproliferative and anti-metastasis activities of two natural compounds of dandelion and all-trans-retinoic acid (ATRA) in human MCF-7 and MDA-MB231 breast cancer cells. We also evaluated the expression of MMP-2, MMP-9, IL-1β, p53, NM23 and KAI1 genes. Data showed a clear additive cytotoxic effect in concentrations of 40 μM ATRA with 1.5 and 4 mg/ml of dandelion extract in MCF-7 and MDA-MB231 cells, respectively. In both cell lines, compared with the untreated cells, the expression levels of MMP-9 and IL-1β were significantly decreased while p53 and KAI1 expression levels were increased. Besides, MMP-2 and NM23 had different expressions in the two studied cell lines. In conclusion, dandelion/ATRA co-treatment, in addition to having strong cytotoxic effects, has putative effects on the expression of anti-metastatic genes in both breast cancer cells.
Collapse
Affiliation(s)
- Hamed Rezaie
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Alipanah-Moghadam
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | | | - Ali Nemati
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
10
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
11
|
Wang S, Cui Q, Chen X, Zhu X, Lin K, Zheng Q, Wang Y, Li D. Ailanthone Inhibits Cell Proliferation in Tongue Squamous Cell Carcinoma via PI3K/AKT Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3859489. [PMID: 36387351 PMCID: PMC9643058 DOI: 10.1155/2022/3859489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 07/22/2023]
Abstract
Tongue squamous cell carcinoma (TSCC) is the most widespread and invasive subtype of oral cancer with high recurrence rates. Ailanthone (AIL) is an active ingredient in the plant extracts of Ailanthus altissima (Mill.) Swingle. Here, we showed that AIL inhibited the proliferation of human TSCC, the cell viability of Cal-27 and Tca8113 was significantly decreased after AIL treatment for 24 h. Hoechst 33258 staining demonstrated apoptotic characteristics (such as chromatin aggregation) after AIL treatment. The ratio of early- and late-apoptotic cells in AIL-treated Cal-27 and TCA8113 cells increased remarkably when compared with the control group. Bcl-2/Bax ratio and the levels of PARP1, caspase-9, and caspase-3 decreased after AIL treatment, accompanied by significant increase of cleaved PARP1, cleaved caspase-9, and caspase-3 in Cal-27 and TCA8113 cells. Meanwhile, AIL led to Cal-27 cell cycle arrest at G2/M phase. Western blot implied decreased levels of CDK1 and cyclin B1 after AIL treatment. The level of phospho-PI3K p55 subunit and p-Akt were significantly downregulated by AIL in both Cal-27 and TCA8113 cells. These findings implied the potential applications of AIL in the treatment of human TSCC.
Collapse
Affiliation(s)
- Shuhan Wang
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, China
- College of Stomatology, Qilu Medical University, Zibo 255300, Shandong, China
| | - Qixiao Cui
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xiaoyu Chen
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xuejie Zhu
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Kehao Lin
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Qiusheng Zheng
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Yuliang Wang
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, China
- Department of Oral and Maxillofacial Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong, China
| | - Defang Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
| |
Collapse
|
12
|
