1
|
Sasikumar J, P P K, Naik B, Das SP. A greener side of health care: Revisiting phytomedicine against the human fungal pathogen Malassezia. Fitoterapia 2024; 179:106243. [PMID: 39389474 DOI: 10.1016/j.fitote.2024.106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Malassezia species are commensal fungi residing on the skin and in the gut of humans and animals. Yet, under certain conditions, they become opportunistic pathogens leading to various clinical conditions including dermatological disorders. The emergence of drug resistance and adverse effects associated with conventional antifungal agents has propelled the search for alternative treatments, among which phytomedicine stands out prominently. Phytochemicals, including phenolic acids, flavonoids, and terpenoids, demonstrate potential antifungal activity against Malassezia by inhibiting its growth, adhesion, and biofilm formation. Furthermore, the multifaceted therapeutic properties of phytomedicine (including anti-fungal and, antioxidant properties) contribute to its efficacy in alleviating symptoms associated with Malassezia infections. Despite these promising prospects, several challenges hinder the widespread adoption of phytomedicine in clinical practice mostly since the mechanistic studies and controlled experiments to prove efficacy have not been done. Issues include standardization of herbal extracts, variable bioavailability, and limited clinical evidence. Hence, proper regulatory constraints necessitate comprehensive research endeavors and regulatory frameworks to harness the full therapeutic potential of phytomedicine. In conclusion, while phytomedicine holds immense promise as an alternative or adjunctive therapy against Malassezia, addressing these challenges is imperative to optimize its efficacy and ensure its integration into mainstream medical care. In this review we provide an update on the potential phytomedicines in combating Malassezia-related ailments, emphasizing its diverse chemical constituents and mechanisms of action.
Collapse
Affiliation(s)
- Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Keerthana P P
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Bharati Naik
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
2
|
Cui L, Zhang B, Zou S, Liu J, Wang P, Li H, Zhang Z. Fenchone Ameliorates Constipation-Predominant Irritable Bowel Syndrome via Modulation of SCF/c-Kit Pathway and Gut Microbiota. J Microbiol Biotechnol 2024; 34:367-378. [PMID: 38073315 PMCID: PMC10940742 DOI: 10.4014/jmb.2308.08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 03/01/2024]
Abstract
In this study we sought to elucidate the therapeutic effects of fenchone on constipation-predominant irritable bowel syndrome (IBS-C) and the underlying mechanisms. An IBS-C model was established in rats by administration of ice water by gavage for 14 days. Fenchone increased the reduced body weight, number of fecal pellets, fecal moisture, and intestinal transit rate, and decreased the enhanced visceral hypersensitivity in the rat model of IBS-C. In addition, fenchone increased the serum content of excitatory neurotransmitters and decreased the serum content of inhibitory neurotransmitters in the IBS-C rat model. Meanwhile, western blot and immunofluorescence experiments indicated that fenchone increased the expressions of SCF and c-Kit. Furthermore, compared with the IBS-C model group, fenchone increased the relative abundance of Lactobacillus, Blautia, Allobaculum, Subdoligranulum, and Ruminococcaceae_UCG-008, and reduced the relative abundance of Bacteroides, Enterococcus, Alistipes, and Escherichia-Shigella on the genus level. Overall, fenchone ameliorates IBS-C via modulation of the SCF/c-Kit pathway and gut microbiota, and could therefore serve as a novel drug candidate against IBS-C.
