1
|
Li J, Liu T, Xian M, Zhou K, Wei J. The Power of Exercise: Unlocking the Biological Mysteries of Peripheral-Central Crosstalk in Parkinson's Disease. J Adv Res 2025:S2090-1232(25)00143-2. [PMID: 40049515 DOI: 10.1016/j.jare.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Exercise is a widely recognized non-pharmacological treatment for Parkinson's Disease (PD). The bidirectional regulation between the brain and peripheral organs has emerged as a promising area of research, with the mechanisms by which exercise impacts PD closely linked to the interplay between peripheral signals and the central nervous system. AIM OF REVIEW This review aims to summarize the mechanisms by which exercise influences peripheral-central crosstalk to improve PD, discuss the molecular processes mediating these interactions, elucidate the pathways through which exercise may modulate PD pathophysiology, and identify directions for future research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review examines how exercise-induced cytokine release promotes neuroprotection in PD. It discusses how exercise can stimulate cytokine secretion through various pathways, including the gut-brain, muscle-brain, liver-brain, adipose-brain, and bone-brain axes, thereby alleviating PD symptoms. Additionally, the potential contributions of the heart-brain, lung-brain, and spleen-brain axes, as well as multi-axis crosstalk-such as the brain-gut-muscle and brain-gut-bone axes-are explored in the context of exercise therapy. The study highlights the need for further research into peripheral-central crosstalk and outlines future directions to address challenges in clinical PD therapy.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ke Zhou
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China.
| | - Jianshe Wei
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China; Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Hu N, Sun J, Cao Y, Zhao H, Sun M, Li G, Liu X, Cong S. Anti-Fatigue Activity of Corn Protein Hydrolysate Fermented by Lactic Acid Bacteria. Nutrients 2025; 17:199. [PMID: 39861329 PMCID: PMC11767320 DOI: 10.3390/nu17020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES This study aimed to clarify the effect of lactic acid bacteria-fermented corn protein hydrolysate (FCH) on fatigue in mice and explore the connection between fatigue-related indicators and intestinal microbial flora. METHODS The fatigue model of mice was constructed by exercise endurance experiment. The anti-fatigue level of FCH was evaluated by measuring physiological and biochemical indexes in mouse serum, liver and skeletal muscle. The relationship between FCH, intestinal flora and fatigue was explored through the analysis of intestinal microbial diversity in mice, and the anti-fatigue mechanism of FCH was further analyzed. RESULTS The results showed that the weight-bearing swimming time of mice was prolonged by 1.96 times, and the running time of mice was prolonged by 2.63 times in the high-dose FCH (FCH-H) group. Moreover, the lactic acid contents in the blood were reduced by 16.00%, and lactate dehydrogenase activity and urea nitrogen contents basically returned to the normal level. Meanwhile, the malondialdehyde contents were reduced by 31.24%, and superoxide dismutase activity and glutathione contents were increased by 1.84 times and 1.72 times, respectively. In addition, the glycogen contents of the body were restored, and the muscle glycogen and liver glycogen were increased by 1.81 and 5.81 times, respectively. Analysis of intestinal microbial flora diversity in mice showed that the highest relative abundance was Lactobacillus, and the FCH group could recover and even increase its relative abundance. Lactobacillus was significantly positively correlated with muscle glycogen and SOD. CONCLUSIONS FCH can alleviate fatigue by regulating fatigue-related indicators and improving the intestinal microbial flora of the organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shanzi Cong
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
3
|
Li C, Wu Z, Yang X. Ozone treatment regulated the anti-exercise fatigue effect of fresh-cut pitaya polyphenol extracts. Front Nutr 2024; 11:1500681. [PMID: 39654536 PMCID: PMC11625569 DOI: 10.3389/fnut.2024.1500681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
The anti-exercise fatigue effect of plant polyphenols is closely related to the content, composition, and extractability of phenolic substances. According to our previous findings, ozone treatment significantly affected the biological effects of fresh-cut pitaya polyphenols. Therefore, this study used C57BL/6 J mice to explore the regulatory mechanism of ozone treatment on the anti-exercise fatigue effect of fresh-cut pitaya polyphenol extract. The result showed that fresh-cut pitaya polyphenols treated with ozone (OP) have a better effect. Compared with the untreated group, the exhaustion time of the OP group was 11.86% longer, the total antioxidant capacity was 54.17% higher, the MDA content was 32.8% lower, and the liver glycogen content was 85.71% higher. The OP group also better regulated substrate metabolism, protecting muscle and visceral weight. The results of RT-PCR were consistent with the results of network pharmacology, and the expression of PI3K and AKT was activated, while SRC and STAT3 were down-regulated. Furthermore, pitaya polyphenols have been demonstrated to exert anti-fatigue effects by increasing the diversity of gut microbiota species. In summary, ozone treatment is a feasible way to improve the nutrition of polyphenols.
