1
|
Ajibade TO, Ohore OM, Esan OO, Adeoye BO, Ake AS, Adetona MO, Awoyomi OV, Igado OO, Oyagbemi TO, Adeogun AV, Oyagbemi AA, Omobowale TO, Oguntibeju OO, Nwulia E, Yakubu MA. Silymarin attenuates cobalt chloride-induced redox imbalance and cardio-renal dysfunctions in rats. Drug Chem Toxicol 2025:1-11. [PMID: 40336373 DOI: 10.1080/01480545.2025.2499540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
Silymarin is an extract of Silybum marianum that is used traditionally for the treatment of several diseases. This study sought to evaluate the protective effects of silymarin on cobalt chloride (CoCl2)-induced cardio-renal toxicities in rats. Forty rats were randomly divided into four groups of 10 rats each: control; 300 mg/kg CoCl2; CoCl2 + 100 mg/kg silymarin; and 100 mg/kg silymarin only. All administrations were done orally. At the end of the experimental period (seven days), blood pressure parameters, markers of oxidative stress, antioxidant defense status, renal function test, histopathology and immunohistochemical expressions were evaluated on the heart and kidney tissues. Silymarin significantly (p < 0.05) altered CoCl2-induced alterations in blood pressure parameters, antioxidants and markers of oxidative stress, blood urea nitrogen and creatinine. Histopathological evaluation revealed area of infiltration of the myocardium by inflammatory cells and hemorrhages in the kidney of rats exposed to CoCl2 without silymarin treatment, but these lesions were absent in the control and silymarin groups. Increased immunohistochemical expression of cardiac troponin I and matrix metalloproteinase-2 (MMP-2) was observed in the cardiac tissues of rats exposed to CoCl2 without silymarin treatment. The immunohistochemical expression of cystatin C was heightened, while that of angiotensin-converting enzyme 2 (ACE2) was attenuated in the CoCl2 untreated group compared with the control and silymarin groups. In conclusion, silymarin effectively mitigated the toxic effects of CoCl2 on the heart and kidney tissues of rats due to its ability to positively modulate the activities of endogenous antioxidants and neutralize reactive oxygen species in cardiac and renal systems.
Collapse
Affiliation(s)
- Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Okezi Michael Ohore
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olarenwaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bisi Olajumoke Adeoye
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayodele Stephen Ake
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Olumayowa Olawumi Igado
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Adewunmi Victoria Adeogun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Phytomedicine and Phytochemistry Group, Cape Peninsula University of Technology, Bellville, South Africa
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, College of Medicine, Howard University, Washington, DC, USA
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
2
|
Baky NAA, Fouad LM, Ahmed KA, Alzokaky AA. Mechanistic insight into the hepatoprotective effect of Moringa oleifera Lam leaf extract and telmisartan against carbon tetrachloride-induced liver fibrosis: plausible roles of TGF-β1/SMAD3/SMAD7 and HDAC2/NF-κB/PPARγ pathways. Drug Chem Toxicol 2025; 48:84-97. [PMID: 38835191 DOI: 10.1080/01480545.2024.2358066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The increasing prevalence and limited therapeutic options for liver fibrosis necessitates more medical attention. Our study aims to investigate the potential molecular targets by which Moringa oleifera Lam leaf extract (Mor) and/or telmisartan (Telm) alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Liver fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 50% CCl4 (1 ml/kg) every 72 hours, for 8 weeks. Intoxicated rats with CCl4 were simultaneously orally administrated Mor (400 mg/kg/day for 8 weeks) and/or Telm (10 mg/kg/day for 8 weeks). Treatment of CCl4-intoxicated rats with Mor/Telm significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to CCl4 intoxicated group (P < 0.001). Additionally, Mor/Telm treatment significantly reduced the level of hepatic inflammatory, profibrotic, and apoptotic markers including; nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-βeta1 (TGF-β1), and caspase-3. Interestingly, co-treatment of CCl4-intoxicated rats with Mor/Telm downregulated m-RNA expression of histone deacetylase 2 (HDAC2) (71.8%), and reduced protein expression of mothers against decapentaplegic homolog 3 (p-SMAD3) (70.6%) compared to untreated animals. Mor/Telm regimen also elevated p-SMAD7 protein expression as well as m-RNA expression of peroxisome proliferator-activated receptor γ (PPARγ) (3.6 and 3.1 fold, respectively p < 0.05) compared to CCl4 intoxicated group. Histopathological picture of the liver tissue intoxicated with CCl4 revealed marked improvement by Mor/Telm co-treatment. Conclusively, this study substantiated the hepatoprotective effect of Mor/Telm regimen against CCl4-induced liver fibrosis through suppression of TGF-β1/SMAD3, and HDAC2/NF-κB signaling pathways and up-regulation of SMAD7 and PPARγ expression.
Collapse
Affiliation(s)
- Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Lamiaa M Fouad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amany A Alzokaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
3
|
Mohamad EA, Ahmed SM, Masoud MA, Mohamed FA, Mohammed HS. Cardioprotective Potential of Moringa Oleifera Leaf Extract Loaded Niosomes Nanoparticles - Against Doxorubicin Toxicity In Rats. Curr Pharm Biotechnol 2025; 26:289-301. [PMID: 38918977 DOI: 10.2174/0113892010303097240605105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) is one of the most potent anticancer drugs that has ubiquitous usage in oncology; however, its marked adverse effects, such as cardiotoxicity, are still a major clinical issue. Plant extracts have shown cardioprotective effects and reduced the risk of cardiovascular diseases. METHOD The current study is intended to explore the cardioprotective effect of ethanolic Moringa Oleifera extracts (MOE) leaves loaded into niosomes (MOE-NIO) against DOXinduced cardiotoxicity in rats. MOE niosomes nanoparticles (NIO-NPs) were prepared and characterized by TEM. Seventy male Wistar rats were randomly divided into seven groups: control, NIO, DOX, DOX+MOE, DOX+MOE-NIO, MOE+DOX, and MOE-NIO+DOX. DOX (4 mg/kg, IP) was injected once per week for 4 weeks with daily administration of MOE or MOENIO (250 mg/kg, PO) for 4 weeks; in the sixth and seventh groups, MOE or MOE-NIO (250 mg/kg, PO) was administered one week before DOX injection. Various parameters were assessed in serum and cardiac tissue. Pre and co-treatment with MOE-NIO have mitigated the cardiotoxicity induced by DOX as indicated by serum aspartate aminotransferase (AST), creatine kinase - MB(CK-MB) and lactate dehydrogenase (LDH), cardiac Troponin 1(cTn1) and lipid profile. MOE-NIO also alleviated lipid peroxidation (MDA), nitrosative status (NO), and inflammatory markers levels; myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α) obtained in DOX-treated animals. Additionally, ameliorated effects have been recorded in glutathione content and superoxide dismutase activity. MOE-NIO effectively neutralized the DOXupregulated nuclear factor kappa B (NF-kB) and p38 mitogen-activated protein kinases (p38 MAPK), and DOX-downregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) expressions in the heart. RESULTS It is concluded that pre and co-treatment with MOE-NIO could protect the heart against DOX-induced cardiotoxicity by suppressing numerous pathways including oxidative stress, inflammation, and apoptosis and by the elevation of tissue antioxidant status. CONCLUSION Thus, it may be reasonable to suggest that pre and co-treatment with MOE-NIO can provide a potential cardioprotective effect when doxorubicin is used in the management of carcinoma.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 11942, Saudi Arabia
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Samya Mahmoud Ahmed
- Biochemistry Departement, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Marwa A Masoud
- Pharmacology Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Fatma Adel Mohamed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Bukowska P, Bralewska M, Pietrucha T, Sakowicz A. Nutraceuticals as Modulators of Molecular Placental Pathways: Their Potential to Prevent and Support the Treatment of Preeclampsia. Int J Mol Sci 2024; 25:12167. [PMID: 39596234 PMCID: PMC11594370 DOI: 10.3390/ijms252212167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Preeclampsia (PE) is a serious condition characterized by new-onset hypertension and proteinuria or organ dysfunction after the 20th week of gestation, making it a leading cause of maternal and fetal mortality worldwide. Despite extensive research, significant gaps remain in understanding the mechanisms underlying PE, contributing to the ineffectiveness of current prevention and treatment strategies. Consequently, premature cesarean sections often become the primary intervention to safeguard maternal and fetal health. Emerging evidence indicates that placental insufficiency, driven by molecular disturbances, plays a central role in the development of PE. Additionally, the maternal microbiome may be implicated in the pathomechanism of preeclampsia by secreting metabolites that influence maternal inflammation and oxidative stress, thereby affecting placental health. Given the limitations of pharmaceuticals during pregnancy due to potential risks to fetal development and concerns about teratogenic effects, nutraceuticals may provide safer alternatives. Nutraceuticals are food products or dietary supplements that offer health benefits beyond basic nutrition, including plant extracts or probiotics. Their historical use in traditional medicine has provided valuable insights into their safety and efficacy, including for pregnant women. This review will examine how the adoption of nutraceuticals can enhance dysregulated placental pathways, potentially offering benefits in the prevention and treatment of preeclampsia.
