1
|
Wang J, Tian S, Du J, Du S, Chen W, Liu Y. The hypothalamic estrogen receptor α pathway is involved in high-intensity interval training-induced visceral fat loss in premenopausal rats. Lipids Health Dis 2025; 24:118. [PMID: 40148843 PMCID: PMC11948781 DOI: 10.1186/s12944-025-02533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Visceral adipose tissue (VAT) is strongly associated with metabolic diseases. Both high-intensity interval training (HIT) and moderate-intensity training (MIT) reduce VAT effectively; however, HIT might mediate greater VAT loss in females. The estrogen receptor α (ERα) pathway may play a key role. The aim of the present study was to confirm the role of adipose/hypothalamic ERα in HIT/MIT-mediated VAT loss, as well as the associated hypothalamic electrophysiology and body catabolism changes in pre- and post-menopausal animal models. METHODS Ovariectomy (OVX) or sham surgeries were conducted to establish pre/postmenopausal female rat models. After distance-matched long-term HIT and MIT interventions, ERα expression in hypothalamic/VAT, as well as food intake, spontaneous physical activity (SPA), VAT mass and morphology, local field potential (LFPs) in paraventricular nuclei (PVN) and excessive post-exercise oxygen consumption (EPOC), were observed. A target chemical block during the post-exercise recovery period was executed to further verify the role of the hypothalamic ERα pathway. RESULTS HIT enhanced the expression of ERα in the hypothalamus rather than VAT in the pre-, but not the postmenopausal group, which was accompanied by elevated LFP power density in α and β bands, enhanced EPOC and larger VAT loss than MIT. Chemical blockade of ERα suppressed EPOC and VAT catabolism mediated by HIT. CONCLUSION During the post-exercise recovery period, the hypothalamic ERα pathway involved in HIT induced EPOC elevation and VAT reduction in premenopausal female rats.
Collapse
Affiliation(s)
- Juanjuan Wang
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Shuai Tian
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Jinchan Du
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Sihao Du
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Wei Chen
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Provincial Key Lab of Measurement and Evaluation in Human Movement and Bio- Information, Hebei Normal University, Shijiazhuang, China
| | - Yang Liu
- School of Physical Education, Hebei Normal University, Shijiazhuang, China.
- Provincial Key Lab of Measurement and Evaluation in Human Movement and Bio- Information, Hebei Normal University, Shijiazhuang, China.
- School of Physical Education, Hebei Normal University, No. 20, South Second Ring Road East, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
3
|
Yang K, Liu C, Shao J, Guo L, Wang Q, Meng Z, Jin X, Chen X. Would Combination Be Better: Swimming Exercise and Intermittent Fasting Improve High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Obese Rats via the miR-122-5p/SREBP-1c/CPT1A Pathway. Diabetes Metab Syndr Obes 2024; 17:1675-1686. [PMID: 38623310 PMCID: PMC11016699 DOI: 10.2147/dmso.s448165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Background Swimming and intermittent fasting can both improve obesity-induced NAFLD, but which of the two is more effective and whether the combination of the two has a superimposed effect is inconclusive. Methods The model of NAFLD in obese rats was established by a high-fat diet and performed swimming, intermittent fasting, and a combination of both interventions for 8 weeks. Serum lipids and enzyme activity were measured by an automatic biochemical analyzer. Liver morphostructural analysis was observed by transmission electron microscopy, and morphology was observed by HE staining. RT‒PCR was used to detect the mRNA level. Results Morphology and microstructure of the liver of model rats were impaired, with the upregulation of miR-122-5p, SREBP-1c, FASN and ACC1. Eight weeks of swimming exercise, intermittent fasting and the combination of both attenuate these effects, manifested by the downregulation of miR-122-5p and upregulation of CPT1A mRNA levels. There was no significant stacking effect of the combination of the swimming and intermittent fasting interventions. Conclusion NAFLD leads to pathology in model rats. Eight weeks of swimming exercise, intermittent fasting and the combination of both can inhibit miR-122-5p and improve hepatic lipid metabolism, while no significant additive effects of combining the interventions were found.