Collapse
Affiliation(s)
- Chen Li
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xiaofei Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, China
| |
Collapse
|
4
|
Li T, Xie C, Tian Z, Chai R, Ren Y, Miao J, Xu W, Chang S, Zhao C. A soluble garlic polysaccharide supplement alleviates fatigue in mice. NPJ Sci Food 2024; 8:98. [PMID: 39572560 PMCID: PMC11582689 DOI: 10.1038/s41538-024-00340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
Garlic polysaccharide (GP) is an inulin-type fructan with potent antioxidant activity, whereas its health-promoting functions are not well explored. In the current study, we established a fatigue model by forcing mice to swim in a water tank for at least one hour every day. We measured changes in body weight, exhaustive swimming time, and biochemical indices related to fatigue in weight-bearing swimming mice fed low (1.25 g/kg-BW) and high doses (2.5 g/kg-BW) of GP by daily gavage for 7 weeks. The soluble GP was extracted from industrial garlic wastes using a patented method. The results indicate that GP improved symptoms by increasing the duration of exhaustive swimming, restoring blood biochemical markers (BUN and BLA), and increasing liver and muscle glycogen reserves in fatigued mice. GP also increased antioxidant enzyme activity (SOD, GSH-Px, and CAT) and restored ATPase activity by activating the AMPK/PGC-1α pathway. Additionally, GP modified the gut microbiota by increasing potentially beneficial bacteria and decreasing harmful bacteria. The increase in Bacteroidota and the decrease in Firmicutes phyla regulate the metabolism of short-chain fatty acids in the gut. In conclusion, GP may be effective in alleviating exercise-induced fatigue through multiple mechanisms and can be developed into health anti-fatigue supplements.
Collapse
Affiliation(s)
- Tianyi Li
- School of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, 056000, Handan, Hebei, China
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, 056000, Handan, Hebei, China
| | - Chanyuan Xie
- School of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, 056000, Handan, Hebei, China
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, 056000, Handan, Hebei, China
| | - Zhenyang Tian
- School of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, 056000, Handan, Hebei, China
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, 056000, Handan, Hebei, China
| | - Ran Chai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, 056000, Handan, Hebei, China
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, 056000, Handan, Hebei, China
| | - Yuan Ren
- School of Sports and Health Engineering, Hebei University of Engineering, 19 Taiji Road, 056000, Handan, Hebei, China
| | - Jiaxin Miao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, 056000, Handan, Hebei, China
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, 056000, Handan, Hebei, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shimin Chang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, 056000, Handan, Hebei, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, 056000, Handan, Hebei, China.
| | - Changhui Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062, Changchun, China.