Collapse
Affiliation(s)
| | | | | | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
5
|
Isik B, Suleyman B, Mammadov R, Bulut S, Yavuzer B, Altuner D, Coban TA, Suleyman H. Protective effect of cinnamon extract against cobalt-induced multiple organ damage in rats. Front Pharmacol 2024; 15:1384181. [PMID: 38783942 PMCID: PMC11111945 DOI: 10.3389/fphar.2024.1384181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background The role of oxidative stress and inflammation in cobalt (Co) toxicity has been the focus of previous studies. Cinnamon and its main components have been reported to have protective effects in various tissues with antioxidant and anti-inflammatory effects. Aims In this study, the protective effect of cinnamon extract (CE) against possible Co-induced heart, kidney, and liver damage in rats was investigated biochemically. Methods Eighteen albino Wistar-type male rats were categorized into three groups (n = 6 per group): control (CG), CoCL2-administered (CoCL2), and CE + CoCL2-administered (CE + Co) groups. The CE + CoCL2 group was administered CE (100 mg/kg), and the CoCL2 and CG groups were administered distilled water orally by gavage. One hour after the administration, Co (150 mg/kg) was administered orally to the CE + CoCL2 and CoCL2 groups. This procedure was repeated once daily for 7 days. Then, biochemical markers were studied in the excised heart, kidney, and liver tissues. Results CoCL2 increased oxidants and proinflammatory cytokines and decreased antioxidants in heart, kidney, and liver tissues. Heart, kidney, and liver tissue were affected by Co damage. CE treatment suppressed the CoCL2-induced increase in oxidants and proinflammatory cytokines and decrease in antioxidants in heart, kidney, and liver tissues. CE treatment has been shown to attenuate cardiac damage by reducing serum troponin I (TpI) and creatine kinase-MB (CK-MB), renal damage by reducing creatinine and blood urea nitrogen (BUN), and liver damage by reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Conclusion Co induced the production of oxidants and proinflammatory parameters and antioxidant depletion in heart, kidney, and liver tissues of rats. Our experimental results show that CE protects heart, kidney, and liver tissues against oxidative and inflammatory changes induced by CoCLl2.
Collapse
Affiliation(s)
- Bahar Isik
- Department of Emergency Medicine, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Bahadir Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Bulent Yavuzer
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Taha Abdulkadir Coban
- Department of Medical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| |
Collapse
|
6
|
Cergel E, Tuzuner BA, Turkyilmaz IB, Oktay S, Magaji UF, Sacan O, Yanardag R, Yarat A. Reversal of Valproate-Induced Major Salivary Gland Changes By Moringa Oleifera Extract in Rats. Chem Biodivers 2024; 21:e202301959. [PMID: 38469951 DOI: 10.1002/cbdv.202301959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
This study aimed to explore the potential protective impacts of Moringa oleifera extract on major alteration in salivary glands of rats exposed to sodium valproate (VA). Groups were defined as control, control+moringa extract, sodium valproate, and sodium valproate+moringa extract. Antioxidant and oxidant status, activities of digestive and metabolic enzymes were examined. VA treatment led to various biochemical changes in the salivary glands, including decreased levels of antioxidants like glutathione, glutathione-S-transferase, and superoxide dismutase (except for sublingual superoxide dismutase). Conversely, a decrease in alpha-amylase, alkaline and acid phosphatase, lactate dehydrogenase, protease, and maltase activities were observed. The study also demonstrated that VA induces oxidative stress, increases lipid peroxidation, sialic acid, and nitric oxide levels in the salivary glands. Total oxidant capacity was raised in all glands except in the sublingual gland. The electrophoretic patterns of proteins were similar. Moringa oleifera extract exhibited protective properties, reversing these VA-induced biochemical changes due to its antioxidant and therapeutic attributes. This research suggests that moringa extract might serve as an alternative treatment approach for individuals using VA and experiencing salivary gland issues, although further research is necessary to confirm these findings in human subjects.
Collapse
Affiliation(s)
- Eda Cergel
- Biochemistry Master of Science Student, Health Sciences Institute, Marmara University, Maltepe, Istanbul, Turkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Halic University, Eyupsultan, Istanbul, Turkiye
| | - Burcin Alev Tuzuner
- Department of Biochemistry, Faculty of Dentistry, Istanbul Gelisim University, Avcilar, Istanbul, Turkiye
- Life Sciences and Biomedical Engineering Application and Research Centre, Istanbul Gelisim University, Avcilar, Istanbul, Turkiye
| | - Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Sehkar Oktay
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkiye
| | - Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi State, Nigeria
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Aysen Yarat
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkiye
| |
Collapse
|
7
|
Alanazi IS, Altyar AE, Zaazouee MS, Elshanbary AA, Abdel-Fattah AFM, Kamel M, Albaik M, Ghaboura N. Effect of moringa seed extract in chlorpyrifos-induced cerebral and ocular toxicity in mice. Front Vet Sci 2024; 11:1381428. [PMID: 38659447 PMCID: PMC11041635 DOI: 10.3389/fvets.2024.1381428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
Chlorpyrifos (CPF) is one of the most commonly used organophosphosphate-based (OP) insecticides. Its wide use has led to higher morbidity and mortality, especially in developing countries. Moringa seed extracts (MSE) have shown neuroprotective activity, antioxidant, anti-inflammatory, and antibacterial features. The literature lacks data investigating the role of MSE against CPF-induced cerebral and ocular toxicity in mice. Therefore, we aim to investigate this concern. A total of 40 mature male Wistar Albino mice were randomly distributed to five groups. Initially, they underwent a one-week adaptation period, followed by a one-week treatment regimen. The groups included a control group that received saline, MSE 100 mg/kg, CPF 12 mg/kg, CPF-MSE 50 mg/kg, and CPF-MSE 100 mg/kg. After the treatment phase, analyses were conducted on serum, ocular, and cerebral tissues. MSE100 and CPF-MSE100 normalized the pro-inflammatory markers (interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)) and AChE serum levels. CPF-MSE50 significantly enhanced these serum levels compared to CPF; however, it showed higher levels compared to the control. Moreover, the tissue analysis showed a significant decrease in oxidative stress (malondialdehyde (MDA) and nitric oxide (NO)) and an increase in antioxidant markers (glutathione (GSH), glutathione peroxidase (GSH-PX)), superoxide dismutase (SOD), and catalase (CAT) in the treated groups compared to CPF. Importantly, the significance of these effects was found to be dose-dependent, particularly evident in the CPF-MSE100 group. We conclude that MSE has a promising therapeutic effect in the cerebral and ocular tissues of CPF-intoxicated mice, providing a potential solution for OP public health issues.
Collapse
Affiliation(s)
- Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | | | | | | | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mai Albaik
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Nehmat Ghaboura
- Pharmacy Practice Department, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Hindawy RF, Manawy SM, Nafea OE, Abdelhameed AA, Hendawi FF. Moringa oleifera leaves ethanolic extract counteracts cortical neurodegeneration induced by aluminum chloride in rats. Toxicol Res (Camb) 2024; 13:tfae028. [PMID: 38455639 PMCID: PMC10917235 DOI: 10.1093/toxres/tfae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
Background Aluminum, a well-recognized neurotoxin, is implicated in various neurodegenerative disorders. Moringa oleifera (M. oleifera), known as a miracle tree, is utilized as a functional food and nutritional supplement. This study investigates the potential preventive effects of M. oleifera extract on aluminum chloride (AlCl3)-induced cortical neurodegeneration in rats. Materials and methods Therefore, 24 adult male Wistar rats were randomly divided into four distinct groups: negative control, M. oleifera extract (MOE), AlCl3, and AlCl3 + MOE. Treatments were administered orally for 28 consecutive days. Cognitive performance, brain oxidative/nitrosative stress, neuroinflammation, apoptotic-cell death, and associated histopathological alterations were assessed. Results Our results showed that MOE improved spatial learning and memory, enhanced antioxidant superoxide dismutase enzyme activity, antagonized nitrosative stress, reduced inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6), decreased caspase-3, increased Bcl-2, and facilitated repair of cortical and hippocampal structures. Conclusions We concluded that MOE exhibits protective effects against cortical neurodegeneration, making it a promising supplement to counteract aluminum-induced neurotoxic effects.