Collapse
Affiliation(s)
- Kang Yang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Chengye Liu
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Jun Shao
- Cardiovascular Disease Center, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Lingxiang Guo
- Cardiovascular Disease Center, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Qing Wang
- Respiratory Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Zhaoxiang Meng
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Xing Jin
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| |
Collapse
|
4
|
Fico BG, Maharaj A, Pena GS, Huang CJ. The Effects of Obesity on the Inflammatory, Cardiovascular, and Neurobiological Responses to Exercise in Older Adults. BIOLOGY 2023; 12:865. [PMID: 37372149 DOI: 10.3390/biology12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Obesity with advancing age leads to increased health complications that are involved in various complex physiological processes. For example, inflammation is a critical cardiovascular disease risk factor that plays a role in the stages of atherosclerosis in both aging and obesity. Obesity can also induce profound changes to the neural circuitry that regulates food intake and energy homeostasis with advancing age. Here we discuss how obesity in older adults impacts inflammatory, cardiovascular, and neurobiological functions with an emphasis on how exercise mediates each topic. Although obesity is a reversible disorder through lifestyle changes, it is important to note that early interventions are crucial to prevent pathological changes seen in the aging obese population. Lifestyle modifications such as physical activity (including aerobic and resistance training) should be considered as a main intervention to minimize the synergistic effect of obesity on age-related conditions, such as cerebrovascular disease.
Collapse
Affiliation(s)
- Brandon G Fico
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arun Maharaj
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD 20742, USA
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
5
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
6
|
Chen Y, Kim M, Paye S, Benayoun BA. Sex as a Biological Variable in Nutrition Research: From Human Studies to Animal Models. Annu Rev Nutr 2022; 42:227-250. [PMID: 35417195 PMCID: PMC9398923 DOI: 10.1146/annurev-nutr-062220-105852] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biological sex is a fundamental source of phenotypic variability across species. Males and females have different nutritional needs and exhibit differences in nutrient digestion and utilization, leading to different health outcomes throughout life. With personalized nutrition gaining popularity in scientific research and clinical practice, it is important to understand the fundamentals of sex differences in nutrition research. Here, we review key studies that investigate sex dimorphism in nutrition research: sex differences in nutrient intake and metabolism, sex-dimorphic response in nutrient-restricted conditions, and sex differences in diet and gut microbiome interactions. Within each area above, factors from sex chromosomes, sex hormones, and sex-specific loci are highlighted.
Collapse
Affiliation(s)
- Yilin Chen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA;
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA;
| | - Sanjana Paye
- Department of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA;
- Department of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Epigenetics and Gene Regulation Program, USC Norris Comprehensive Cancer Center, Los Angeles, California, USA
- USC Stem Cell Initiative, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Keenan S, Cooke MB, Chen WS, Wu S, Belski R. The Effects of Intermittent Fasting and Continuous Energy Restriction with Exercise on Cardiometabolic Biomarkers, Dietary Compliance, and Perceived Hunger and Mood: Secondary Outcomes of a Randomised, Controlled Trial. Nutrients 2022; 14:3071. [PMID: 35893925 PMCID: PMC9370806 DOI: 10.3390/nu14153071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Excess weight in the form of adiposity plays a key role in the pathogenesis of cardiometabolic diseases. Lifestyle modifications that incorporate continuous energy restriction (CER) are effective at inducing weight loss and reductions in adiposity; however, prescribing daily CER results in poor long-term adherence. Over the past decade, intermittent fasting (IF) has emerged as a promising alternative to CER that may promote increased compliance and/or improvements in cardiometabolic health parameters independent of weight loss. (2) Methods: This paper presents a secondary analysis of data from a 12-week intervention investigating the effects of a twice-weekly fast (5:2 IF; IFT group) and CER (CERT group) when combined with resistance exercise in 34 healthy participants (17 males and 17 females, mean BMI: 27.0 kg/m2, mean age: 23.9 years). Specifically, changes in cardiometabolic blood markers and ratings of hunger, mood, energy and compliance within and between groups were analysed. Dietary prescriptions were hypoenergetic and matched for energy and protein intake. (3) Results: Both dietary groups experienced reductions in total cholesterol (TC; mean reduction, 7.8%; p < 0.001), low-density lipoprotein cholesterol (LDL-C; mean reduction, 11.1%; p < 0.001) and high-density lipoprotein cholesterol (mean reduction 2.6%, p = 0.049) over the 12 weeks. Reductions in TC and LDL-C were greater in the IFT group after adjustment for baseline levels and change in weight. No significant changes in markers of glucose regulation were observed. Both groups maintained high levels of dietary compliance (~80%) and reported low levels of hunger over the course of the intervention period. (4) Conclusions: Secondary data analysis revealed that when combined with resistance training, both dietary patterns improved blood lipids, with greater reductions observed in the IFT group. High levels of compliance and low reported levels of hunger throughout the intervention period suggest both diets are well tolerated in the short-to-medium term.