| |
Collapse
|
5
|
Wang Y, Pei H, Chen W, Du R, Li J, He Z. Deer Blood Hydrolysate Protects against D-Galactose-Induced Premature Ovarian Failure in Mice by Inhibiting Oxidative Stress and Apoptosis. Nutrients 2024; 16:3473. [PMID: 39458468 PMCID: PMC11510239 DOI: 10.3390/nu16203473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a common disease among women, which can cause many complications and seriously threaten women's physical and mental health. Currently, hormone replacement therapy is the primary treatment for premature ovarian failure. However, the side effects are serious and will increase the chance of breast cancer and endometrial cancer. Deer blood hydrolysate (DBH) is the product of enzymatic hydrolysis of deer blood, has antioxidant, anti-ageing, and anti-fatigue effects, and has the potential to improve premature ovarian failure. METHODS In our experiment, a mouse model of premature ovarian failure was established through intraperitoneal injection of 400 mg/kg/d of D-gal for 42 days. At the same time, different doses of DBH were gavaged to observe its ameliorative effect on premature ovarian failure. RESULTS The experimental findings indicated that DBH could restore the irregular oestrus cycle of POF mice, improve the abnormal amounts in serum hormones follicle-stimulating hormone (FSH), luteinising hormone (LH), progesterone (P) and estradiol (E2), increase the number of primordial follicles and decrease the number of atretic follicles. In addition, DBH also raised the level of superoxide dismutase (SOD) and reduced the level of malondialdehyde (MDA) and reduced the apoptosis of ovarian granulosa cells in mice. The WB assay results showed that gavage of DBH restored the decrease in the indication of nuclear factor erythroid 2-related factor 2 (Nrf2), Heme Oxygenase-1 (Ho-1), and B-cell lymphoma-2 (Bcl-2) proteins and reduced the elevated expression of Kelch-like ECH-associated protein 1 (Keap1), Bcl-2 associated X protein (Bax), and Cysteinyl aspartate specific proteinase-3 (Caspase-3) proteins that were induced by D-gal. CONCLUSIONS To sum up, the present research indicated that DBH can ameliorate D-gal-induced oxidative stress and apoptosis by regulating the Nrf2/HO-1 signalling pathway and the Bcl-2/Bax/caspase-3 apoptosis pathway, which can be used for further development as a nutraceutical product to improve premature ovarian failure.
Collapse
Affiliation(s)
- Yu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| |
Collapse
|
6
|
Hao H, Sha A. Study on Anti-fatigue Effects and Mechanisms of Polysaccharide from Paris polyphylla. DOKL BIOCHEM BIOPHYS 2024; 516:58-65. [PMID: 38722403 DOI: 10.1134/s1607672924600180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 05/26/2024]
Abstract
The objectives of this study were to investigate the anti-fatigue effects of Paris polyphylla polysaccharide component 1 (PPPm-1) and explore its mechanisms. A mouse model of exercise-induced fatigue was established by weight-bearing swimming to observe the effects of different concentrations of PPPm-1 on weight-bearing swimming time. The anti-fatigue effect of PPPm-1 was determined by the effects of contraction amplitude, contraction rate, and diastolic rate of the frog gastrocnemius muscle in vivo before and after infiltration with 5 mg/mL PPPm-1. The effects of PPPm-1 on the contents of blood lactate, serum urea nitrogen, hepatic glycogen, muscle glycogen in the exercise fatigue model of mice, and acetylcholine (ACh) content and acetylcholinesterase (AChE) activity at the junction of the frog sciatic nerve-gastrocnemius under normal physiological, and Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of the frog gastrocnemius were determined by enzyme-linked immunosorbent assay (ELISA), to investigate the anti-fatigue mechanisms of PPPm-1. The results showed that PPPm-1 could significantly prolong the weight-bearing swimming time in mice (P < 0.01), decrease the contents of blood lactate and serum urea nitrogen, increase the contents of the hepatic glycogen and muscle glycogen of mice after exercise fatigue compared with those of the control group, and there was extremely significant difference in most indicators (P < 0.01). The 5 mg/mL of PPPm-1 could significantly promote the contraction amplitude, contraction rate, and relaxation rate of the gastrocnemius muscle in the frogs, and the content of ACh at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01), but it had obvious inhibitory effetc on the activity of AChE at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01). PPPm-1 could increase the Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of gastrocnemius in the frogs (for Ca2+-Mg2+-ATPase, P < 0.01). The above results suggested that the PPPm-1 had a good anti-fatigue effect, and its main mechanisms were related to improving endurance and glycogen reserve, reducing glycogen consumption, lactate and serum urea nitrogen accumulation, and promoting Ca2+ influx.