Collapse
Affiliation(s)
- Li Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Bin Zhang
- Digestive Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, Jiangsu, P.R. China
| | - Shuting Zou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Jing Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Pingrong Wang
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210016, P.R. China
| | - Hui Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
3
|
Smiljanić K, Prodić I, Trifunovic S, Krstić Ristivojević M, Aćimović M, Stanković Jeremić J, Lončar B, Tešević V. Multistep Approach Points to Compounds Responsible for the Biological Activity and Safety of Hydrolates from Nine Lamiaceae Medicinal Plants on Human Skin Fibroblasts. Antioxidants (Basel) 2023; 12:1988. [PMID: 38001841 PMCID: PMC10669667 DOI: 10.3390/antiox12111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
As byproducts of essential oil distillation, hydrolates are used in natural cosmetics/biomedicine due to their beneficial skin effects. However, data on their safety with relevant biological targets, such as human skin cells, are scarce. Therefore, we have tested nine hydrolates from the Lamiaceae family with skin fibroblasts that are responsible for extracellular collagenous matrix builds. Thyme, oregano, and winter savoury hydrolates showed several times higher total phenolics, which correlated strongly with their radical scavenging and antioxidative capacity; there was no correlation between their viability profiles and the reducing sugar levels. No proteins/peptides were detected. All hydrolates appeared safe for prolonged skin exposure except for 10-fold diluted lavender, which showed cytotoxicity (~20%), as well as rosemary and lavandin (~10%) using viability, DNA synthesis, and cell count testing. Clary sage, oregano, lemon balm, and thyme hydrolates (10-fold diluted) increased fibroblast viability and/or proliferation by 10-30% compared with the control, while their viability remained unaffected by Mentha and winter savoury. In line with the STITCH database, increased viability could be attributed to thymol presence in oregano and thyme hydrolates in lemon balm, which is most likely attributable to neral and geranial. The proliferative effect of clary sage could be supported by alpha-terpineol, not linalool. The major volatile organic compounds (VOCs) associated with cytotoxic effects on fibroblasts were borneol, 1,8-cineole, and terpinene-4-ol. Further research with pure compounds is warranted to confirm the roles of VOCs in the observed effects that are relevant to cosmetic and wound healing aspects.
Collapse
Affiliation(s)
- Katarina Smiljanić
- University of Belgrade—Faculty of Chemistry (UBFC), Studentski Trg 12–16, 11158 Belgrade, Serbia; (M.K.R.); (V.T.)
| | - Ivana Prodić
- Institute of Virology, Vaccines and Sera “Torlak”—National Institute of the Republic of Serbia, Vojvode Stepe 458, 11152 Belgrade, Serbia;
| | - Sara Trifunovic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
- Mediterranean Institute for Life Sciences, 21000 Split, Croatia
| | - Maja Krstić Ristivojević
- University of Belgrade—Faculty of Chemistry (UBFC), Studentski Trg 12–16, 11158 Belgrade, Serbia; (M.K.R.); (V.T.)
| | - Milica Aćimović
- Institute of Field and Vegetable Crops—National Institute of the Republic of Serbia, 21101 Novi Sad, Serbia;
| | - Jovana Stanković Jeremić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Biljana Lončar
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry (UBFC), Studentski Trg 12–16, 11158 Belgrade, Serbia; (M.K.R.); (V.T.)
| |
Collapse
|
4
|
Di Vito M, Garzoli S, Rosato R, Mariotti M, Gervasoni J, Santucci L, Ovidi E, Cacaci M, Lombarini G, Torelli R, Urbani A, Sanguinetti M, Bugli F. A New Potential Resource in the Fight against Candida auris: the Cinnamomum zeylanicum Essential Oil in Synergy with Antifungal Drug. Microbiol Spectr 2023; 11:e0438522. [PMID: 36975835 PMCID: PMC10101117 DOI: 10.1128/spectrum.04385-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Candida auris is a multidrug-resistant fungus known to be a global public health problem. The skin-based transmission, together with the marked resistance to drugs, resulted in its rapid spread to all continents. The aim of this study was to identify an essential oil (EO) active in the fight against C. auris. A total of 15 EOs were tested against 10 clinical strains of C. auris. Cinnamomum zeylanicum EO (CZ-EO) was the most effective (MIC90 and MFC90 equal to 0.06% vol/vol). Three fractions obtained from CZ-EO, and the cinnamaldehyde (CIN), the major chemical compound, were tested to identify the principal compound effectives against C. auris. All CIN-containing samples showed anti-fungal activity. To study the synergy with fluconazole, CZ-EO, its active fraction (FR2), and CIN were tested in checkerboard tests. Results show that CZ-EO and FR2, but not CIN, synergize with fluconazole. Furthermore, only the copresence of CZ-EO or FR2 synergize with fluconazole at therapeutic concentrations of the drug (0.45 ± 0.32 μg/mL and 0.64 ± 0.67 μg/mL, respectively), while CIN only shows additive activity. In vivo studies conducted on Galleria mellonella larvae show the absence of toxicity of CZ-EO up to concentrations of 16% vol/vol, and the ability of CZ-EO to reactivate the efficacy of fluconazole when formulated at synergic concentrations. Finally, biochemical tests were made to study the mechanism of action of CZ-EO. These studies show that in the presence of both fluconazole and CZ-EO, the activity of fungal ATPases decreases and, at the same time, the amount of intracellular drug increases. IMPORTANCE This study highlights how small doses of CZ-EO are able to inhibit the secretion of fluconazole and promote its accumulation in the fungal cell. In this manner, the drug is able to exert its pharmacological effects bypassing the resistance of the yeast. If further studies will confirm this synergy, it will be possible to develop new therapeutic formulations active in the fight against C. auris resistances.