Collapse
Affiliation(s)
- Stephen Keenan
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.B.C.); (W.S.C.); (S.W.); (R.B.)
| | - Matthew B. Cooke
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.B.C.); (W.S.C.); (S.W.); (R.B.)
| | - Won Sun Chen
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.B.C.); (W.S.C.); (S.W.); (R.B.)
| | - Sam Wu
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.B.C.); (W.S.C.); (S.W.); (R.B.)
| | - Regina Belski
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.B.C.); (W.S.C.); (S.W.); (R.B.)
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
8
|
Cooke MB, Deasy W, Ritenis EJ, Wilson RA, Stathis CG. Effects of Intermittent Energy Restriction Alone and in Combination with Sprint Interval Training on Body Composition and Cardiometabolic Biomarkers in Individuals with Overweight and Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137969. [PMID: 35805627 PMCID: PMC9265557 DOI: 10.3390/ijerph19137969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023]
Abstract
The popularity of intermittent fasting (IF) and high intensity (sprint) interval training (SIT) has increased in recent years amongst the general public due to their purported health benefits and feasibility of incorporation into daily life. The number of scientific studies investigating these strategies has also increased, however, very few have examined the combined effects, especially on body composition and cardiometabolic biomarkers, which is the primary aim of this investigation. A total of thirty-four male and female participants (age: 35.4 ± 8.4 y, body mass index (BMI): 31.3 ± 3.5 kg/m2, aerobic capacity (VO2peak) 27.7 ± 7.0 mL·kg−1·min−1) were randomized into one of three 16-week interventions: (1) 5:2 IF (2 non-consecutive days of fasting per week, 5 days on ad libitum eating), (2) supervised SIT (3 bouts per week of 20s cycling at 150% VO2peak followed by 40 s of active rest, total 10 min duration), and (3) a combination of both interventions. Body composition, haemodynamic and VO2peak were measured at 0, 8 and 16 weeks. Blood samples were also taken and analysed for lipid profiles and markers of glucose regulation. Both IF and IF/SIT significantly decreased body weight, fat mass and visceral fat compared to SIT only (p < 0.05), with no significant differences between diet and diet + exercise combined. The effects of diet and/or exercise on cardiometabolic biomarkers were mixed. Only exercise alone or with IF significantly increased cardiorespiratory fitness. The results suggest that energy restriction was the main driver of body composition enhancement, with little effect from the low volume SIT. Conversely, to achieve benefits in cardiorespiratory fitness, exercise is required.
Collapse
Affiliation(s)
- Matthew B. Cooke
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3000, Australia; (W.D.); (R.A.W.)
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC 3021, Australia
- Correspondence: (M.B.C.); (C.G.S.); Tel.: +61-(3)-9214-5560 (M.B.C.); +61-(3)-9919-4293 (C.G.S.)
| | - William Deasy
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3000, Australia; (W.D.); (R.A.W.)
- College of Clinical Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Elya J. Ritenis
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| | - Robin A. Wilson
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3000, Australia; (W.D.); (R.A.W.)
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC 3021, Australia
| | - Christos G. Stathis
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3000, Australia; (W.D.); (R.A.W.)
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia
- Correspondence: (M.B.C.); (C.G.S.); Tel.: +61-(3)-9214-5560 (M.B.C.); +61-(3)-9919-4293 (C.G.S.)