Collapse
Affiliation(s)
- Rabab Fawzy Hindawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Samia M Manawy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Ola Elsayed Nafea
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig Rd inside Zagazig University, Shaibet an Nakareyah, Al-Sharqia Governorate, Zagazig 44519, Egypt
| | - Abeer A Abdelhameed
- Department of Pharmacology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Fatma Fawzi Hendawi
- Department of Pharmacology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| |
Collapse
|
9
|
Tan Z, Deng L, Jiang Z, Xiang G, Zhang G, He S, Zhang H, Wang Y. Selenium Nanoparticles Attenuate Cobalt Nanoparticle-Induced Skeletal Muscle Injury: A Study Based on Myoblasts and Zebrafish. TOXICS 2024; 12:130. [PMID: 38393225 PMCID: PMC10893304 DOI: 10.3390/toxics12020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Cobalt alloys have numerous applications, especially as critical components in orthopedic biomedical implants. However, recent investigations have revealed potential hazards associated with the release of nanoparticles from cobalt-based implants during implantation. This can lead to their accumulation and migration within the body, resulting in adverse reactions such as organ toxicity. Despite being a primary interface for cobalt nanoparticle (CoNP) exposure, skeletal muscle lacks comprehensive long-term impact studies. This study evaluated whether selenium nanoparticles (SeNPs) could mitigate CoNP toxicity in muscle cells and zebrafish models. CoNPs dose-dependently reduced C2C12 viability while elevating reactive oxygen species (ROS) and apoptosis. However, low-dose SeNPs attenuated these adverse effects. CoNPs downregulated myogenic genes and α-smooth muscle actin (α-SMA) expression in C2C12 cells; this effect was attenuated by SeNP cotreatment. Zebrafish studies confirmed CoNP toxicity, as it decreased locomotor performance while inducing muscle injury, ROS generation, malformations, and mortality. However, SeNPs alleviated these detrimental effects. Overall, SeNPs mitigated CoNP-mediated cytotoxicity in muscle cells and tissue through antioxidative and antiapoptotic mechanisms. This suggests that SeNP-coated implants could be developed to eliminate cobalt nanoparticle toxicity and enhance the safety of metallic implants.
Collapse
Affiliation(s)
- Zejiu Tan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.T.); (L.D.); (Z.J.); (G.X.); (G.Z.); (S.H.); (H.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Linhua Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.T.); (L.D.); (Z.J.); (G.X.); (G.Z.); (S.H.); (H.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhongjing Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.T.); (L.D.); (Z.J.); (G.X.); (G.Z.); (S.H.); (H.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.T.); (L.D.); (Z.J.); (G.X.); (G.Z.); (S.H.); (H.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gengming Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.T.); (L.D.); (Z.J.); (G.X.); (G.Z.); (S.H.); (H.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Sihan He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.T.); (L.D.); (Z.J.); (G.X.); (G.Z.); (S.H.); (H.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.T.); (L.D.); (Z.J.); (G.X.); (G.Z.); (S.H.); (H.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.T.); (L.D.); (Z.J.); (G.X.); (G.Z.); (S.H.); (H.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
10
|
Habotta OA, Abdeen A, El-Hanafy AA, Yassin N, Elgameel D, Ibrahim SF, Abdelrahaman D, Hasan T, Imbrea F, Ghamry HI, Fericean L, Behairy A, Atwa AM, Abdelkader A, Mahdi MR, El-Mosallamy SA. Sesquiterpene nootkatone counteracted the melamine-induced neurotoxicity via repressing of oxidative stress, inflammatory, and apoptotic trajectories. Biomed Pharmacother 2023; 165:115133. [PMID: 37454594 DOI: 10.1016/j.biopha.2023.115133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Melamine (ML), a chemical substance of high nitrogen content, is used as a food adulterant. Former evidences implied that ML could induce a variety of toxic effects including neurotoxicity and cognitive impairment. Therefore, the aim of this study was to delineate the protective effect of the nootkatone (NK) against ML-induced neural adverse effects. Rats were orally pretreated with NK (5 and 10 mg/kg) prior to the oral administration of ML (700 mg/kg) for a period of 28 days. Our findings unveiled remarkable alleviating effect of NK on MK-induced neurobehavioral disturbance in open field test. Furthermore, NK lessened ML-caused increases in the acetylcholine esterase level in the brain tissue of exposed rats. NK also decreased the neural oxidative stress as represented by elevated levels of SOD, CAT, and GSH along with decreased MDA and NO levels. Upregulated mRNA expression levels of neural NRF-2 and HO-1 were noticed after NK administration. Remarkable anti-inflammatory impact was prominent by decreased neural IL-1β, and TNF-α along with downregulated NF-κB and TLR-4 gene expression levels in NK-treated rats. Noteworthily, pre-treatment with NK decreased the immune reaction of RAGE and HMGB-1 induced by oral ML exposure. Brain histological examination validated the obtained biochemical and molecular results. To sum up, these outcomes reveal that NK successfully alleviated the neural damage induced by ML via blocking of oxidative stress, and inflammatory signaling pathways. Consequently, our study may suggest NK as a new effective therapeutic supplement for treatment of ML-mediated neurotoxicity in rats via inhibition of HMGB-1-RAGE/TLR-4/NF-κB.
Collapse
Affiliation(s)
- Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Aya A El-Hanafy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, New Mansoura University, New Mansoura, 35516, Egypt.
| | - Neimet Yassin
- Department of Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Dina Elgameel
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Tanta 31111, Egypt.
| | - Samah F Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Doaa Abdelrahaman
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Florin Imbrea
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, 119, Calea Aradului, 300645 Timisoara, Romania.
| | - Heba I Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia.
| | - Liana Fericean
- Department of Biology and Plant protection, Faculty of Agriculture. University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI 3487181, Romania.
| | - Ali Behairy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Mohamed R Mahdi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
| | - Shaaban A El-Mosallamy
- Department of Forensic Medicine and Clinical toxicology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
11
|
Mohd Sahardi NFN, Makpol S. Suppression of Inflamm-Aging by Moringa oleifera and Zingiber officinale Roscoe in the Prevention of Degenerative Diseases: A Review of Current Evidence. Molecules 2023; 28:5867. [PMID: 37570837 PMCID: PMC10421196 DOI: 10.3390/molecules28155867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation or inflamm-aging is a chronic low-grade inflammation that contributes to numerous types of degenerative diseases among the elderly and might be impeded by introducing an anti-inflammatory agent like Moringa oleifera Lam (moringa) and Zingiber officinale Roscoe (ginger). Therefore, this paper aims to review the role of moringa and ginger in suppressing inflamm-aging to prevent degenerative diseases. Various peer-reviewed publications were searched and downloaded using the reputed search engine "Pubmed" and "Google Scholar". These materials were reviewed and tabulated. A comparison between these previous findings was made based on the mechanism of action of moringa and ginger against degenerative diseases, focusing on their anti-inflammatory properties. Many studies have reported the efficacy of moringa and ginger in type 2 diabetes mellitus, neurodegenerative disease, cardiovascular disease, cancer, and kidney disease by reducing inflammatory cytokines activities, mainly of TNF-α and IL-6. They also enhanced the activity of antioxidant enzymes, including catalase, glutathione, and superoxide dismutase. The anti-inflammatory activities can be seen by inhibiting NF-κβ activity. Thus, the anti-inflammatory potential of moringa and ginger in various types of degenerative diseases due to inflamm-aging has been shown in many recent types of research.
Collapse
Affiliation(s)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Iji OT, Ajibade TO, Esan OO, Awoyomi OV, Oyagbemi AA, Adetona MO, Omobowale TO, Yakubu MA, Oguntibeju OO, Nwulia E. Ameliorative effects of glycine on cobalt chloride-induced hepato-renal toxicity in rats. Animal Model Exp Med 2023; 6:168-177. [PMID: 37141004 PMCID: PMC10158950 DOI: 10.1002/ame2.12315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The important roles of liver and kidney in the elimination of injurious chemicals make them highly susceptible to the noxious activities of various toxicants including cobalt chloride (CoCl2 ). This study was designed to investigate the role of glycine in the mitigation of hepato-renal toxicities associated with CoCl2 exposure. METHODS Forty-two (42) male rats were grouped as Control; (CoCl2 ; 300 ppm); CoCl2 + Glycine (50 mg/kg); CoCl2 + Glycine (100 mg/kg); Glycine (50 mg/kg); and Glycine (100 mg/kg). The markers of hepatic and renal damage, oxidative stress, the antioxidant defense system, histopathology, and immunohistochemical localization of neutrophil gelatinase associated lipocalin (NGAL) and renal podocin were evaluated. RESULTS Glycine significantly reduced the markers of oxidative stress (malondialdehyde content and H2 O2 generation), liver function tests (ALT, AST, and ALP), markers of renal function (creatinine and BUN), and decreased the expression of neutrophil gelatinase-associated lipocalin (NGAL) and podocin compared with rats exposed to CoCl2 toxicity without glycine treatment. Histopathology lesions including patchy tubular epithelial necrosis, tubular epithelial degeneration and periglomerular inflammation in renal tissues, and severe portal hepatocellular necrosis, inflammation, and duct hyperplasia were observed in hepatic tissues of rats exposed to CoCl2 toxicity, but were mild to absent in glycine-treated rats. CONCLUSION The results of this study clearly demonstrate protective effects of glycine against CoCl2 -induced tissue injuries and derangement of physiological activities of the hepatic and renal systems in rats. The protective effects are mediated via augmentation of total antioxidant capacity and upregulation of NGAL and podocin expression.