Collapse
Affiliation(s)
- Haiyan Hao
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, 404120, Chongqing, China
| | - Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, 404120, Chongqing, China.
| |
Collapse
|
7
|
Shi C, Liang Z, Li T, Hao Q, Xiang H, Xie Q. Metabolome and microbiome analyses of the anti-fatigue mechanism of Acanthopanax senticosus leaves. Food Funct 2024; 15:3791-3809. [PMID: 38511300 DOI: 10.1039/d3fo05311c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Acanthopanax senticosus leaves, widely used as a vegetable and tea, are reported to be beneficial in treating neurological disorders. At present, their anti-fatigue effect remains to be established. In this study, we analyzed the composition of the extracts from A. senticosus leaves and confirmed their antioxidant and anti-inflammatory properties at the cellular level. In mice subjected to exhaustive running on a treadmill, supplementation with A. senticosus leaf extracts enhanced exercise performance and alleviated fatigue via the reversal of exercise-induced 5-HT elevation, metabolic waste accumulation, organ damage, and glucose metabolism-related gene expression. The collective findings from microbiome and metabolomic analyses indicate that A. senticosus leaf extracts increase α-diversity, regulate microbial composition, and reverse exercise-mediated disruption of carbohydrate, creatine, amino acid, and trimethylamine metabolism. This study provides preliminary evidence for the utility of A. senticosus leaves as a promising anti-fatigue food and offers insights into the underlying mechanism.
Collapse
Affiliation(s)
- Chao Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Zehua Liang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Ting Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Qi Hao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Hongyu Xiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, P.R. China
| | - Qiuhong Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, P.R. China
| |
Collapse
|
8
|
Zhou H, Zhang X, Huang R, Su T. Antifatigue effects and antioxidant activity in polysaccharide fractions from Chinese yam bulbils. Food Sci Nutr 2024; 12:1218-1229. [PMID: 38370048 PMCID: PMC10867482 DOI: 10.1002/fsn3.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 02/20/2024] Open
Abstract
Polysaccharides are the principal component in Chinese yam (Dioscorea opposita Thunb.) bulbils. The properties and antifatigue of polysaccharides from yam bulbils (PYB) were identified and compared. Their molecular weights (PYB-1 and PYB-2) were approximately 145 and 11 kDa, respectively, with active β-configurations. Meanwhile, the antifatigue activities of PYBs were tested in mice via exhaustive swimming tests (EST). The EST results indicated that PYB-1 and PYB-2 significantly prolonged swimming time in mice (p < .05). Associated with this increase was a rise in hepatic glycogen content and antioxidant enzyme (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px)) activity, along with a decline in blood urea nitrogen, lactic acid, and malondialdehyde levels. The results showed that molecular weight might contribute to the antifatigue effects of PYBs. Additionally, antioxidant tests showed that PYB-1 had stronger free-radical scavenging activity than PYB-2. Taken together, the findings indicated that PYBs exhibited effective antifatigue and antioxidant activities providing additional evidence supporting the use of PYBs as functional food ingredients for relieving fatigue.