Collapse
Affiliation(s)
- M. Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - S. Garzoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma Sapienza, Rome, Italy
| | - R. Rosato
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M. Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - J. Gervasoni
- UOC Chimica, Biochimica e Biologia Molecolare Clinica, Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - L. Santucci
- UOC Chimica, Biochimica e Biologia Molecolare Clinica, Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - E. Ovidi
- Department for Innovation in Biological, Agro-Food and Forest Systems DIBAF—University of Tuscia, Viterbo, Italy
| | - M. Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - G. Lombarini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - R. Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - A. Urbani
- UOC Chimica, Biochimica e Biologia Molecolare Clinica, Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - M. Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - F. Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
5
|
Matera R, Lucchi E, Valgimigli L. Plant Essential Oils as Healthy Functional Ingredients of Nutraceuticals and Diet Supplements: A Review. Molecules 2023; 28:901. [PMID: 36677959 PMCID: PMC9862182 DOI: 10.3390/molecules28020901] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Essential oils (EOs) are mixtures of volatile molecules endowed with health-promoting biological activities that go beyond their role as aromas and natural preservatives and can be exploited to develop functional foods and diet supplements. Their composition is briefly addressed along with regulatory aspects. The potential health benefit of human diet supplementation with EOs is outlined through a review of the recent literature on available clinical trials and preclinical research concerning EOs activity towards: (1) irritable bowel syndrome; (2) inflammatory bowel disease; (3) regulation of microbiota; (4) gastroprotection; (5) hepatoprotection; (6) protection of the urinary tract and diuresis; (7) management of metabolic disorders including hyperglycemia and hyperlipidemia; (8) anti-inflammatory and pain control; (9) immunomodulation and protection from influenza; and (10) neuroprotection and modulation of mood and cognitive performance. The emerging potential in such activities of selected EOs is given focus, particularly green and black cumin, bergamot, orange, myrtle, peppermint, sage, eucalyptus, lavender, thyme, lemon balm, ginger, and garlic.
Collapse
Affiliation(s)
- Riccardo Matera
- BeC s.r.l., Research & Development, Via C. Monteverdi 49, 47122 Forlì, Italy
| | - Elena Lucchi
- BeC s.r.l., Research & Development, Via C. Monteverdi 49, 47122 Forlì, Italy
| | - Luca Valgimigli
- Department of Chemistry “Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
6
|
Rosato R, Napoli E, Granata G, Di Vito M, Garzoli S, Geraci C, Rizzo S, Torelli R, Sanguinetti M, Bugli F. Study of the Chemical Profile and Anti-Fungal Activity against Candida auris of Cinnamomum cassia Essential Oil and of Its Nano-Formulations Based on Polycaprolactone. PLANTS (BASEL, SWITZERLAND) 2023; 12:358. [PMID: 36679069 PMCID: PMC9860731 DOI: 10.3390/plants12020358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Candida auris represents an emerging pathogen that results in nosocomial infections and is considered a serious global health problem. The aim of this work was to evaluate the in vitro antifungal efficacy of Cinnamomum cassia essential oil (CC-EO) pure or formulated in polycaprolactone (PCL) nanoparticles against ten clinical strains of C. auris. METHODS nanoparticles of PCL were produced using CC-EO (nano-CC-EO) and cinnamaldehyde (CIN) through the nanoprecipitation method. The chemical profile of both CC-EO and nano-CC-EO was evaluated using SPME sampling followed by GC-MS analysis. Micro-broth dilution tests were performed to evaluate both fungistatic and fungicidal effectiveness of CC-EO and CIN, pure and nano-formulated. Furthermore, checkerboard tests to evaluate the synergistic action of CC-EO or nano-CC-EO with micafungin or fluconazole were conducted. Finally, the biofilm disrupting activity of both formulations was evaluated. RESULTS GC-MS analysis shows a different composition between CC-EO and nano-CC-EO. Moreover, the microbiological analyses do not show any variation in antifungal effectiveness either towards the planktonic form (MICCC-EO = 0.01 ± 0.01 and MICnano-CC-EO = 0.02 ± 0.01) or the biofilm form. No synergistic activity with the antifungal drugs tested was found. CONCLUSIONS both CC-EO and nano-CC-EO show the same antimicrobial effectiveness and are potential assets in the fight against C. auris.