Collapse
Affiliation(s)
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, Texas, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, College of Medicine, Howard University, Washington, District of Columbia, USA
| |
Collapse
|
13
|
Nassar AY, Meligy FY, Abd-Allah GM, Khallil WA, Sayed GA, Hanna RT, Nassar GA, Bakkar SM. Oral acetylated whey peptides (AWP) as a potent antioxidant, anti-inflammatory, and chelating agent in iron-overloaded rats' spleen. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
14
|
Pareek A, Pant M, Gupta MM, Kashania P, Ratan Y, Jain V, Pareek A, Chuturgoon AA. Moringa oleifera: An Updated Comprehensive Review of Its Pharmacological Activities, Ethnomedicinal, Phytopharmaceutical Formulation, Clinical, Phytochemical, and Toxicological Aspects. Int J Mol Sci 2023; 24:ijms24032098. [PMID: 36768420 PMCID: PMC9916933 DOI: 10.3390/ijms24032098] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Moringa oleifera, also known as the "tree of life" or "miracle tree," is classified as an important herbal plant due to its immense medicinal and non-medicinal benefits. Traditionally, the plant is used to cure wounds, pain, ulcers, liver disease, heart disease, cancer, and inflammation. This review aims to compile an analysis of worldwide research, pharmacological activities, phytochemical, toxicological, and ethnomedicinal updates of Moringa oleifera and also provide insight into its commercial and phytopharmaceutical applications with a motive to help further research. The scientific information on this plant was obtained from various sites and search engines such as Scopus, Pub Med, Science Direct, BMC, Google Scholar, and other scientific databases. Articles available in the English language have only been referred for review. The pharmacological studies confirm the hepatoprotective, cardioprotective, and anti-inflammatory potential of the extracts from the various plant parts. It was found that bioactive constituents are present in every part of the plant. So far, more than one hundred compounds from different parts of Moringa oleifera have been characterized, including alkaloids, flavonoids, anthraquinones, vitamins, glycosides, and terpenes. In addition, novel isolates such as muramoside A&B and niazimin A&B have been identified in the plant and have potent antioxidant, anticancer, antihypertensive, hepatoprotective, and nutritional effects. The traditional and nontraditional use of Moringa, its pharmacological effects and their phytopharmaceutical formulations, clinical studies, toxicity profile, and various other uses are recognized in the present review. However, several traditional uses have yet to be scientifically explored. Therefore, further studies are proposed to explore the mechanistic approach of the plant to identify and isolate active or synergistic compounds behind its therapeutic potential.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
- Correspondence: (A.P.); (A.A.C.)
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Pushpa Kashania
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Correspondence: (A.P.); (A.A.C.)
| |
Collapse
|
15
|
Khalid AR, Yasoob TB, Zhang Z, Zhu X, Hang S. Dietary Moringa oleifera leaf powder improves jejunal permeability and digestive function by modulating the microbiota composition and mucosal immunity in heat stressed rabbits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80952-80967. [PMID: 35725877 DOI: 10.1007/s11356-022-20737-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Heat stress (HS) has detrimental effects on intestinal health by altering digestive and immune responses in animals. Dietary Moringa oleifera leaf powder (MOLP) has been implicated in ameliorating the impact of HS, but its effects in terms of intestinal function improvement under HS remain poorly characterized. Therefore, the current study investigated the impact of HS and MOLP supplementation on tight junction barriers, intestinal microbiota (jejunal digesta), and differentially expressed genes (DEGs) in jejunal mucosa of heat-stressed rabbits by using the next-generation sequencing techniques. A total of 21 male New Zealand White rabbits (32 weeks old mean body weight of 3318 ± 171 g) were divided into three groups (n = 7/group) as control (CON, 25 °C), heat stress (HS, 35 °C for 7 h daily), and HS with MOLP supplementation (HSM, 35 °C for 7 h daily) gavage at 200 mg/kg body weight per day for 4 weeks. The results indicated that MOLP supplementation increased mRNA expression of tight junction proteins and glutathione transferase activity, while the malonaldehyde concentration was decreased in the jejunal mucosa compared to HS group (P < 0.05). Furthermore, MOLP decreased the concentrations of lipopolysaccharide, pro-inflammatory cytokines, and myeloperoxidase compared with HS group (P < 0.05). Intestinal microbiota analysis revealed that at phyla level, the relative abundance of Bacteroidetes was higher in HSM group compared to CON and HS groups. MOLP supplementation also resulted in higher abundance of putatively health-associated genera such as Christensenellaceae R-7 gut group, Ruminococcaceae NK4A214 group, Ruminococcus 2, Lachnospiraceae NK4A136 group, and Lachnospiraceae unclassified along with higher butyrate levels in HSM group as compared to HS group. The analysis of DEGs revealed that MOLP reversed inflammatory response by downregulation of genes, such as TNFRSF13C, LBP, and COX2 in enriched KEGG pathway of NF-kβ pathway. MOLP supplementation also significantly upregulated the expression of genes in protein digestion and absorption pathway, including PRSS2, LOC100349163, CPA1, CPB1, SLC9A3, SLC1A1, and SLC7A9 in HSM group. Three genes of fibrillar collagens, i.e., COL3A1, COL5A3, and COL12A1 in protein digestion were also down-regulated in HSM group. In conclusion, MOLP supplementation could improve jejunal permeability and digestive function, positively modulate microbiota composition and mucosal immunity in heat-stressed rabbits.
Collapse
Affiliation(s)
- Abdur Rauf Khalid
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
| | - Talat Bilal Yasoob
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
| | - Zhen Zhang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
| | - Xiaofeng Zhu
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
| | - Suqin Hang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
16
|
Li S, Wu P, Han B, Yang Q, Wang X, Li J, Deng N, Han B, Liao Y, Liu Y, Zhang Z. Deltamethrin induces apoptosis in cerebrum neurons of quail via promoting endoplasmic reticulum stress and mitochondrial dysfunction. ENVIRONMENTAL TOXICOLOGY 2022; 37:2033-2043. [PMID: 35446475 DOI: 10.1002/tox.23548] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Deltamethrin (DLM) is a widely used and highly effective insecticide. DLM exposure is harmful to animal and human. Quail, as a bird model, has been widely used in the field of toxicology. However, there is little information available in the literature about quail cerebrum damage caused by DLM. Here, we investigated the effect of DLM on quail cerebrum neurons. Four groups of healthy quails were assigned (10 quails in each group), respectively given 0, 15, 30, and 45 mg/kg DLM by gavage for 12 weeks. Through the measurements of quail cerebrum, it was found that DLM exposure induced obvious histological changes, oxidative stress, and neurons apoptosis. To further explore the possible molecular mechanisms, we performed real-time quantitative PCR to detect the expression of endoplasmic reticulum (ER) stress-related mRNA such as glucose regulated protein 78 kD, activating transcription factor 6, inositol requiring enzyme, and protein kinase RNA (PKR)-like ER kinase. In addition, we detected ATP content in quail cerebrum to evaluate the functional status of mitochondria. The study showed that DLM exposure significantly increased the expression of ER stress-related mRNA and decreased ATP content in quail cerebrum tissues. These results suggest that chronic exposure to DLM induces apoptosis of quail cerebrum neurons via promoting ER stress and mitochondrial dysfunction. Furthermore, our results provide a novel explanation for DLM-induced apoptosis of avian cerebrum neurons.
Collapse
Affiliation(s)
- Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuge Liao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- School of Life Sciences, Inner Mongolia Minzu University, Tongliao, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Luo Z, Gao Q, Zhang H, Zhang Y, Zhou S, Zhang J, Xu W, Xu J. Microbe-derived antioxidants attenuate cobalt chloride-induced mitochondrial function, autophagy and BNIP3-dependent mitophagy pathways in BRL3A cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113219. [PMID: 35104775 DOI: 10.1016/j.ecoenv.2022.113219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Environmental excessive cobalt (Co) exposure increases risks of public health. This study aimed to evaluate the potential mechanism of microbe-derived antioxidants (MA) blend fermented by probiotics in attenuating cobalt chloride (CoCl2)-induced toxicology in buffalo rat liver (BRL3A) cells. Herein, results showed that some phenolic acids increased in MA compared with the samples before fermentation through UHPLC-QTOF-MS analysis. Also, the contents of essential and non-essential amino acids, their derivatives and minerals were rich in MA. The DPPH, O2-, OH- and ABTS+ scavenging ability of MA is comparable to those of vitamin C and better than mitoquinone mesylate (mitoQ). In vitro cell experiments showed that CoCl2 treatment increased the percentage of apoptosis cells, lactate dehydrogenase and genes involved in glycolysis, increased ATP production and decreased mitochondrial membrane potential, increased genes involved in canonical autophagy process (including initiation, autophagosomes maturation and fusion with lysosome) and BNIP3-dependent mitophagy pathways in BRL3A cells, while MA attenuated CoCl2-induced reactive oxygen species (ROS) production, apoptosis, mitochondrial protein expression and dysfunction, and BNIP3-dependent mitophagy. Collectively, these results provide insights into the role of MA in reversing CoCl2-induced toxicology in BRL3A cells, providing the promising constituents for decreasing Co-induced toxicology in functional foods.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Qingying Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Yitian Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Shujie Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Jing Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Weina Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China.