Collapse
Affiliation(s)
- Hai‐Xu Zhou
- Henan Institute of Science and TechnologyXinxiangChina
| | - Xiao Zhang
- Henan Institute of Science and TechnologyXinxiangChina
| | - Ren‐gui Huang
- Chongqing SIIE Product Quality Testing Co., Ltd.ChongqingChina
| | - Tong‐chao Su
- Henan Institute of Science and TechnologyXinxiangChina
| |
Collapse
|
9
|
Zhao R, Wu R, Jin J, Ning K, Wang Z, Yi X, Kapilevich L, Liu J. Signaling pathways regulated by natural active ingredients in the fight against exercise fatigue-a review. Front Pharmacol 2023; 14:1269878. [PMID: 38155906 PMCID: PMC10752993 DOI: 10.3389/fphar.2023.1269878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Exercise fatigue is a normal protective mechanism of the body. However, long-term fatigue hinders normal metabolism and exercise capacity. The generation and recovery from exercise fatigue involves alterations in multiple signaling pathways, mainly AMPK, PI3K/Akt, Nrf2/ARE, NF-κB, PINK1/Parkin, and BDNF/TrkB, as well as MAPK signaling pathways that mediate energy supply, reduction of metabolites, oxidative stress homeostasis, muscle fiber type switching, and central protective effects. In recent studies, a rich variety of natural active ingredients have been identified in traditional Chinese medicines and plant extracts with anti-fatigue effects, opening up the field of research in new anti-fatigue drugs. In this review we give an overview of the signaling pathways associated with the activity of natural food active ingredients against exercise fatigue. Such a comprehensive review is necessary to understand the potential of these materials as preventive measures and treatments of exercise fatigue. We expect the findings highlighted and discussed here will help guide the development of new health products and provide a theoretical and scientific basis for future research on exercise fatigue.
Collapse
Affiliation(s)
- Rongyue Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ruomeng Wu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Junjie Jin
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xuejie Yi
- Exercise and Health Research Center, Department of Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Nаtionаl Reseаrch Tomsk Stаte University, Tomsk, Russia
| | - Jiao Liu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
10
|
Wang X, Xu M. Effect of vitamin energy drinks on relieving exercise-induced fatigue in muscle group by ultrasonic bioimaging data analysis. PLoS One 2023; 18:e0285015. [PMID: 37363923 DOI: 10.1371/journal.pone.0285015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/13/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVE This work was aimed to analyze the effect of vitamin energy drink on muscle fatigue by surface electromyography (SEMG) and ultrasonic bioimaging (USBI). METHODS 20 healthy men were selected to do increasing load fatigue test. Surface electromyographic signals and ultrasonic biological images were collected based on wavelet threshold function with improved thresholds. Time domain and frequency domain characteristic integrated electromyography (IEMG), root mean square amplitude (RMS), average power frequency (MPF), and surface and deep muscle morphological changes were analyzed. Hemoglobin concentration (HB), red blood cell number (RBC), mean volume of red blood cell (MCV), blood lactic acid (BLA), malondialdehyde (MDA), and phosphocreatine kinase (CK) were measured. RESULTS 1) the Accuracy (94.10%), Sensitivity (94.43%), Specificity (93.75%), and Precision (94.07%) of the long and short-term memory (LSTM) specificity for muscle fatigue recognition were higher than those of other models. 2) Compared with the control group, the levels of BLA, MDA, and CK in the experimental group were decreased and HB levels were increased after exercise (P < 0.05). 3) IEMG and RMS of the experimental group were higher than those of the control group, and increased with time (P < 0.05). 4) The mean amplitude of the response signal decreased with time. Compared with the control group, the surface muscle thickness, deep muscle thickness, total muscle thickness, contrast, and homogeneity (HOM) decreased in the experimental group; while the angular second moment (ASM) and contrast increased, showing great differences (P < 0.05). CONCLUSION Surface electromyographic signal and ultrasonic biological image can be used as auxiliary monitoring techniques for muscle fatigue during exercise. Drinking vitamin energy drinks before exercise can relieve physical fatigue to a certain extent and promote the maintenance of muscle microstructure.