| |
Collapse
|
9
|
Dos Santos JAC, Veras ASC, Batista VRG, Tavares MEA, Correia RR, Suggett CB, Teixeira GR. Physical exercise and the functions of microRNAs. Life Sci 2022; 304:120723. [PMID: 35718233 DOI: 10.1016/j.lfs.2022.120723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
MicroRNAs (miRNAs) control RNA translation and are a class of small, tissue-specific, non-protein-coding RNAs that maintain cellular homeostasis through negative gene regulation. Maintenance of the physiological environment depends on the proper control of miRNA expression, as these molecules influence almost all genetic pathways, from the cell cycle checkpoint to cell proliferation and apoptosis, with a wide range of target genes. Dysregulation of the expression of miRNAs is correlated with several types of diseases, acting as regulators of cardiovascular functions, myogenesis, adipogenesis, osteogenesis, hepatic lipogenesis, and important brain functions. miRNAs can be modulated by environmental factors or external stimuli, such as physical exercise, and can eventually induce specific and adjusted changes in the transcriptional response. Physical exercise is used as a preventive and non-pharmacological treatment for many diseases. It is well established that physical exercise promotes various benefits in the human body such as muscle hypertrophy, mental health improvement, cellular apoptosis, weight loss, and inhibition of cell proliferation. This review highlights the current knowledge on the main miRNAs altered by exercise in the skeletal muscle, cardiac muscle, bone, adipose tissue, liver, brain, and body fluids. In addition, knowing the modifications induced by miRNAs and relating them to the results of prescribed physical exercise with different protocols and intensities can serve as markers of physical adaptation to training and responses to the effects of physical exercise for some types of chronic diseases. This narrative review consists of randomized exercise training experiments with humans and/or animals, combined with analyses of miRNA modulation.
Collapse
Affiliation(s)
| | - Allice Santos Cruz Veras
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Maria Eduarda Almeida Tavares
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rafael Ribeiro Correia
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Cara Beth Suggett
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
10
|
Kępczyński Ł, Wcisło S, Korzeniewska-Dyl I, Połatyńska K, Gach A, Moczulski D. No evidence for change in expression of TBC1D1 and TBC1D4 genes in cultured human adipocytes stimulated by myokines and adipokines. Adipocyte 2021; 10:153-159. [PMID: 33769190 PMCID: PMC8007147 DOI: 10.1080/21623945.2021.1900497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TBC1D1 and TBC1D4 proteins play analogous, but not identical role in governing insulin-signalling pathway. Little is known about changes in expression levels of TBC1D1 and TBC1D4 genes in mammals, including humans. Number of factors were studied, but data remain controversial. The aim of this study was to evaluate the effect of selected cytokines, adipokines and myokines with known or putative insulin sensitivity regulation activity (adiponectin, irisin, omentin, interleukin 6, leptin, resistin, and tumour necrosis factor) on TBC1D1 and TBC1D4 expression levels in cultured differentiated human adipocytes. No significant differences were found between the adipocytes treated with different stimuli and this effect was determined not dose dependent. It is reasonable to conclude that relative shortage of data showing no change in TBC1D1 and TBC1D4 from literature results from publication bias; therefore, our finding provides additional insight into the role of both genes.
Collapse
Affiliation(s)
- Łukasz Kępczyński
- Department of Genetics, Polish Mothers’ Memorial Institute Research Hospital, Łódź, Poland
- Department of Internal Medicine and Nephrodiabetology, Medical University of Łódź and Military Medical Academy Memorial Teaching Hospital of the Medical University of Łódź - Central Veteran Hospital, Łódź, Poland
| | - Szymon Wcisło
- Department of Thoracic, General and Oncological Surgery, Medical University of Łódź and Military Medical Academy Memorial Teaching Hospital of the Medical University of Łódź - Central Veteran Hospital, Łódź, Poland
| | - Irmina Korzeniewska-Dyl
- Department of Internal Medicine and Nephrodiabetology, Medical University of Łódź and Military Medical Academy Memorial Teaching Hospital of the Medical University of Łódź - Central Veteran Hospital, Łódź, Poland
| | - Katarzyna Połatyńska
- Department of Neurology, Polish Mothers’ Memorial Institute Research Hospital, Łódź, Poland
| | - Agnieszka Gach
- Department of Genetics, Polish Mothers’ Memorial Institute Research Hospital, Łódź, Poland
| | - Dariusz Moczulski
- Department of Internal Medicine and Nephrodiabetology, Medical University of Łódź and Military Medical Academy Memorial Teaching Hospital of the Medical University of Łódź - Central Veteran Hospital, Łódź, Poland
| |
Collapse
|
11
|