| |
Collapse
|
18
|
Sohaib M, Al-Barakah FN, Migdadi HM, Husain FM. Comparative study among Avicennia marina, Phragmites australis, and Moringa oleifera based ethanolic-extracts for their antimicrobial, antioxidant, and cytotoxic activities. Saudi J Biol Sci 2022; 29:111-122. [PMID: 36105270 PMCID: PMC9465519 DOI: 10.1016/j.sjbs.2021.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance and other emerging health risk problems related to the side effects of synthetic drugs are the major factors that result in the research regarding natural products. Fruits, leaves, seeds, and oils-based phyto-constituents are the most important source of pharmaceutical products. Plant extract chemistry depends largely on species, plant components, solvent utilized, and extraction technique. This study was aimed to compare the ethanolic extracts of a mangrove plant, i.e., Avicennia marina (1E: Lower half of A. marina‘s pneumatophores, 2E: A. marina‘s leaves, 3E: Upper half of A. marina‘s pneumatophores, and 4E: A. marina‘s shoots), with non-mangrove plants, i.e., Phragmites australis (5E: P. australis‘s shoot), and Moringa oleifera (6E: M. oleifera‘s leaves) for their antimicrobial activities, total phenolic contents, antioxidant activity, and cytotoxicity potential. The antimicrobial activity assays were performed on gram-positive bacteria (i.e., Bacillus subtilis and Staphylococcus aureus), gram-negative bacteria (i.e., Escherichia coli, and Pseudomonas aeruginosa), and fungi (i.e., Aspergillus niger, Candida albicans, and Rhizopus spp.). We estimated antioxidant activity by TAC, DPPH, and FRAP assays, and the cytotoxicity was evaluated by MTT assay. The results of antimicrobial activities revealed that B. subtilis was the most sensitive to the tested plant extracts compared to S. aureus, while it only showed sensitivity to 6E and Imipenem. 5E and 6E showed statistically similar results against P. aeruginosa as compared to Ceftazidime. E. coli was the most resistant bacteria against tested plant extracts. Among the tested plant extracts, maximum inhibition activity was observed by 6E against A. niger (22 ± 0.57 mm), which was statistically similar to the response of 6E against C. albicans and 3E against Rhizopus spp. 2E did not show any activity against tested fungi. We found that 6E (208.54 ± 1.92 mg g−1) contains maximum phenolic contents followed by 1E (159.42 ± 3.22 mg g−1), 5E (131.08 ± 3.10 mg g−1), 4E (i.e., 72.41 ± 2.96 mg g−1), 3E (67.41 ± 1.68 mg g−1), and 2E (48.72 ± 1.71 mg g−1). The results depict a significant positive correlation between the phenolic contents and the antioxidant activities. As a result, phenolic content may be a natural antioxidant source.
Collapse
Affiliation(s)
- Muhammad Sohaib
- Soil Science Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| | - Fahad N.I. Al-Barakah
- Soil Science Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| | - Hussein M. Migdadi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- National Agricultural Research Center, Baqa 19381, Jordan
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Pellegrini E, Multari G, Gallo FR, Vecchiotti D, Zazzeroni F, Condello M, Meschini S. A natural product, voacamine, sensitizes paclitaxel-resistant human ovarian cancer cells. Toxicol Appl Pharmacol 2022; 434:115816. [PMID: 34856211 DOI: 10.1016/j.taap.2021.115816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
Most women with ovarian cancer are treated with chemotherapy before or after surgery. Unfortunately, chemotherapy treatment can cause negative side effects and the onset of multidrug resistance (MDR). The aim of this study is to evaluate the chemosensitizing effect of a natural compound, voacamine (VOA), in ovarian (A2780 DX) and colon (LoVo DX) cancer drug-resistant cell lines which overexpress P-glycoprotein (P-gp), in combination with paclitaxel (PTX), or doxorubicin (DOX) or 5-fluorouracil (5-FU). VOA, a bisindole alkaloid extracted from Peschiera fuchsiaefolia, has already been shown to be effective in enhancing the effect of doxorubicin, because it interferes with the P-gp function. Ovarian cancer cytotoxicity test shows that single treatments with VOA, DOX and PTX do not modify cell viability, while pretreatment with VOA, and then PTX or DOX for 72 h, induces a decrease. In colon cancer, since 5-FU is not a-substrate for P-gp, VOA has no sensitizing effect while in VOA + DOX there is a decrease in viability. Annexin V/PI test, cell cycle analysis, activation of cleaved PARP1 confirm that VOA plus PTX induce apoptotic cell death. Confocal microscopy observations show the different localization of NF-kB after treatment with VOA + PTX, confirming the inhibition of nuclear translocation induced by VOA pretreatment. Our data show the specific effect of VOA which only works on drugs known to be substrates of P-gp.
Collapse
Affiliation(s)
- Evelin Pellegrini
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
| | - Giuseppina Multari
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
| | - Francesca Romana Gallo
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy..
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy..
| |
Collapse
|
20
|
Mostafa N, Salem A, Mansour SZ, El-Sonbaty SM, Moawed FSM, Kandil EI. Rationale for Tailoring an Alternative Oncology Trial Using a Novel Gallium-Based Nanocomplex: Mechanistic Insights and Preclinical Challenges. Technol Cancer Res Treat 2022; 21:15330338221085376. [PMID: 35382635 PMCID: PMC8990695 DOI: 10.1177/15330338221085376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction: In the fight against cancer, cisplatin is most widely used as a clinical mainstay for the chemotherapy of various human cancers. Meanwhile, its cytotoxic profile, as well as drug resistance, limits its widespread application. The goal of precision medicine is to tailor an optimized therapeutic program based on the biology of the disease. Recently, nanotechnology has been demonstrated to be promising in this scenario. Objective: The current work provides a rationale for the design of an alternative oncology trial for the treatment of hepatocarcinogenesis using a novel eco-friendly nanocomplex, namely gallic acid-coated gallium nanoparticles. Moreover, the study tests whether the antineoplastic efficacy of gallic acid-coated gallium nanoparticles could be enhanced or not when it is administrated together with cisplatin. Methods: The work comprised a series of both in vitro and in vivo investigations. The in vivo therapeutic efficacy of such treatments, against diethylnitrosamine-induced hepatocarcinogenesis, was strictly evaluated by tracking target genes expressions, iron homeostasis, diverse biomarkers alterations, and lastly, routine paraclinical investigations were also assessed. Results: The in vitro biological evaluation of gallic acid-coated gallium nanoparticles in a HepG-2 cancer cell line established its superior cytotoxicity. Else more, the results of the in vivo experiment highlighted that gallic acid-coated gallium nanoparticles could diminish key hallmarks of cancer by ameliorating most of the investigated parameters. This was well-appreciated with the histopathological findings of the liver architectures of the treated groups. Conclusions: Our findings suggest that novel biogenic Ga-based nanocomplexes may potentially present new hope for the development of alternative liver cancer therapeutics, which should attract further scientific interest.
Collapse
Affiliation(s)
- Nihal Mostafa
- Department of Biochemistry, Faculty of Science, 247928Ain Shams University, Cairo, Egypt
| | - Ahmed Salem
- Department of Biochemistry, Faculty of Science, 247928Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology, National Center for Radiation Research and Technology (NCRRT), 68892Atomic Energy Authority (AEA), Cairo, Egypt
| | - Sawsan M El-Sonbaty
- Radiation Microbiology, National Center for Radiation Research and Technology (NCRRT), 68892Atomic Energy Authority (AEA), Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), 68892Atomic Energy Authority (AEA), Cairo, Egypt
| | - Eman I Kandil
- Department of Biochemistry, Faculty of Science, 247928Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
Akter T, Rahman MA, Moni A, Apu MAI, Fariha A, Hannan MA, Uddin MJ. Prospects for Protective Potential of Moringa oleifera against Kidney Diseases. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122818. [PMID: 34961289 PMCID: PMC8706354 DOI: 10.3390/plants10122818] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Kidney diseases are regarded as one of the major public health issues in the world. The objectives of this study were: (i) to investigate the causative factors involved in kidney disease and the therapeutic aspects of Moringa oleifera, as well as (ii) the effectiveness of M. oleifera in the anti-inflammation and antioxidant processes of the kidney while minimizing all potential side effects. In addition, we proposed a hypothesis to improve M. oleifera based drug development. This study was updated by searching the key words M. oleifera on kidney diseases and M. oleifera on oxidative stress, inflammation, and fibrosis in online research databases such as PubMed and Google Scholar. The following validation checking and scrutiny analysis of the recently published articles were used to explore this study. The recent existing research has found that M. oleifera has a plethora of health benefits. Individual medicinal properties of M. oleifera leaf extract, seed powder, stem extract, and the whole extract (ethanol/methanol) can up-increase the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while decreasing the activity of inflammatory cytokines such as TNF-α, IL-1β, IL-6, and COX-2. In our study, we have investigated the properties of this plant against kidney diseases based on existing knowledge with an updated review of literature. Considering the effectiveness of M. oleifera, this study would be useful for further research into the pharmacological potential and therapeutic insights of M. oleifera, as well as prospects of Moringa-based effective medicine development for human benefits.