Collapse
Affiliation(s)
- Roberto Rosato
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00167 Rome, Italy
| | - Edoardo Napoli
- Istituto di Chimica Biomolecolare—Consiglio Nazionale delle Ricerche, 95126 Catania, Italy
| | - Giuseppe Granata
- Istituto di Chimica Biomolecolare—Consiglio Nazionale delle Ricerche, 95126 Catania, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00167 Rome, Italy
| | - Stefania Garzoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00100 Rome, Italy
| | - Corrada Geraci
- Istituto di Chimica Biomolecolare—Consiglio Nazionale delle Ricerche, 95126 Catania, Italy
| | - Silvia Rizzo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00167 Rome, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00167 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00167 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
7
|
Ceccato-Antonini SR, Shirahigue LD, Varano A, da Silva BN, Brianti CS, de Azevedo FA. Citrus essential oil: would it be feasible as antimicrobial in the bioethanol industry? Biotechnol Lett 2023; 45:1-12. [PMID: 36333539 DOI: 10.1007/s10529-022-03320-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Essential oils (EOs) extracted from Citrus peels contain 85%-99% volatile components (a mixture of monoterpenes, sesquiterpenes, and their oxygenated derivatives) and 1%-15% non-volatile compounds. Citrus EOs have been long known for their antimicrobial properties, owing to which these EOs have a diverse range of applications. However, no studies have reported the applicability of Citrus EOs for the control of bacterial and yeast contaminants in the bioethanol industry. In this regard, the present review aimed to explore the feasibility of Citrus EOs in this industry. The Web of Science database was searched for reports that described the association of Citrus EOs with the most common microorganisms in the bioethanol industry to evaluate the efficacy of these EOs as antimicrobial agents in this context. The objective of the review was to suggest a novel antimicrobial that could replace sulfuric acid and antibiotics as the commonly used antimicrobial agents in the bioethanol industry. Citrus EOs exhibit antibacterial activity against Lactobacillus, which is the main bacterial genus that contaminates this fermentation process. The present report also confirms the selective action of these EOs on the contaminating yeasts and not/less on ethanol-producing yeast Saccharomyces cerevisiae, however further studies should be conducted to investigate the effects of Citrus EOs in yeast-bacterium co-culture.
Collapse
Affiliation(s)
- Sandra Regina Ceccato-Antonini
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil.
| | - Ligianne Din Shirahigue
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Amanda Varano
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Bianca Novaes da Silva
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Carina Sawaya Brianti
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Fernando Alves de Azevedo
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Via Anhanguera Km 158, Cordeirópolis, SP, 13490-970, Brasil
| |
Collapse
|
8
|
Di Vito M, Scafuro C, Mariotti M, Garzoli S, Torelli R, Zhiri A, Sanguinetti M, Bugli F. Green natural nail polish modified with essential oils to treat onychomycosis. Mycoses 2022; 65:1127-1136. [PMID: 35842900 DOI: 10.1111/myc.13499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Onychomycosis (OM) accounts for about 50% of nail disorders in industrialised countries. Essential oils (EOs), aromatic natural compounds, are known for their antimicrobial activity. OBJECTIVE The aim of this work was to evaluate the antifungal efficacy of seven EOs and a commercial MIX against 10 dermatophytes responsible for OM to select the most effective ones to be included in a preventive or curative formulation based on a green natural nail polish (GNNP). METHODS Micro-broth dilution tests in line with EUCAST guidelines and olfactory satisfaction test were performed to select the best natural compounds previously analysed by SPME coupled with GC-MS. The same method was used to evaluate the release over time of the active compounds present in the two modified-GNNPs made by adding the best natural compound selected (the C. citratus EO) and the MIX. Furthermore, to evaluate the preventive and curative activity of modified-GNNPs, ex vivo experiments on healthy or colonised nails were performed. RESULTS AND CONCLUSIONS Data showed that MIX-modified-GNNP had preventive activity as it inhibits the fungal growth by releasing its active ingredients for 7 days, while the OE-modified GNNP acts as a natural drug showing cytocidal activity on nails colonised by dermatophytes, but it requires two weekly applications.