Kim HJ, Kim BH, Jin BR, Park SJ, An HJ. Purple Corn Extract Improves Benign Prostatic Hyperplasia by Regulating Prostate Cell Proliferation and Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5561-5569. [PMID: 35466676 DOI: 10.1021/acs.jafc.1c07955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Purple corn (Zea mays L.), utilized as a natural pigment in food production and processing, has been used to treat obesity, cystitis, and urinary tract infections. However, no reports of its use for benign prostatic hyperplasia (BPH) exist. Purple corn extract (PCE) contains anthocyanins, particularly cyanidin-3-O-glucoside, which have various pharmacological characteristics. Therefore, this study sought to elucidate the ameliorative effect of PCE on BPH in dihydrotestosterone (DHT)-stimulated WPMY-1 cells and testosterone propionate (TP)-induced rats. Expression levels of the upregulated androgen receptor (AR) and its related genes in DHT-stimulated WPMY-1 cells were reduced by PCE, and proapoptotic gene expression increased by modulating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling cascade. PCE reduced the weight of the enlarged prostate by inhibiting the androgen/AR signaling-related markers. Histological variations in the prostate epithelium caused by TP injection were restored by PCE. Thus, PCE alleviates BPH by modulating prostate cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Hyo-Jung Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea
| | - Byung-Hak Kim
- Medience Co. Ltd., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea
| | - Sang Jae Park
- Medience Co. Ltd., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea
| |
Collapse
|
13
|
Liu M, Wang W, Wang J, Fang C, Liu T. Z-Guggulsterone alleviates renal fibrosis by mitigating G2/M cycle arrest through Klotho/p53 signaling. Chem Biol Interact 2022; 354:109846. [PMID: 35123992 DOI: 10.1016/j.cbi.2022.109846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
Abstract
Chronic kidney disease (CKD) has become a major public health problem worldwide. Renal fibrosis is considered to be the final outcome and potential therapeutic target of CKD. Z-Guggulsterone (Z-GS), an active compound derived from Commiphora mukul, has been proved to be effective in various diseases. The present study was aimed to evaluate the effect and mechanism of Z-GS on renal fibrosis. Unilateral ureteral obstruction (UUO) mice and hypoxia-induced HK-2 cells were used to simulate renal fibrosis, respectively. The mice and cells were treated with different doses of Z-GS to observe the pharmacological action. Results demonstrated that Z-GS lightened renal function and histopathological injury induced by UUO. Z-GS also alleviated renal fibrosis in mice by inhibiting the expressions of α-SMA, TGF-β, and Collagen Ⅳ. Besides, Z-GS delayed G2/M cycle arrest by promoting the expressions of CDK1 and CyclinB1. Experiments in vitro indicated that Z-GS increased cell viability while decreased LDH release in hypoxia-induced HK-2 cells. In addition, fibrosis and G2/M cycle arrest induced by hypoxia in HK-2 cells were retarded by Z-GS. The study of its possible mechanism exhibited that Z-GS increased the level of Klotho and inhibited p53 level. Nevertheless, the effect of Z-GS on Klotho/p53 signaling was reversed by siRNA-Klotho. Moreover, siRNA-Klotho eliminated the effects of Z-GS on G2/M cycle arrest and fibrosis. Taken together, this study clarified that Z-GS alleviated renal fibrosis and G2/M cycle arrest through Klotho/p53 signaling. People who have suffered CKD may potentially benefit from treatment with Z-GS.
Collapse
Affiliation(s)
- Minna Liu
- Department of Nephrology, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, China
| | - Wenjun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinhan Wang
- Department of Nephrology, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, China
| | - Chuntian Fang
- Department of Nephrology, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, China
| | - Tianlong Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, China.