Intestinal Alkaline Phosphatase Combined with Voluntary Physical Activity Alleviates Experimental Colitis in Obese Mice. Involvement of Oxidative Stress, Myokines, Adipokines and Proinflammatory Biomarkers. Antioxidants (Basel) 2021; 10:antiox10020240. [PMID: 33557311 PMCID: PMC7914798 DOI: 10.3390/antiox10020240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
Intestinal alkaline phosphatase (IAP) is an essential mucosal defense factor involved in the process of maintenance of gut homeostasis. We determined the effect of moderate exercise (voluntary wheel running) with or without treatment with IAP on the course of experimental murine 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis by assessing disease activity index (DAI), colonic blood flow (CBF), plasma myokine irisin levels and the colonic and adipose tissue expression of proinflammatory cytokines, markers of oxidative stress (SOD2, GPx) and adipokines in mice fed a standard diet (SD) or high-fat diet (HFD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant decrease in CBF, and a significant increase in the colonic expression of tumor necrosis factor-alpha (TNF-α), IL-6, IL-1β and leptin mRNAs and decrease in the mRNA expression of adiponectin. These effects were aggravated in sedentary HFD mice but reduced in exercising animals, potentiated by concomitant treatment with IAP, especially in obese mice. Exercising HFD mice demonstrated a substantial increase in the mRNA for adiponectin and a decrease in mRNA leptin expression in intestinal mucosa and mesenteric fat as compared to sedentary animals. The expression of SOD2 and GPx mRNAs was significantly decreased in adipose tissue in HFD mice, but these effects were reversed in exercising mice with IAP administration. Our study shows for the first time that the combination of voluntary exercise and oral IAP treatment synergistically favored healing of intestinal inflammation, strengthened the antioxidant defense and ameliorated the course of experimental colitis; thus, IAP may represent a novel adjuvant therapy to alleviate inflammatory bowel disease (IBD) in humans.
Collapse
|
12
|
Grundler F, Mesnage R, Goutzourelas N, Tekos F, Makri S, Brack M, Kouretas D, Wilhelmi de Toledo F. Interplay between oxidative damage, the redox status, and metabolic biomarkers during long-term fasting. Food Chem Toxicol 2020; 145:111701. [PMID: 32858131 PMCID: PMC7446623 DOI: 10.1016/j.fct.2020.111701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Obesity and its related metabolic disorders, as well as infectious diseases like covid-19, are important health risks nowadays. It was recently documented that long-term fasting improves metabolic health and enhanced the total antioxidant capacity. The present study investigated the influence of a 10-day fasting on markers of the redox status in 109 subjects. Reducing power, 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation(ABTS) radical scavenging capacity, and hydroxyl radical scavenging capacity increased significantly, and indicated an increase of circulating antioxidant levels. No differences were detected in superoxide scavenging capacity, protein carbonyls, and superoxide dismutase when measured at baseline and after 10 days of fasting. These findings were concomitant to a decrease in blood glucose, insulin, glycated hemoglobin (HbA1c), total cholesterol, low-density lipoprotein (LDL) and triglycerides as well as an increase in total cholesterol/high-density lipoprotein (HDL) ratio. In addition, the well-being index as well as the subjective energy levels increased, documenting a good tolerability. There was an interplay between redox and metabolic parameters since lipid peroxidation baseline levels (thiobarbituric acid reactive substances [TBARS]) affected the ability of long-term fasting to normalize lipid levels. A machine learning model showed that a combination of antioxidant parameters measured at baseline predicted the efficiency of the fasting regimen to decrease LDL levels. In conclusion, it was demonstrated that long-term fasting enhanced the endogenous production of antioxidant molecules, that act protectively against free radicals, and in parallel improved the metabolic health status. Our results suggest that the outcome of long-term fasting strategies could be depending on the baseline values of the antioxidative and metabolic status of subjects. Long-term fasting increases the antioxidant capacity and decreases oxidative damage. It improves the metabolic health status. High TBARS levels at baseline limit the LDL reduction during long-term fasting. The antioxidant status is related with the lipid lowering effect of long-term fasting.
Collapse
Affiliation(s)
- Franziska Grundler
- Buchinger Wilhelmi Clinic, 88662, Überlingen, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany.
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Nikolaos Goutzourelas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| | - Sotiria Makri
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| | - Michel Brack
- The Oxidative Stress College Paris, 75007, Paris, France.
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| | | |
Collapse
|