Collapse
Affiliation(s)
- Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Scafuro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefania Garzoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma Sapienza, Rome, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Abdesselam Zhiri
- Pranarȏm International S.A. 7, Ghislenghien, Belgium
- Plant Biotechnology Research Unit, Belgium Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
9
|
Pinus mugo Essential Oil Impairs STAT3 Activation through Oxidative Stress and Induces Apoptosis in Prostate Cancer Cells. Molecules 2022; 27:molecules27154834. [PMID: 35956786 PMCID: PMC9369512 DOI: 10.3390/molecules27154834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Essential oils (EOs) and their components have been reported to possess anticancer properties and to increase the sensitivity of cancer cells to chemotherapy. The aim of this work was to select EOs able to downregulate STAT3 signaling using Western blot and RT-PCR analyses. The molecular mechanism of anti-STAT3 activity was evaluated through spectrophotometric and fluorometric analyses, and the biological effect of STAT3 inhibition was analyzed by flow cytometry and wound healing assay. Herein, Pinus mugo EO (PMEO) is identified as an inhibitor of constitutive STAT3 phosphorylation in human prostate cancer cells, DU145. The down-modulation of the STAT3 signaling cascade decreased the expression of anti-proliferative as well as anti-apoptotic genes and proteins, leading to the inhibition of cell migration and apoptotic cell death. PMEO treatment induced a rapid drop in glutathione (GSH) levels and an increase in reactive oxygen species (ROS) concentration, resulting in mild oxidative stress. Pretreatment of cells with N-acetyl-cysteine (NAC), a cell-permeable ROS scavenger, reverted the inhibitory action of PMEO on STAT3 phosphorylation. Moreover, combination therapy revealed that PMEO treatment displayed synergism with cisplatin in inducing the cytotoxic effect. Overall, our data highlight the importance of STAT3 signaling in PMEO cytotoxic activity, as well as the possibility of developing adjuvant therapy or sensitizing cancer cells to conventional chemotherapy.
Collapse
|
10
|
Artini M, Papa R, Sapienza F, Božović M, Vrenna G, Tuccio Guarna Assanti V, Sabatino M, Garzoli S, Fiscarelli EV, Ragno R, Selan L. Essential Oils Biofilm Modulation Activity and Machine Learning Analysis on Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Microorganisms 2022; 10:microorganisms10050887. [PMID: 35630332 PMCID: PMC9145053 DOI: 10.3390/microorganisms10050887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is often involved in airway infections of cystic fibrosis (CF) patients. It persists in the hostile CF lung environment, inducing chronic infections due to the production of several virulence factors. In this regard, the ability to form a biofilm plays a pivotal role in CF airway colonization by P. aeruginosa. Bacterial virulence mitigation and bacterial cell adhesion hampering and/or biofilm reduced formation could represent a major target for the development of new therapeutic treatments for infection control. Essential oils (EOs) are being considered as a potential alternative in clinical settings for the prevention, treatment, and control of infections sustained by microbial biofilms. EOs are complex mixtures of different classes of organic compounds, usually used for the treatment of upper respiratory tract infections in traditional medicine. Recently, a wide series of EOs were investigated for their ability to modulate biofilm production by different pathogens comprising S. aureus, S. epidermidis, and P. aeruginosa strains. Machine learning (ML) algorithms were applied to develop classification models in order to suggest a possible antibiofilm action for each chemical component of the studied EOs. In the present study, we assessed the biofilm growth modulation exerted by 61 commercial EOs on a selected number of P. aeruginosa strains isolated from CF patients. Furthermore, ML has been used to shed light on the EO chemical components likely responsible for the positive or negative modulation of bacterial biofilm formation.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Mijat Božović
- Faculty of Natural Sciences and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Vanessa Tuccio Guarna Assanti
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy; (V.T.G.A.); (E.V.F.)