Collapse
Affiliation(s)
- Tanzina Akter
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md Atikur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Aminul Islam Apu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Atqiya Fariha
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
22
|
DeiviArunachalam K, Kuruva JK, Pradhoshini KP, Musthafa MS, Faggio C. Antioxidant and antigenotoxic potential of Morinda tinctoria Roxb. leaf extract succeeding cadmium exposure in Asian catfish, Pangasius sutchi. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109149. [PMID: 34352397 DOI: 10.1016/j.cbpc.2021.109149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
The present study investigated the protective effect of methanolic leaf extract of Morinda tinctoria. Roxb (MEMT) (200 mg/kg) via feed in supplementation with standard compound silymarin (400 mg/kg). M. tinctoria (Roxb.) belonging to Rubiaceae, is an evergreen shrub indigenous to unfarmed lands of tropical countries. It is considered as an essential traditional medicine attributing for the potential antioxidant and anti-inflammatory properties. The enhancements of antioxidant and antigenotoxic status in different tissues of cadmium (Cd) intoxicated Pangasius sutchi were evaluated by using various antioxidant assays (superoxide dismutase (SOD) and catalase (CAT) and lipid peroxidation) in addition to micronuclei (MN), binuclei (BN) and comet assay. The cadmium toxicated fish showed a significant (p < 0.001) increase in lipid peroxidation (LPO) activities in liver, gills, muscle and kidney whereas significant (p < 0.001) decline were observed in superoxide dismutase (SOD) and catalase (CAT) contents in all fish tissues. The results also revealed that, Cd exposure induced the formation of genotoxic endpoints like MN, BN, notched nuclei, kidney shaped nuclei and DNA damage in the fish erythrocytes. Maximum of 26.8% MN frequencies and maximum of 66.74% tail DNA damage were observed on the 7th day of Cd exposure. A time-dependent significant increase (p < 0.001) in the frequencies of MN, BN and tail DNA damage were observed in all treated groups against the control which started to decline from 14th day onwards. There was a decline in the LPO content, frequencies of MN, BN and percentage of tail DNA in contrast to significant elevation in SOD and CAT content in all tissues due to the combined treatment of M. tinctoria feed and water borne Cd exposure. It can be concluded from our observations that, supplementation of M. tinctoria leaf extract through feed alone produced enhanced antioxidant and antigenotoxic status in cadmium treated fish by diminishing oxidative stress and genotoxicity effects in a time dependent manner.
Collapse
Affiliation(s)
- Kantha DeiviArunachalam
- Center for Environmental and Nuclear Research (CENR), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Jaya Krishna Kuruva
- Center for Environmental and Nuclear Research (CENR), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
23
|
Sakr S, A Rashad W, Abaza MT. The ameliorative effect of Moringa oleifera oil on tributyltin-induced brain toxicity in albino rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2025-2039. [PMID: 34227745 DOI: 10.1002/tox.23320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/30/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Tributyltin (TBT) is an organotin compound widely used as a biocide in antifouling paints. Moringa oleifera oil (MOO) has a promising antioxidant potential, which necessitates further exploration. This study was conducted to investigate the potential protective effect of MOO against TBT-induced brain toxicity. The 30 rats were grouped into five groups (six each), Group I negative control, Group II positive control (vehicle), Group III MOO (5 ml/kg body weight [b.wt.]), Group IV TBT (10 mg/kg b.wt.), and Group V TBT & MOO. All treatments were given orally for 28 days. Thereafter, brains were exposed to oxidative stress and neurological parameters analyses. Histopathological and immunohistochemical (caspase-3, Bax, Bcl-2) examinations were also carried out. In rats administered TBT, increased malondialdehyde level, decreased reduced glutathione, and low total antioxidant capacity levels were in support of oxidative stress mechanism. Neurotoxicity was indicated by high nitric oxide level and increased acetylcholinestrase activity. Along with the histopathological alterations, the dysregulated expression of caspase-3, Bax, and Bcl-2 were indicative of the apoptotic mechanism mediated by TBT. Co-administration of MOO with TBT ameliorated the aforementioned toxic effects. In conclusion, TBT causes brain toxicity via oxidative, nitrosative, and apoptotic mechanisms. MOO demonstrates protective effect against TBT-induced brain toxicity mostly via potent antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Samar Sakr
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa A Rashad
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa T Abaza
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
24
|
Abu-Zeid EH, Abdel Fattah DM, Arisha AH, Ismail TA, Alsadek DM, Metwally MMM, El-Sayed AA, Khalil AT. Protective prospects of eco-friendly synthesized selenium nanoparticles using Moringa oleifera or Moringa oleifera leaf extract against melamine induced nephrotoxicity in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112424. [PMID: 34174736 DOI: 10.1016/j.ecoenv.2021.112424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 05/07/2023]
Abstract
Nanotechnology is used in a wide range of applications, including medical therapies that precisely target disease prevention and treatment. The current study aimed firstly, to synthesize selenium nanoparticles (SeNPs) in an eco-friendly manner using Moringa oleifera leaf extract (MOLE). Secondly, to compare the protective effects of green-synthesized MOLE-SeNPs conjugate and MOLE ethanolic extract as remedies for melamine (MEL) induced nephrotoxicity in male rats. One hundred and five male Sprague Dawley rats were divided into seven groups (n = 15), including 1st control, 2nd MOLE (800 mg/kg BW), 3rd SeNPs (0.5 mg/kg BW), 4th MOLE-SeNPs (200 μg/kg BW), 5th MEL (700 mg/kg BW), 6th MEL+MOLE, and 7th MEL+MOLE SeNPs. All groups were orally gavaged day after day for 28 days. SeNPs and the colloidal SeNPs were characterized by TEM, SEM, and DLS particle size. SeNPs showed an absorption peak at a wavelength of 530 nm, spherical shape, and an average size between 3.2 and 20 nm. Colloidal SeNPs absorption spectra were recorded between 400 and 700 nm with an average size of 3.3-17 nm. MEL-induced nephropathic alterations represented by a significant increase in serum creatinine, urea, blood urea nitrogen (BUN), renal TNFα, oxidative stress-related indices, and altered the relative mRNA expression of apoptosis-related genes Bax, Caspase-3, Bcl2, Fas, and FasL. MEL-induced array of nephrotoxic morphological changes, and up-regulated immune-expression of proliferating cell nuclear antigen (PCNA) and proliferation-associated nuclear antigen Ki-67. Administration of MOLE or MOLE-SeNPs significantly reversed MEL-induced renal function impairments, oxidative stress, histological alterations, modulation in the relative mRNA expression of apoptosis-related genes, and the immune-expression of renal PCNA and Ki-67. Conclusively, the green-synthesized MOLE-SeNPs and MOLE display nephron-protective properties against MEL-induced murine nephropathy. This study is the first to report these effects which were more pronounced in the MOLE group than the green biosynthesized MOLE-SeNPs conjugate group.
Collapse
Affiliation(s)
- Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia Province 44511, Egypt.
| | - Doaaa M Abdel Fattah
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dina M Alsadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed A El-Sayed
- Department of Photochemistry, Industrial Chemical Division, National Research Centre, 33 EL Bohouthst., Dokki, Giza 12622, Egypt
| | - Amany T Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia Province 44511, Egypt
| |
Collapse
|
25
|
Tekeli MY, Eraslan G, Çakır Bayram L, Soyer Sarıca Z. Effect of diosmin on lipid peoxidation and organ damage against subacute deltamethrin exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15890-15908. [PMID: 33242198 DOI: 10.1007/s11356-020-11277-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to investigate the protective efficacy of diosmin against subacute deltamethrin exposure. For this purpose, 40 male Wistar albino rats were used. The animals were assigned to the following 4 groups: control group (received corn oil vehicle alone), diosmin-treated group (50 mg/kg bw/day orally), deltamethrin-exposed group (5 mg/kg bw/day, orally) and coadministered group (5 mg/kg bw/day deltamethrin and 50 mg/kg bw/day diosmin, orally) for 28 days. Some lipid peroxidation/antioxidant status/biochemical markers were evaluated in blood/tissue (liver, kidney, brain, heart and testis) samples and the histopathological architecture was assessed. Compared with the control group, no alteration was detected in the parameters and histological findings of the diosmin-treated group. Deltamethrin toxicity was associated with significantly increased plasma, cardiac, hepatic, renal, cerebral and testicular levels of MDA and NO, and significantly decreased GSH levels (p < 0.05). Antioxidant enzyme status (SOD, CAT and GSH-Px activities) displayed either decrease or increase (p < 0.05). Significant increase was detected in AST and ALT activities and urea and creatinine levels (p < 0.05). The values of the group coadministered with deltamethrin and diosmin were similar to the values of the control group. Diosmin ameliorated deltamethrin-induced lymphocytic and histiocytic infiltration and subendocardial oedema in the heart. Combined administration also minimized hepatic, renal, testicular and cerebral histopathological findings. The alterations detected in various toxicological parameters correlated well with the histopathological changes observed in various organs. In conclusion, it is suggested that diosmin could provide protection against deltamethrin-induced toxicity and organ damage in rats.