Collapse
Affiliation(s)
- Xindi Wang
- School of Aerospace, Harbin Institute of Technology, Harbin, Heilongjiang, China
- China Basketball College, Beijing Sport University, Beijing, Beijing, China
| | - Mengtao Xu
- China Basketball College, Beijing Sport University, Beijing, Beijing, China
| |
Collapse
|
11
|
Zhang M, Cui S, Mao B, Zhang Q, Zhao J, Tang X, Chen W. Effects and mechanism of gastrodin supplementation on exercise-induced fatigue in mice. Food Funct 2023; 14:787-795. [PMID: 36606576 DOI: 10.1039/d2fo03095k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrodin reportedly exerts various pharmacological and health effects. However, the function of gastrodin in reducing exercise-induced fatigue remains elusive. Herein, we investigated the anti-fatigue effects of gastrodin on male mice and explored its possible mechanism of action. At 50 and 100 mg per kg per day, gastrodin significantly reduced fatigue in mice, confirmed using the forced swimming test, whereas no effect was noted at 20 mg per kg per day. Gastrodin preserved muscle and liver glycogen, increased superoxide dismutase activity, and decreased malondialdehyde, blood lactate, and blood urea nitrogen levels. Notably, gastrodin upregulated the mRNA expression levels of AMPK, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1. Gastrodin also regulated the composition of intestinal flora. These results confirmed that gastrodin activated AMPK and Nrf2/HO-1 pathways and regulated intestinal flora to improve performance in exhaustive exercise, suggesting that gastrodin is an effective functional food to alleviate exercise-induced fatigue.
Collapse
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| |
Collapse
|
12
|
Alleviation of Cognitive and Physical Fatigue with Enzymatic Porcine Placenta Hydrolysate Intake through Reducing Oxidative Stress and Inflammation in Intensely Exercised Rats. BIOLOGY 2022; 11:biology11121739. [PMID: 36552249 PMCID: PMC9774658 DOI: 10.3390/biology11121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
Intense exercise is reported to induce physical and cognitive fatigue, but few studies have focused on treatments to alleviate fatigue. We hypothesized that the oral supplementation of enzymatic porcine placenta hydrolysate (EPPH) prepared using protease enzymes could alleviate exercise-induced fatigue in an animal model. The objectives of the study were to examine the hypothesis and the action mechanism of EPPH in relieving physical and cognitive fatigue. Fifty male Sprague−Dawley rats aged 8 weeks (body weight: 201 g) were classified into five groups, and rats in each group were given oral distilled water, EPPH (5 mg nitrogen/mL) at doses of 0.08, 0.16, or 0.31 mL/kg body weight (BW)/day, or glutathione (100 mg/kg BW/day) by a feeding needle for 5 weeks, which were named as the control, L-EPPH, M-EPPH, H-EPPH, or positive-control groups, respectively. Ten additional rats had no intense exercise with water administration and were designated as the no-exercise group. After 2 weeks, the rats were subjected to intense exercise and forced swimming trial for 30 min once per week for an additional 4 weeks. At 5 min after the intense exercise, lactate concentrations and lactate dehydrogenase (LDH) activity in the serum and the gastrocnemius muscle were higher in the control group, whereas M-EPPH and H-EPPH treatments suppressed the increase better than in the positive-control (p < 0.05). Intense exercise decreased glycogen content in the liver and gastrocnemius muscle, and M-EPPH and H-EPPH inhibited the decrement (p < 0.05). Moreover, lipid peroxide contents in the gastrocnemius muscle and liver were higher in the control group than in the M-EPPH, H-EPPH, positive-control, and no-exercise groups (p < 0.05). However, antioxidant enzyme activities such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were opposite to the lipid peroxide contents. Hypothalamic corticosterone and hippocampal mRNA expressions of tumor necrosis factor (TNF)-α and IL-1β were higher. However, hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression and protein contents were lower in the control group than in the positive-control group. M-EPPH, H-EPPH, and positive-control suppressed the changes via activating hippocampal cAMP response element-binding protein phosphorylation, and H-EPPH showed better activity than in the positive-control (p < 0.05). In conclusion, EPPH (0.16−0.31 mL/kg BW) intake reduced exercise-induced physical and cognitive fatigue in rats and could potentially be developed as a therapeutic agent for relieving fatigue in humans.