| |
Collapse
|
14
|
Xiong J, Li G, Mei X, Ding J, Shen H, Zhu D, Wang H. Co-Delivery of p53 Restored and E7 Targeted Nucleic Acids by Poly (Beta-Amino Ester) Complex Nanoparticles for the Treatment of HPV Related Cervical Lesions. Front Pharmacol 2022; 13:826771. [PMID: 35185576 PMCID: PMC8855959 DOI: 10.3389/fphar.2022.826771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
The p53 gene has the highest mutation frequency in tumors, and its inactivation can lead to malignant transformation, such as cell cycle arrest and apoptotic inhibition. Persistent high-risk human papillomavirus (HR-HPV) infection is the leading cause of cervical cancer. P53 was inactivated by HPV oncoprotein E6, promoting abnormal cell proliferation and carcinogenesis. To study the treatment of cervical intraepithelial neoplasia (CIN) and cervical cancer by restoring p53 expression and inactivating HPV oncoprotein, and to verify the effectiveness of nano drugs based on nucleic acid delivery in cancer treatment, we developed poly (beta-amino ester)537, to form biocompatible and degradable nanoparticles with plasmids (expressing p53 and targeting E7). In vitro and in vivo experiments show that nanoparticles have low toxicity and high transfection efficiency. Nanoparticles inhibited the growth of xenograft tumors and successfully reversed HPV transgenic mice’s cervical intraepithelial neoplasia. Our work suggests that the restoration of p53 expression and the inactivation of HPV16 E7 are essential for blocking the development of cervical cancer. This study provides new insights into the precise treatment of HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jinfeng Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guannan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| |
Collapse
|
15
|
Pyrroline-5-Carboxylate Reductase-2 Promotes Colorectal Cancer Progression via Activating PI3K/AKT/mTOR Pathway. DISEASE MARKERS 2021; 2021:9950663. [PMID: 34512817 PMCID: PMC8429024 DOI: 10.1155/2021/9950663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Aim The aim of this study was to investigate the effect and underlying pathway of pyrroline-5-carboxylate reductase-2 (PYCR2) on colorectal cancer (CRC). Methods The Cancer Genome Atlas (TCGA) database was used to analyze PYCR2 expression levels and clinical information. Cell proliferation was evaluated using colony forming and EdU assay. Cell apoptosis rate was determined using flow cytometry. Cell migration and invasion were measured by performing a Transwell assay, and PYCR2, MMP-2, MMP-9, Bax, cleaved caspase-3, Bcl-2, cleaved PARP, p-PI3K, PI3K, p-AKT, AKT, p-mTOR, and mTOR protein levels were detected by Western blot. Results A review of the TCGA database revealed that PYCR2 was highly expressed in CRC patients and that high PYCR2 expression was associated with advanced stage, adenocarcinoma, nodal metastasis, and poor survival rate. Moreover, PYCR2 knockdown reduced cell viability, proliferation, migration, and invasion and increased apoptosis. Additionally, PYCR2 knockdown increased Bax, cleaved caspase-3, and cleaved PARP levels and decreased Bcl-2, MMP-2, MMP-9, p-PI3K, p-AKT, and p-mTOR levels in CRC cells. Effects of silencing PYCR2 on proliferation, migration, invasion, apoptosis, and the PI3K/AKT/mTOR pathway in CRC cells were all reversed using a PI3K activator (740Y-P). Conclusion PYCR2 was highly expressed in CRC, and its knockdown suppressed CRC tumorigenesis via inhibiting the activation of PI3K/AKT/mTOR pathway. This finding provides a new theoretical foundation for the treatment of CRC.
Collapse
|
16
|
Pop TD, Diaconeasa Z. Recent Advances in Phenolic Metabolites and Skin Cancer. Int J Mol Sci 2021; 22:9707. [PMID: 34575899 PMCID: PMC8471058 DOI: 10.3390/ijms22189707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Skin cancer represents any tumor development from the cutaneous structures within the epidermis, dermis or subcutaneous tissue, and is considered to be the most prevalent type of cancer. Compared to other types of cancer, skin cancer is proven to have a positive growth rate of prevalence and mortality. There are available various treatments, including chemotherapy, immunotherapy, radiotherapy and targeted therapy, but because of the multidrug resistance development, a low success has been registered. By this, the importance of studying naturally occurring compounds that are both safe and effective in the chemoprevention of skin cancer is emphasized. This review focuses on melanoma because it is the deadliest form of skin cancer, with a significantly increasing incidence in the last decades. As chemopreventive agents, we present polyphenols and their antioxidant activity, anti-inflammatory effect, their ability to balance the cell cycle and to induce apoptosis and their various other effects on skin melanoma. Besides chemoprevention, studies suggest that polyphenols can have treating abilities in some conditions. The limitations of using polyphenols are also pointed out, which are related to their poor bioavailability and stability, but as the technology is well developed, it is possible to augment the efficacy of polyphenols in the case of melanoma.