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy; (V.T.G.A.); (E.V.F.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
- Società Italiana Ricerca Oli Essenziali, Viale Regina Elena 299, 00161 Roma, Italy
- Correspondence: (R.R.); (L.S.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
- Correspondence: (R.R.); (L.S.)
| |
Collapse
|
11
|
Varano A, Shirahigue LD, Azevedo FA, Altenhofen da Silva M, Ceccato-Antonini SR. Mandarin essential oil as an antimicrobial in ethanolic fermentation: Effects on Limosilactobacillus fermentum and Saccharomyces cerevisiae. Lett Appl Microbiol 2022; 74:981-991. [PMID: 35247276 DOI: 10.1111/lam.13690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
The antibacterial activity of citrus essential oils (EOs) in the context of combating Limosilactobacillus fermentum, one of the most important bacterial contaminants in the bioethanol production industry, has never been explored previously. Industrial processes usually utilize sulfuric acid for cell treatment to decrease bacterial contamination. However, due to the hazardous nature of sulfuric acid, an alternative to it is highly desirable. Therefore, in the present study, the efficacy of Fremont IAC 543 mandarin EO against a strain of L. fermentum (ATCC® 9338™) was evaluated under proliferative/non-proliferative conditions, in both pure culture and co-culture with an industrial strain of Saccharomyces cerevisiae. The mandarin EO exhibited higher effectiveness against L. fermentum compared to that against S. cerevisiae under non-proliferative conditions (added to water rather than to culture medium). At the concentration of 0.05%, the EO was as effective as the acid solution with pH 2.0 in reducing the count of L. fermentum almost 5 log CFU mL-1 cycles, while the concentration of 0.1% led to the complete loss of bacterial culturability. When L. fermentum was co-cultured with S. cerevisiae, the efficacy of the EO against the bacterial strain was reduced. However, despite this reduced efficacy in co-culture, mandarin EO may be considered effective in combating L. fermentum and could be applied in processes where this bacterium proves to be unfavorable and does not interact with S. cerevisiae.
Collapse
Affiliation(s)
- A Varano
- Dept. Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera km 174, 13600-970, Araras, SP, Brasil
| | - L D Shirahigue
- Dept. Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera km 174, 13600-970, Araras, SP, Brasil
| | - F A Azevedo
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Via Anhanguera km 158, 13490-970, Cordeirópolis, SP, Brasil
| | - M Altenhofen da Silva
- Dept. Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera km 174, 13600-970, Araras, SP, Brasil
| | - S R Ceccato-Antonini
- Dept. Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera km 174, 13600-970, Araras, SP, Brasil
| |
Collapse
|
12
|
Wu X, Xia Y, He F, Zhu C, Ren W. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. MICROBIOME 2021; 9:60. [PMID: 33715629 PMCID: PMC7958491 DOI: 10.1186/s40168-021-01024-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
Bacteria, viruses, protozoa, and fungi establish a complex ecosystem in the gut. Like other microbiota, gut mycobiota plays an indispensable role in modulating intestinal physiology. Notably, the most striking characteristics of intestinal fungi are their extraintestinal functions. Here, we provide a comprehensive review of the importance of gut fungi in the regulation of intestinal, pulmonary, hepatic, renal, pancreatic, and brain functions, and we present possible opportunities for the application of gut mycobiota to alleviate/treat human diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, 400716 China
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
13
|
Napoli E, Di Vito M. Toward a New Future for Essential Oils. Antibiotics (Basel) 2021; 10:antibiotics10020207. [PMID: 33669818 PMCID: PMC7923015 DOI: 10.3390/antibiotics10020207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Edoardo Napoli
- Istituto Chimica Biomolecolare—C.N.R., Via Paolo Gaifami 18, 95126 Catania, Italy
- Correspondence: (E.N.); (M.D.V.)
| | - Maura Di Vito
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
- Correspondence: (E.N.); (M.D.V.)
| |
Collapse
|