Collapse
|
13
|
Zhu H, Wang R, Hua H, Cheng Y, Guo Y, Qian H, Du P. Network Pharmacology Exploration Reveals Gut Microbiota Modulation as a Common Therapeutic Mechanism for Anti-Fatigue Effect Treated with Maca Compounds Prescription. Nutrients 2022; 14:nu14081533. [PMID: 35458095 PMCID: PMC9026883 DOI: 10.3390/nu14081533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Maca compounds prescription (MCP) is a common botanical used in dietary supplements, primarily to treat exercise-induced fatigue. The aim of this study is to elucidate the multi-target mechanism of MCP on fatigue management via network pharmacology and gut microbiota analysis. Databases and literature were used to screen the chemical compounds and targets of MCP. Subsequently, 120 active ingredients and 116 fatigue-related targets played a cooperative role in managing fatigue, where several intestine-specific targets indicated the anti-fatigue mechanism of MCP might be closely related to its prebiotics of intestinal bacteria. Thus, forced swimming tests (FSTs) were carried and mice fecal samples were collected and analyzed by 16S rRNA sequencing. Gut microbiota were beneficially regulated in the MCP-treated group in phylum, genus and OTU levels, respectively, and that with a critical correlation included Lactobacillus and Candidatus Planktophila. The results systematically reveal that MCP acts against fatigue on multi-targets with different ingredients and reshapes the gut microbial ecosystem.
Collapse
Affiliation(s)
- Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (H.H.); (Y.C.); (Y.G.)
| | - Ruoyong Wang
- Air Force Medical Center, PLA, Beijing 100142, China;
| | - Hanyi Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (H.H.); (Y.C.); (Y.G.)
| | - Yuliang Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (H.H.); (Y.C.); (Y.G.)
| | - Yahui Guo
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (H.H.); (Y.C.); (Y.G.)
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (H.H.); (Y.C.); (Y.G.)
- Correspondence: (H.Q.); (P.D.); Tel.: +86-13951588662 (H.Q.); +86-010-66927220 (P.D.)
| | - Peng Du
- Air Force Medical Center, PLA, Beijing 100142, China;
- Correspondence: (H.Q.); (P.D.); Tel.: +86-13951588662 (H.Q.); +86-010-66927220 (P.D.)
| |
Collapse
|
14
|
Anti-Fatigue Peptides from the Enzymatic Hydrolysates of Cervus elaphus Blood. Molecules 2021; 26:molecules26247614. [PMID: 34946691 PMCID: PMC8708016 DOI: 10.3390/molecules26247614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Red deer (Cervus elaphus) blood is widely used as a health product. Mixed culture fermentation improves the flavor and bioavailability of deer blood (DB), and both DB and its enzymatic hydrolysates exhibit anti-fatigue activities in vivo. To elucidate the bioactive ingredients, enzymatic hydrolysates were fractioned into different peptide groups using reversed phase resin chromatography, and then evaluated using an exhaustive swimming mice model to assess swimming time and biochemical parameters. The structures of the bioactive peptides were elucidated by high performance liquid chromatography with tandem mass detection. Thirty-one compounds were identified as glutamine or branched-chain amino acids containing short peptides, of which Val-Ala-Asn, Val-Val-Ser-Ala, Leu(Ile)-Leu(Ile)-Val-Thr, Pro-His-Pro-Thr-Thr, Glu-Val-Ala-Phe and Val-Leu(Ile)-Asp-Ala-Phe are new peptides. The fractions containing glutamine or valine short peptides, Ala-Gln, Val-Gln, Val-Val-Ser-Ala, Val-Leu(Ile)-Ser improved exercise endurance by increasing hepatic glycogen (HG) storage. The peptides group containing Leu(Ile)-Leu(Ile), Asp-Gln, Phe- Leu(Ile), Val-Val-Tyr-Pro contributed to decreased muscle lactic acid (MLA)accumulation and to an increase in HG. The anti-fatigue activities of DB hydrolysates were attributed to the synergistic effects of different types of peptides.
Collapse
|