Collapse
Affiliation(s)
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
17
|
Geng Y, Li L, Liu P, Chen Z, Shen A, Zhang L. TMT-Based Quantitative Proteomic Analysis Identified Proteins and Signaling Pathways Involved in the Response to Xanthatin Treatment in Human HT-29 Colon Cancer Cells. Anticancer Agents Med Chem 2021; 22:887-896. [PMID: 34488591 DOI: 10.2174/1871520621666210901101510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/12/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Xanthatin is a plant-derived bioactive sesquiterpene lactone from the Xanthium strumarium L., and it has been used as a traditional Chinese medicine. Recently, many studies have reported that xanthatin has anticancer activity. However, a comprehensive understanding of the mechanism underlying the antitumor effects of xanthatin is still lacking. OBJECTIVE To systematically and comprehensively identify the underlying mechanisms of xanthatin on cancer cells, quantitative proteomic techniques were performed. METHODS Xanthatin induced HT-29 colon cancer cells death was detected by lactate dehydrogenase (LDH) release cell death assay. Differentially abundant proteins in two groups (control groups and xanthatin treatment groups) of human HT-29 colon cancer cells were identified using tandem mass tag (TMT) quantitative proteomic techniques. All the significant differentially abundant proteins were generally characterized by performing hierarchical clustering, Gene Ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We chose Western blot analysis to validate the candidate proteins in the proteomics results. RESULTS A total of 5637 proteins were identified, of which 397 significantly differentially abundant proteins in the groups were quantified. Based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, we found that p53-related signaling played an important role in xanthatin-treated HT-29 colon cancer cells. p53-upregulated modulator of apoptosis (Puma), Sestrin-2 and p14ARF, which were selected from among p53-related signaling proteins, were further validated, and the results were consistent with the tandem mass tag quantitative proteomic results. CONCLUSION We first investigated the molecular mechanism underlying the effects of xanthatin treatment on HT-29 colon cancer cells using tandem mass tag quantitative proteomic methods and provided a global comprehensive understanding of the antitumor effects of xanthatin. However, it is necessary to further confirm the function of the differentially abundant proteins and the potentially associated signaling pathways.
Collapse
Affiliation(s)
- Yadi Geng
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Lingli Li
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Ping Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, 230032. China
| | - Zhaolin Chen
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Aizong Shen
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Lei Zhang
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| |
Collapse
|
18
|
Narayanankutty A. Phytochemicals as PI3K/ Akt/ mTOR Inhibitors and Their Role in Breast Cancer Treatment. Recent Pat Anticancer Drug Discov 2021; 15:188-199. [PMID: 32914720 DOI: 10.2174/1574892815666200910164641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breast cancer is the predominant form of cancer in women; various cellular pathways are involved in the initiation and progression of breast cancer. Among the various types of breast cancer that differ in their growth factor receptor status, PI3K/Akt signaling is a common pathway where all these converge. Thus, the PI3K signaling is of great interest as a target for breast cancer prevention; however, it is less explored. OBJECTIVE The present review is aimed to provide a concise outline of the role of PI3K/Akt/mTOR pathway in breast carcinogenesis and its progression events, including metastasis, drug resistance and stemness. The review emphasizes the role of natural and synthetic inhibitors of PI3K/Akt/m- TOR pathway in breast cancer prevention. METHODS The data were obtained from PubMed/Medline databases, Scopus and Google patent literature. RESULTS PI3K/Akt/mTOR signaling plays an important role in human breast carcinogenesis; it acts on the initiation and progression events associated with it. Numerous molecules have been isolated and identified as promising drug candidates by targeting the signaling pathway. Results from clinical studies confirm their application in the treatment of human breast cancer alone and in combination with classical chemotherapeutics as well as monoclonal antibodies. CONCLUSION PI3K/mTOR signaling blockers have evolved as promising anticancer agents by interfering breast cancer development and progression at various stages. Natural products and bioactive components are emerging as novel inhibitors of PI3K signaling and more research in this area may yield numerous drug candidates.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Kerala, India