Collapse
Affiliation(s)
- Muhammet Yasin Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Latife Çakır Bayram
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Zeynep Soyer Sarıca
- Hakan Çetinsaya Experimental and Clinical Research Center, Erciyes University, Kayseri, Turkey
| |
Collapse
|
26
|
Bakare AA, Akpofure A, Gbadebo AM, Fagbenro OS, Oyeyemi IT. Aqueous extract of Moringa oleifera Lam. induced mitodepression and chromosomal aberration in Allium cepa, and reproductive genotoxicity in male mice. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Ara C, Butt N, Ali S, Batool F, Shakir HA, Arshad A. Abnormal steroidogenesis, oxidative stress, and reprotoxicity following prepubertal exposure to butylparaben in mice and protective effect of Curcuma longa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6111-6121. [PMID: 32986191 DOI: 10.1007/s11356-020-10819-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Mammalian reproduction is a highly regulated process that can be distorted following exposure to synthetic antimicrobial preservatives like butylparaben (BP). Besides, studies have not investigated the potential antioxidant effects of turmeric on BP-provoked reprotoxicity. The present research was planned on prepubertal mice, orally treated with BP (150 μg/g body weight/day) with and without Curcuma longa (turmeric) (400 μg/mice/day) from postnatal day 35 to 65 routinely. Results showed an insignificant reduction in body weight of both sexes but contrary to these, gonadal weight increased significantly in PB-exposed mice. Additionally, elevated levels of follicle-stimulating hormone and luteinizing hormone while decreased estrogen levels were observed in BP-treated females against control. Sperm count and motility were disturbed, coupled with abnormal sperm morphology in BP-intoxicated group. These findings were synchronized with a decreased testosterone levels in the same group as compared with control. The follicular count revealed reduction in the number of antral follicles while an increase in empty follicles. The BP also significantly increased lipid peroxidation and decreased glutathione content, superoxide dismutase, and catalase activities, while the morphometric, biochemical, and histological deviations were less pronounced in the group, which was co-administered with BP and turmeric. Results indicated that turmeric has antioxidant potential to protect BP-induced oxidative stress and reprotoxicity in mice.
Collapse
Affiliation(s)
- Chaman Ara
- Developmental Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, 54000, Pakistan
| | - Naila Butt
- Developmental Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Farrah Batool
- Developmental Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, 54000, Pakistan
| | - Hafiz Abdullah Shakir
- Developmental Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, 54000, Pakistan
| | - Aqsa Arshad
- Developmental Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
28
|
El Bohi KM, Abdel-Motal SM, Khalil SR, Abd-Elaal MM, Metwally MMM, ELhady WM. The efficiency of pomegranate (Punica granatum) peel ethanolic extract in attenuating the vancomycin-triggered liver and kidney tissues injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7134-7150. [PMID: 33029776 DOI: 10.1007/s11356-020-10999-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the potential of Punica granatum peel ethanol extract (PPEE) in attenuating the liver and kidney tissue injury induced by vancomycin (VM) treatment in rats. Fifty rats were distributed equally into five groups: control group, PPEE-administered group (100 mg/kg BW/day for 2 weeks; orally), VM-treated group (443.6 mg/kg BW, every alternate day for 2 weeks; intraperitoneally), pre-treated group, and concomitant-treated group. The biochemical response and the histopathology of the hepatic and renal tissue of the treated animals were assessed. The results showed that VM treatment induced substantial hepatotoxicity and nephrotoxicity, evidenced by a significant elevation in tissue injury and lipid oxidative (malondialdehyde) and inflammatory response (C-reactive protein) biomarkers, with lowered antioxidants and protein levels. Additionally, VM treatment induced various morphological, cytotoxic, vascular, and inflammatory perturbations as well as upregulation in the immune-expression of Caspase-3 and downregulation of BCL-2. Moreover, PPEE co-treatment was found to reduce the VM-induced toxicity by protecting the tissue against reactive oxygen species (ROS)-mediated oxidative damage, and inflammation as well as hinder the apoptotic cell death by modulating the expression of apoptosis-related proteins. Thus, we conclude that the PPEE administration showed more restoring efficacy when administered prior to VM medication.
Collapse
Affiliation(s)
- Khlood M El Bohi
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Sabry M Abdel-Motal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Mayar Mahmoud Abd-Elaal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Metwally
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa M ELhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
29
|
Farouk SM, Gad FAM, Emam MA. Comparative immuno-modulatory effects of basil and sesame seed oils against diazinon-induced toxicity in rats; a focus on TNF-α immunolocalization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5332-5346. [PMID: 32964385 DOI: 10.1007/s11356-020-10840-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Diazinon (DZN), a common organophosphorus insecticide (OPI), has hazardous effect to human and animals with its ubiquitous use. Considering the implication of reactive oxygen species (ROS) in the OPIs toxicity, the present study was aimed to evaluate the ameliorative properties of basil (BO) and sesame (SO) seed oils against the toxic effect of DZN. Forty adult male albino rats were divided into four experimental groups (n = 10 rats/group); control, DZN (10 mg/kg b.w/day), DZN + BO (5 ml/kg b.w/day), and DZN + SO (8 ml/kg b.w/day) groups, treated for a period of 4 weeks. DZN-exposed animals showed significant elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (Cr) with a significant decline in testosterone level compared with control. On the other hand, DZN + BO and DZN + SO groups revealed significant decreases in ALT, AST, BUN, and Cr with a significant increase in testosterone level when compared with DZN-exposed animals. Oxidative/antioxidant indices revealed significant increases of malondialdehyde (MDA) levels along with significant decreases of superoxide dismutase (SOD), glutathione peroxidase (Gpx), and catalase (CAT) activities among DZN-treated rats compared with control. Distinctly lower levels of MDA and increased activities of SOD, Gpx, and CAT were evident in both DZN + BO and DZN + SO groups when compared with DZN-exposed animals. Inflammatory and immuno-modulatory markers assessment showed a significant increase in TNF-α with a significant decline in IL-10 level in DZN group; meanwhile, both DZN + BO and DZN + SO groups revealed significant declines in levels of TNF-α with significant increases in IL-10. Corresponds immunohistochemistry, the total scores (TS) of TNF-α immunostainings in hepatorenal, testicular, and epididymal tissues of control, DZN + BO and DZN + SO groups were significantly lower than those values of DZN group. Additionally, the examined tissues of DZN + BO group revealed significant lower TS of TNF-α immunostaining compared with DZN + SO group. The overall data suggested that both BO and SO can be efficiently used as preventive herbal compounds against DZN-induced oxidative stress with special reference to their possible antioxidant, anti-inflammatory, and free radical activities. However, BO has more potent protective effect against DZN-induced tissue injury at both immunohistochemical and molecular levels.