| |
Collapse
|
19
|
Hu W, Zhang L, Dong Y, Tian Z, Chen Y, Dong S. Tumour dormancy in inflammatory microenvironment: A promising therapeutic strategy for cancer-related bone metastasis. Cell Mol Life Sci 2020; 77:5149-5169. [PMID: 32556373 PMCID: PMC11104789 DOI: 10.1007/s00018-020-03572-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/22/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer metastasis is a unique feature of malignant tumours. Even bone can become a common colonization site due to the tendency of solid tumours, including breast cancer (BCa) and prostate cancer (PCa), to metastasize to bone. Currently, a previous concept in tumour metabolism called tumour dormancy may be a promising target for antitumour treatment. When disseminated tumour cells (DTCs) metastasize to the bone microenvironment, they form a flexible regulatory network called the "bone-tumour-inflammation network". In this network, bone turnover as well as metabolism, tumour progression, angiogenesis and inflammatory responses are highly unified and coordinated, and a slight shift in this balance can result in the disruption of the microenvironment, uncontrolled inflammatory responses and excessive tumour growth. The purpose of this review is to highlight the regulatory effect of the "bone-tumour-inflammation network" in tumour dormancy. Osteoblast-secreted factors, bone turnover and macrophages are emphasized and occupy in the main part of the review. In addition, the prospective clinical application of tumour dormancy is also discussed, which shows the direction of future research.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lincheng Zhang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yutong Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhansong Tian
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
20
|
Zheng S, Gong M, Chen J. Extracellular vesicles enriched with miR-150 released by macrophages regulates the TP53-IGF-1 axis to alleviate myocardial infarction. Am J Physiol Heart Circ Physiol 2020; 320:H969-H979. [PMID: 33164579 DOI: 10.1152/ajpheart.00304.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myocardial infarction (MI) is recognized as a major cause of death and disability around the world. Macrophage-derived extracellular vesicles (EVs) have been reportedly involved in the regulation of cellular responses to MI. Thus, we sought to clarify the mechanism by which macrophage-derived EVs regulate this process. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to determine microRNA-150 (miR-150) expression in an MI mouse model with ligation of the left anterior descending coronary artery (LAD) and in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes. Bioinformatics analysis and dual luciferase reporter gene assay were adopted to identify the correlation of miR-150 with tumor protein 53 (TP53) expression in cardiomyocytes. Gain- and loss-of-function experiments were conducted in H/R-induced cardiomyocytes, cardiomyocytes incubated with EVs from miR-150 mimic-transfected macrophages, or MI-model mice treated with EVs from miR-150 mimic-transfected macrophages. hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining assays were used for detecting inflammatory infiltration and cell apoptosis. The release of lactate dehydrogenase (LDH) by dead cardiomyocytes was measured with an LDH kit, and the apoptosis-related proteins, Bax, and cleaved-caspase 3 were determined by Western blot analysis. miR-150 expression was downregulated in the infarcted cardiac tissues of MI mice. Macrophage-derived EVs could transfer miR-150 into cardiomyocytes, where it directly targeted and suppressed TP53. Furthermore, miR-150 suppressed phosphatase and tensin homology (PTEN) and activated p-Akt to upregulate IGF-1 expression. Furthermore, increased expression of EV-derived miR-150 prevented cardiomyocyte apoptosis in vitro, as evidenced by downregulated Bax and cleaved-caspase 3 and upregulated Bcl2 and alleviated MI in vivo. In conclusion, our study demonstrates the cardioprotective effect of macrophage-derived EV-miR-150 on MI-induced heart injury through negatively regulating the TP53-IGF-1 signaling pathway.NEW & NOTEWORTHY miR-150 is expressed at a low level in cardiac tissues after myocardial infarction. Macrophages-derived EVs transfer miR-150 to cardiomyocytes. miR-150 directly targets TP53. miR-150 elevation regulates TP53-IGF-1 axis to reduce cardiomyocyte apoptosis. EV-derived miR-150 could be a potential therapeutic target for myocardial infarction.