Collapse
Affiliation(s)
- Sameh Mohamed Farouk
- Cytology and Histology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Fatma Abdel-Monem Gad
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Banha, 13736, Egypt
| | | |
Collapse
|
30
|
Albrakati A. Aged garlic extract rescues ethephon-induced kidney damage by modulating oxidative stress, apoptosis, inflammation, and histopathological changes in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6818-6829. [PMID: 33011947 DOI: 10.1007/s11356-020-10997-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Ethephon is an organophosphorus plant growth regulator used to accelerate the ripening process and decrease the duration of cultivation. Here, the potential protective role of aged garlic extract (AGE) was investigated against ethephon-mediated nephrotoxicity. Four experimental groups were established (n = 15), including control, AGE (250 mg/kg), ethephon (200 mg/kg), and AGE + ethephon. In the current work, kidney function parameters (urea, creatinine, and KIM-1) along with oxidative stress biomarkers, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, glutathione, and its related enzymes, superoxide dismutase, catalase, malondialdehyde, and nitric oxide, were determined. The expression of inflammatory mediators namely tumor necrosis factor alpha, interleukin 1 beta, nuclear factor kappa B, and apoptotic markers (caspase 3, Bax, and Bcl2) were determined in the renal tissue. Additionally, the histopathological alterations in response to treatments were examined. Ethephon exposure increased the levels of kidney function markers along with relative kidney weight coupled with histological changes in the kidney tissue. Additionally, ethephon increased the levels of the tested pro-oxidant markers and decreased the antioxidant indices, resulting in oxidative damage to renal tissues. An elevation in the pro-inflammatory mediators was also recorded following ethephon intoxication. Furthermore, renal cell loss was observed through histological examinations and biochemical measurements upon ethephon administration. On the other hand, AGE significantly ameliorated the molecular, biochemical, and structural changes elicited by ethephon. These findings suggest that AGE may be used to decrease or prevent the side effects of ethephon exposure in kidneys, through the activation of Nrf2 and inhibition of inflammation and apoptotic response.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
31
|
Abou-Zeid SM, Ahmed AI, Awad A, Mohammed WA, Metwally MMM, Almeer R, Abdel-Daim MM, Khalil SR. Moringa oleifera ethanolic extract attenuates tilmicosin-induced renal damage in male rats via suppression of oxidative stress, inflammatory injury, and intermediate filament proteins mRNA expression. Biomed Pharmacother 2021; 133:110997. [PMID: 33197759 DOI: 10.1016/j.biopha.2020.110997] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/24/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023] Open
Abstract
Tilmicosin (Til) is a popular macrolide antibiotic, widely used in veterinary practice. The present study was designed to address the efficacy of Moringa oleifera ethanolic extract (MOE) in protecting against Tilmicosin (Til) - induced nephrotoxicity in Sprague Dawley rats. Animals were treated once with Til (75 mg/kg bw, subcutaneously), and/or MOE for 7 days (400 or 800 mg/kg bw, by oral gavage). Til-treatment was associated with significantly increased serum levels of creatinine, urea, sodium, potassium and GGT activity, as well as decreased total protein and albumin concentrations. Renal tissue hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were elevated, while the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes were diminished. The levels of renal tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) and the mRNA expression of intermediate filament protein encoding genes (desmin, nestin and vimentin) in the kidney were up- regulated with histopathological alterations in renal glomeruli, tubules and interstitial tissue. These toxic effects were markedly ameliorated by co-treatment of MOE with Til, in a dose dependent manner. Taken together, these results indicate that MO at 800 mg/kg protects against Til-induced renal injury, likely by its potent antioxidant and anti-inflammatory properties, which make it suitable to be used as a protective supplement with Til therapy.
Collapse
Affiliation(s)
- Shimaa M Abou-Zeid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt.
| | - Amany I Ahmed
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Wafaa A Mohammed
- Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Mohamed M M Metwally
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| |
Collapse
|
32
|
Abdel Fattah ME, Sobhy HM, Reda A, Abdelrazek HMA. Hepatoprotective effect of Moringa oleifera leaves aquatic extract against lead acetate-induced liver injury in male Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43028-43043. [PMID: 32725563 DOI: 10.1007/s11356-020-10161-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Current research was performed to explore the hepatoprotective potential of Moringa oleifera leaves extract on lead acetate-induced hepatic injury. Twenty-four male Wistar rats were divided equally into 4 groups. The first group was control, while the second, third, and fourth groups were given 200 mg/kg aqueous Moringa extract only, 100 mg/kg lead only, and 100 mg/kg lead plus 200 mg/kg aqueous Moringa leaves extract, respectively, via oral gavage for 4 weeks. Weight gain and feed efficiency ratio were recorded. Serum lipid profiles, liver enzyme activities, and proteins beside hepatic superoxide dismutase activity, reduced glutathione, tumor necrosis factor alpha (TNF-α), and deoxyribonucleic acid fragmentation were assessed. Liver histopathological examination and nuclear factor kappa B (NF-kB) immunohistochemistry were performed. Administration of lead lowered (P < 0.05) weight gain, feed efficiency ratio, and perturbed lipid profile than control. Lead increased liver enzyme activities and TNF-α, while reduced serum proteins and hepatic antioxidant markers compared to control. Lead aggravated hepatic DNA fragmentation beside the presence of histopathological lesions. Co-administration of aqueous Moringa extract with lead significantly alleviated lead-induced adverse effects. The administration of aqueous Moringa extract with its antioxidant significantly restored the lead perturbations through reduction of oxidative stress-induced DNA damage via amelioration of NF-kB and TNF-α which kept hepatocyte integrity and reduced serum hepatic enzyme activities.
Collapse
Affiliation(s)
- Mohy E Abdel Fattah
- Department of Organic Chemistry, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Hanan M Sobhy
- Department of Biochemistry and Food Deficiency, Animal Health research Institute, Giza, Egypt
| | - Areeg Reda
- Department of Biochemistry and Food Deficiency, Animal Health research Institute, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
33
|
Khalil SR, El Bohi KM, Khater S, Abd El-Fattah AH, Mahmoud FA, Farag MR. Moringa oleifera leaves ethanolic extract influences DNA damage signaling pathways to protect liver tissue from cobalt -triggered apoptosis in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110716. [PMID: 32450433 DOI: 10.1016/j.ecoenv.2020.110716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
This study assessed the potential of Moringa oleifera leaves ethanol extract (MLEE) in attenuating the detrimental effects of cobalt dichloride (CoCl2) on rat liver. Forty rats were assigned to five equal groups: control group, MLEE-treated group, CoCl2-treated group, prophylaxis co-treated group, and therapeutic co-treated group. The levels of Co, hepatic injury markers, total antioxidant capacity (TAC), and oxidative stress biomarkers (reactive oxygen species [ROS] and protein carbonyl [PC]) were evaluated. Comet assay was used to evaluate the extent of DNA damage. Further, the expression profile of DNA-damage effector genes was assayed by real-time quantitative polymerase chain reaction (qRT-PCR) analysis. Immunohistochemical analysis of heat shock protein (HSP-70) in hepatocytes was conducted. The results showed that the exposure of CoCl2 to rats resulted in declined TAC, elevated oxidative injury, and induced DNA damage markers. Upregulation of mRNA expression of tumor suppressor protein (P53), apoptosis inducing factor (AIF), and apoptotic peptidase activating factor 1 (Apaf-1) was observed. The immunostaining density of HSP-70 expression was found to be elevated. Thus, MLEE reduced the CoCl2-induced genotoxicity by preventing CoCl2-induced generation of ROS, and protected against ROS mediated-oxidative injury and DNA damage. Moreover, the expression of DNA damage effector genes was affected. Based on these results, we conclude that MLEE is more effective when administered as a prophylactic regimen with the exposure to CoCl2.
Collapse
Affiliation(s)
- Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Khlood M El Bohi
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Safaa Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Amir H Abd El-Fattah
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Fagr A Mahmoud
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
34
|
Abd-Elhakim YM, Mohamed WAM, El Bohi KM, Ali HA, Mahmoud FA, Saber TM. Prevention of melamine-induced hepatorenal impairment by an ethanolic extract of Moringa oleifera: Changes in KIM-1, TIMP-1, oxidative stress, apoptosis, and inflammation-related genes. Gene 2020; 764:145083. [PMID: 32860902 DOI: 10.1016/j.gene.2020.145083] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS Melamine (ML) is a common food adulterant and contaminant. Moringa oleifera is a well-known medicinal plant with many beneficial biological properties. This study investigated the possible prophylactic and therapeutic activity of an ethanolic extract of M. oleifera (MEE) against ML-induced hepatorenal damage. METHOD Fifty male Sprague Dawley rats were orally administered distilled water, MEE (800 mg/kg bw), ML (700 mg/kg bw), MEE/ML (prophylactically) or MEE+ML (therapeutically). Hepatic aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphate (ALP) in serum were measured. Serum total bilirubin, direct bilirubin, indirect bilirubin, protein, albumin, and globulin contents were also assayed, and urea and creatinine levels were determined. Moreover, antioxidant enzyme activity of glutathione peroxidase (GPx) and catalase (CAT) in serum levels were quantified. Complementary histological and histochemical evaluation of renal and hepatic tissues was conducted, and expression of oxidative stress (GPx and CAT) and apoptosis-related genes, p53 and Bcl-2, in hepatic tissue were assessed. In parallel, transcriptional expression of inflammation and renal injury-related genes, including kidney injury molecule 1 (KIM-1), metallopeptidase inhibitor 1 (TIMP1), and tumor necrosis factor alpha (TNF-α) in the kidney tissue were determined. RESULTS ML caused significant increases in serum levels of ALT, AST, ALP, total bilirubin, direct bilirubin, indirect bilirubin, urea, and creatinine. Further, ML treated rats showed significant reductions in serum levels of protein, albumin, globulin, GPx, and CAT. Distinct histopathological damage and disturbances in glycogen and DNA content in hepatic and renal tissues of ML treated rats were observed. KIM-1, TIMP-1, and TNF-α gene expression was significantly upregulated in kidney tissue. Also, GPx, CAT, and Bcl-2 genes were significantly downregulated, and p53 was significantly upregulated in liver tissue after ML treatment. MEE significantly counteracted the ML-induced hepatorenal damage primarily for co-exposed rats. CONCLUSION MEE could be an effective therapeutic supplement for treatment of ML-induced hepato-renal damage, probably via modulating oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Wafaa A M Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khlood M El Bohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Haytham A Ali
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Department of Biochemistry, Collage of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fagr A Mahmoud
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|