Collapse
Affiliation(s)
- Suxia Zheng
- Department of Cardiology, Linyi People's Hospital, Linyi, People's Republic of China
| | - Maolei Gong
- Department of Critical Care Medicine, Aerospace Center Hospital (Aerospace Clinical Medical College of Peking University), Beijing, People's Republic of China
| | - Jing Chen
- Department of Cardiology, Linyi People's Hospital, Linyi, People's Republic of China
| |
Collapse
|
21
|
Common molecular pathways targeted by nintedanib in cancer and IPF: A bioinformatic study. Pulm Pharmacol Ther 2020; 64:101941. [DOI: 10.1016/j.pupt.2020.101941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
|
22
|
Joshi T, Patel I, Kumar A, Donovan V, Levenson AS. Grape Powder Supplementation Attenuates Prostate Neoplasia Associated with Pten Haploinsufficiency in Mice Fed High-Fat Diet. Mol Nutr Food Res 2020; 64:e2000326. [PMID: 32618118 PMCID: PMC8103660 DOI: 10.1002/mnfr.202000326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Previous studies have identified potent anticancer activities of polyphenols in preventing prostate cancer. The aim of the current study is to evaluate the chemopreventive potential of grape powder (GP) supplemented diets in genetically predisposed and obesity-provoked prostate cancer. METHODS AND RESULTS Prostate-specific Pten heterozygous (Pten+/f ) transgenic mice are fed low- and high-fat diet (LFD and HFD, respectively) supplemented with 10% GP for 33 weeks, ad libitum. Prostate tissues are characterized using immunohistochemistry and western blots, and sera are analyzed by ELISA and qRT-PCR. Pten+/f mice fed LFD and HFD supplemented with 10% GP show favorable histopathology, significant reduction of the proliferative rate of prostate epithelial cells (Ki67), and rescue of PTEN expression. The most potent protective effect of GP supplementation is detected against HFD-induced increase in inflammation (IL-1β; TGF-β1), activation of cell survival pathways (Akt, AR), and angiogenesis (CD31) in Pten+/f mice. Moreover, GP supplementation reduces circulating levels of oncogenic microRNAs (miR-34a; miR-22) in Pten+/f mice. There are no significant changes in body weight and food intake in GP supplemented diet groups. CONCLUSIONS GP diet supplementation can be a beneficial chemopreventive strategy for obesity-related inflammation and prostate cancer progression. Monitoring serum miRNAs can facilitate the non-invasive evaluation of chemoprevention efficacy.
Collapse
Affiliation(s)
- Tanvi Joshi
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Ishani Patel
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | | | - Anait S. Levenson
- School of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
23
|
Ashrafizadeh M, Zarrabi A, Saberifar S, Hashemi F, Hushmandi K, Hashemi F, Moghadam ER, Mohammadinejad R, Najafi M, Garg M. Nobiletin in Cancer Therapy: How This Plant Derived-Natural Compound Targets Various Oncogene and Onco-Suppressor Pathways. Biomedicines 2020; 8:biomedicines8050110. [PMID: 32380783 PMCID: PMC7277899 DOI: 10.3390/biomedicines8050110] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin (NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective. Among them, the antitumor activity of NOB has been under attention over recent years. In this review, we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-β, ZEB, Slug, and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on. Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran;
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon 7319846451, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715749, Iran;
| | - Ebrahim Rahmani Moghadam
- Student Research Committee, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida-201313, India
- Correspondence: (R.M.); (M.N.); (M.G.)
| |
Collapse
|